Skip to main content

library to read/write EDF+/BDF+ files

Project description

Test Coverage Docs Build PyPI Version Conda Version Conda Downloads

What is pyEDFlib

pyEDFlib is a python library to read/write EDF+/BDF+ files based on EDFlib.

EDF means European Data Format and was firstly published Kemp1992. In 2003, an improved version of the file protocol named EDF+ has been published and can be found at Kemp2003.

The EDF/EDF+ format saves all data with 16 Bit. The company BioSemi introduced a version which saves all data with 24 Bit.

The definition of the EDF/EDF+/BDF/BDF+ format can be found under edfplus.info.

This Python toolbox is a fork of the toolbox from Christopher Lee-Messer and uses the EDFlib from Teunis van Beelen. The EDFlib is able to read and write EDF/EDF+/BDF/BDF+ files.

Documentation

Documentation is available online at https://pyedflib.readthedocs.io.

Installation

pyEDFlib can be used with Python >=3.7. It depends on the Numpy package. To use the newest source code from git, you have to download the source code. You need a C compiler and a recent version of Cython. Go then to the source directory and type:

python setup.py build
python setup.py install

There are binary wheels which can be installed by (use pip3 when available):

pip install pyEDFlib

Users of the Anaconda Python distribution can directly obtain pre-built Windows, Intel Linux or macOS / OSX binaries from the conda-forge channel. This can be done via:

conda install -c conda-forge pyedflib

The most recent development version can be found on GitHub at https://github.com/holgern/pyedflib.

The latest release, including source and binary packages for Linux, macOS and Windows, is available for download from the Python Package Index. You can find source releases at the Releases Page.

Highlevel interface

pyEDFlib includes an highlevel interface for easy access to read and write edf files. Additionally functionality as anonymizing, dropping or renaming channels can be found there.

from pyedflib import highlevel

# write an edf file
signals = np.random.rand(5, 256*300)*200 # 5 minutes of random signal
channel_names = ['ch1', 'ch2', 'ch3', 'ch4', 'ch5']
signal_headers = highlevel.make_signal_headers(channel_names, sample_frequency=256)
header = highlevel.make_header(patientname='patient_x', gender='Female')
highlevel.write_edf('edf_file.edf', signals, signal_headers, header)

# read an edf file
signals, signal_headers, header = highlevel.read_edf('edf_file.edf', ch_names=['ch1', 'ch2'])
print(signal_headers[0]['sample_frequency']) # prints 256

# drop a channel from the file or anonymize edf
highlevel.drop_channels('edf_file.edf', to_drop=['ch2', 'ch4'])
highlevel.anonymize_edf('edf_file.edf', new_file='anonymized.edf'
                         to_remove=['patientname', 'birthdate'],
                         new_values=['anonymized', ''])
# check if the two files have the same content
highlevel.compare_edf('edf_file.edf', 'anonymized.edf')
# change polarity of certain channels
highlevel.change_polarity('file.edf', channels=[1,3])
# rename channels within a file
highlevel.rename_channels('file.edf', mapping={'C3-M1':'C3'})

License

pyEDFlib is a free Open Source software released under the BSD 2-clause license.

Releases can be cited via Zenodo.

https://zenodo.org/badge/DOI/10.5281/zenodo.5678481.svg

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyEDFlib-0.1.37.tar.gz (2.1 MB view details)

Uploaded Source

Built Distributions

pyEDFlib-0.1.37-cp312-cp312-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyEDFlib-0.1.37-cp312-cp312-win32.whl (2.2 MB view details)

Uploaded CPython 3.12 Windows x86

pyEDFlib-0.1.37-cp312-cp312-musllinux_1_1_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.37-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.37-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.37-cp312-cp312-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyEDFlib-0.1.37-cp312-cp312-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyEDFlib-0.1.37-cp311-cp311-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyEDFlib-0.1.37-cp311-cp311-win32.whl (2.2 MB view details)

Uploaded CPython 3.11 Windows x86

pyEDFlib-0.1.37-cp311-cp311-musllinux_1_1_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.37-cp311-cp311-musllinux_1_1_i686.whl (2.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyEDFlib-0.1.37-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.37-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.37-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.37-cp311-cp311-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyEDFlib-0.1.37-cp311-cp311-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyEDFlib-0.1.37-cp310-cp310-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyEDFlib-0.1.37-cp310-cp310-win32.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86

pyEDFlib-0.1.37-cp310-cp310-musllinux_1_1_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.37-cp310-cp310-musllinux_1_1_i686.whl (2.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyEDFlib-0.1.37-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.37-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.37-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.37-cp310-cp310-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyEDFlib-0.1.37-cp310-cp310-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyEDFlib-0.1.37-cp39-cp39-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyEDFlib-0.1.37-cp39-cp39-win32.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86

pyEDFlib-0.1.37-cp39-cp39-musllinux_1_1_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.37-cp39-cp39-musllinux_1_1_i686.whl (2.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyEDFlib-0.1.37-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.37-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.37-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.37-cp39-cp39-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyEDFlib-0.1.37-cp39-cp39-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyEDFlib-0.1.37-cp38-cp38-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyEDFlib-0.1.37-cp38-cp38-win32.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86

pyEDFlib-0.1.37-cp38-cp38-musllinux_1_1_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.37-cp38-cp38-musllinux_1_1_i686.whl (2.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyEDFlib-0.1.37-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.37-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.37-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.37-cp38-cp38-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyEDFlib-0.1.37-cp38-cp38-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyEDFlib-0.1.37-cp37-cp37m-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyEDFlib-0.1.37-cp37-cp37m-win32.whl (2.2 MB view details)

Uploaded CPython 3.7m Windows x86

pyEDFlib-0.1.37-cp37-cp37m-musllinux_1_1_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.37-cp37-cp37m-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pyEDFlib-0.1.37-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.37-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.37-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.37-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyEDFlib-0.1.37-cp36-cp36m-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyEDFlib-0.1.37-cp36-cp36m-win32.whl (2.2 MB view details)

Uploaded CPython 3.6m Windows x86

pyEDFlib-0.1.37-cp36-cp36m-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.37-cp36-cp36m-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pyEDFlib-0.1.37-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.37-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.37-cp36-cp36m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyEDFlib-0.1.37.tar.gz.

File metadata

  • Download URL: pyEDFlib-0.1.37.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.37.tar.gz
Algorithm Hash digest
SHA256 75bd8a912f5d9d130ade21f7ad333778c57621a3bcf9ed3c1611c7c90f260e2d
MD5 a4088f4e17fdafc2d265312ff21bb298
BLAKE2b-256 0051848b92ae7fce27a528c5225687b4dd98c2f0693a9ab8d376d08109123e67

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 054d3b3bddc4a21b4cbf8e609de5cc8d4550f133f2ebd95abeb01c61ea6f0d4c
MD5 06425f4c08ae2c36d622733000a89c92
BLAKE2b-256 c81fba6f54616340f2df93620f86bef3e148767b5800604e3e006d8e31a2367d

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp312-cp312-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.37-cp312-cp312-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.37-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 18c15d1132aada026d86a2800360dbabf705bd60e4d557b69573a8e2ee25f9af
MD5 2b963f9d43a805638dddbdfd147bbcc3
BLAKE2b-256 59724a2e73a7a4b784df6c48ea0819789c6fbe268e26f233516cb63213d06e18

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0ae3991d0e09abbb58f1ace16f9a69f645832b32a8374d380c284719d92eec15
MD5 bdac6b32c60d7341c13c8f708fb6874c
BLAKE2b-256 0b0c6ff2d0bc700a93c2258629e0b739051169d20231996aeaf2f85438c22df7

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e1a3c45f799596d9164d799fa8fbe18b1deb72ce1705ac8d171b51bb88719d3
MD5 0502d49cb025c4d8312a62abb19a9e21
BLAKE2b-256 f28b64b505b9471f098e0adcfa682c043b4b1cd5917c92c522ed84fec54455b2

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7cb1b92490bc953dd76502d01a43fcb741a9873b4c379947cd6d645518374336
MD5 396a8d127f180bc55667c0b8cfb4e959
BLAKE2b-256 fa4b256b4d0d6d152694f118de9da7fcca438ed710dbeab0a95242e237e54e5b

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 290ae861efaa751402dd582aee81b65f153b1abea5ba32e91499b8ee6ecb667a
MD5 df957d05498470cabbb5796f78f57812
BLAKE2b-256 757b25295b335fdfc8254a0947c669b937d8138a917b450dc8d77cd64e7c1fe0

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ca5f4a40ebb9a8fe414f484b513ba401515f5bc0e4061c0aacdb20885c33cd84
MD5 af58548b82f362477bfc579ddb670635
BLAKE2b-256 fa97d1069be79372eb52096087547ccbc39a5380d1ff43d1c7567baf3c6f3da6

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 396659eadc50ca0115cbd3af81fe9f62fa433cb17896075eec0da2e8e010802d
MD5 576bd575e504dc44eaa6b8a97b1f3c18
BLAKE2b-256 0721fdefcb0f6390b84cdc34a0b5d205d1d7be0f9b3d09d7baf872660b61aff3

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.37-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.37-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d99e15d79b9b296a878e7f1707785f36a064f3ac18c1394514577edc4182b824
MD5 095f1639d59f012e494d66143657ad0e
BLAKE2b-256 b0b04bfcad86509549d81ba781b10cfd9c1470a9818465d0d6cb98114dc27d2e

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ae5395b57a5c98fda97b98ead07c7485d240ec4b1619e046de8830443de6e82a
MD5 268d8d2d7ee1fe4165186cd127ec8216
BLAKE2b-256 499e29e4a1d99a7942d3e6414182f69aaaa2018556003ba60ccd2038845273c5

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5932a0301990ee698c23ca26156534ca5ed0d3e43d60e6166881b2ef46b688e1
MD5 d8c00e2a01a4817994391d868ddd7c3f
BLAKE2b-256 89f1496d006772d6d3c8b42b2ee8d0b38286a9b979a5fba9c64635a65eb095bb

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6500afba03b1b959dedf1b9f0c75f9f77e44a0119fb7d33057e44403826dc3c8
MD5 a9f7b14b45cf0447d493a828089f8346
BLAKE2b-256 55093632e40c7b495c39448f8802b578289d29c6aec2c6b562ac3a62c2698269

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7f2ae47f9e4ec2eafea1541b448decdd11a7b02b7f7c2f5c3993e6e11cc5a458
MD5 da41af2b79e8fdb2648e5a7c79958b6b
BLAKE2b-256 8ee8ad2f2bcebbf7daf8e379af0f524d7a027f6a4adad1b38db6d60023be5f33

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1dde4e33e602c64dfe2449b667af6f3fe2713bd7cd7e27e0bd16fe81b30be56a
MD5 db616e9287764dc34fd04d179ec7ec29
BLAKE2b-256 e9486d9fa4e434c3672076080cfb8e458600b9fe9327792513f246f5e3aba6f8

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6d39a5df077a285927ea615951fb969ccb36a659cfd831e918f2dc14868123ef
MD5 e2ab35b2858bd20954b199e8e3da560b
BLAKE2b-256 6fdc5605e7f2f1aa0187e782d9f604346a23e3a06ae6f6446c58843d8699fde8

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f5c3e4780ffce1801c5fb404fdd395a7e641eac2281c425efb1db4b76396b642
MD5 a46a481c115bdfd8f81950b13676de2b
BLAKE2b-256 30ccd4f539cf08660a552237f71e6d6e19b81f9d8cb41e7fc167880f23beace9

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 55f6e281c01a6784a88312bf45775d6c05d9bcb81079e38353ad71737bc8d6ae
MD5 eeca8d80bd6b6885a93d6b0a16621fbb
BLAKE2b-256 5e5cd7a860d81ea99170d33c4ef118496ffc4d1c353db1c2e3e03310a2882750

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.37-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.37-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 86ded989466ea6c160e71eb73a7183ecfcdc0c2f4909b30deebf549880ad79c3
MD5 432d0e7ace6541ccf5a3cabf3dbccd5d
BLAKE2b-256 b831ad8cdd9b5401db84dce0ce77a91586c94d9dfaa6ee7d6053a11d445b0319

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d14cc79ceef1883f457679d0eb02d72c092d01daa4891573177f67a298640042
MD5 e67be6d611b92df85a1958de6aaa2702
BLAKE2b-256 ef0d4d34c2296a363199cf8be0ba7ff8fc20c2cc05a74f6d667f523464474d29

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 057e92d12f51d9ab9d13c29190e32c0ad12ab9154bc4245e4e01eb6c98664faf
MD5 6fc12cb4f97810ddffd6317aea25d017
BLAKE2b-256 4112fcbf4dd415acf71bf5faa6f869b13d932426b79060849226ec174e98f6a9

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76e6ab077568b4e35c5d0dc5a479d7c871df71c25d15b6937b5b25a551bbf590
MD5 bc88d14e931ba235899da58c3735a68b
BLAKE2b-256 60b409ba59c44792b9f70f85057bf78a051b1edd53571ec30a350405c8f19b5d

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3bcf05b3f4a6ec04cd3c4356d5eeea1c26357b7c95ceeef26ace6be8440d67db
MD5 5d4c9d2adabbe1d76f97668a409afea3
BLAKE2b-256 d83c94f5d708f0d5ad27c6457f17d7c5dce1eb0aec1c8d3da56ecbe926196506

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 27d16f6b04a4aca66b5e2a98caa97c2a206281e5f6d4c36580b7e941541fbd17
MD5 17684cf388e8a866057ce43e9e64fcb5
BLAKE2b-256 31e8a43447ea885a9cca45b575e0a89418c2479123bbe453f6208938be7df7eb

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5e3c005c1514031584908a9c3b66eef2e9437390faf5deff1b53502d31ac960b
MD5 73263b90f1d6a7b564933118083a2f70
BLAKE2b-256 fea7bed158c8f19aa996a07543524b96ea2948275cad8ac3cae39383d6bf5d7a

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f90cd7b3884ba84d4d9f84c290955bcfeb5570777f5f9343c323a90dcbca996e
MD5 69b447434d918ab68ef69106320416ec
BLAKE2b-256 7aa113a3fca0ddb1c76aa40bf56e54ee4904f3c1bcfa9d1fe4d125b1599cfa6c

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyEDFlib-0.1.37-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.37-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 463d76f1fc24c0cb214adf38f872140e375f02e693b095a3c420d699eac375bd
MD5 a05f80c3e6b35229f5856eda829f258b
BLAKE2b-256 fe43134e9e6466eb0ef8911c3efcff7479f3e60163e493fa83923127f8be3a3f

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.37-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.37-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 4e07cebf1434a181dbb501bd895470605738dda5d4ef2c825774245650ff3fcf
MD5 b3b878a6455b9f5f326c0e15427fab64
BLAKE2b-256 94a98fda7e8ba7b7aa0e6133485fd81e81a9818d4d2237202f55a8b8050100af

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 008db0a8d1f574253c8256ac3a6e0f6d7772ac564ce112fd16cb511de1cf5688
MD5 13301e01a279bb0b3087633989264e43
BLAKE2b-256 cf79cba30716761290a49c8ae315806dccc148afe9affdb65d4cc99acf840a7d

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0e11a60ad04fc15b39464a4eba65ea2c789ab52c32b91228219b8b46ec42b2f4
MD5 4f1fd6d7c105d67df41d8d1e3aca8d74
BLAKE2b-256 5d94c75a8098d4ac7e6172c323d0408014318e3cd87a454e726e702d003044fa

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 736f317c19bedcd9563906ff8e67d32a28086f936e79b9c5c968a91ec467710b
MD5 df93efd1d135fc133a420e660d0a45c1
BLAKE2b-256 980698e15b5eefbf1e02f53d3932f1ea011a55999c983ab57ebf4fb10617752d

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c49839ef7fbba7b909965c821e89036fc224affe08503900403f4fca8d1c8f26
MD5 d492600561c5226dab6484c44711bfc0
BLAKE2b-256 00ab1fdd28519190d112272c47c8dee2a5a7b40b603055dd261032e91aa36ed0

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e3591438b96da6da23d7ddad8f618dc1a61956b822456057346f155a0f615f26
MD5 4ebf0518d015c1160ba7bfa725a40828
BLAKE2b-256 e97b8230ce87735c5a5e39f13c51ace59c5531be4bc7926123bac66099fdbddc

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c2feff358f9aba7ca55d9e36b06cea69c7bcc82164d7a7dba0e7a7df93980699
MD5 75d4f6805eabf17ffbbdcf7a7a410abc
BLAKE2b-256 05587fce9a8cf8287c721a8309203909fe613c66eb6e69d814641b69dcf186dc

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a19328d331596757579b1d49cd80de22d55205543e0263e24adee727d39aa222
MD5 54f72257b88a80f3613fe3a01e745711
BLAKE2b-256 e47c8873cd94b0cfb4a7a64f6fbcdf66048b8693b7dc36417aa55b70061e0f7f

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyEDFlib-0.1.37-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.37-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 674aa4b78757839c2f1300bc7b8c2bd4352169273f013b77b6e7487cc6abe2cf
MD5 a2e8a46489f91bcfc23aad86844e824e
BLAKE2b-256 8bce0e48f7c7af85faf9376d0476e01daf50eb81465d7e04391507f0c152b690

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.37-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.37-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d83e4a8370efe81d7e831f94e192f56a59265e4af6127c89f99e6d9dd006b04b
MD5 0dcf431da1d8eedd195f3b5fa704314a
BLAKE2b-256 9da12f3a0ccf26a1f7fee95b3355bd4f4798a13b0dfb8a5f9c1cd8dca09f20f9

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 057be5188d5b8eda2938c42c85ebad0dc42c5894a6e354689ff83473b9689bd4
MD5 bc258c9b1e13146172c8c4c8e0b8b940
BLAKE2b-256 9e873d52a0f8c0b716819d2b1f63eef46a9069f037ffe49ae4cde5d9212794c6

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a3c42769cc1cf574f98a4e407b551ce131f91cd87bc96c52c534186632ab70d0
MD5 da2cfcafd8a5a12ed62ddfd2b3fbe677
BLAKE2b-256 4caf3321bf1993a4d98cc6e0ef000451069c9e0692d6d299d476c375b3d27dd4

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7c17847dd3b504593fbab3399384b09fac6836c1acc0a7105768fa63484e0e7
MD5 edc26838a4376e9ea003716c35904454
BLAKE2b-256 a0bd647777c91036d4a06354df2ac1f61b9b79718ae80c12c08efa7ec6921110

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ac3f15f3558837adf0537f35ff9c9140f982cc449da4ae312c1095f150e9568
MD5 8a2a6cda11d3a4d29a4a3b3e5ed9f3e3
BLAKE2b-256 5c6519975b96db7358ae4c88bca8a42788c7289c64a4c744d813c4fb98558e52

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6884ca539959b562c8769475d59219707584e2f416b938fb1a37f3e742f1b60d
MD5 8ef1e77881726ba5440c3e06adf34b27
BLAKE2b-256 8410109f0113ad682ec97fe1d7e60f2ce22067be90f0624ca05cf93ca7d1342c

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bc08fd6b7e1db59d5a9d830bc7526c545fb0ef65232212e8eec959b3d6d9d4ad
MD5 47e35a097b60e5dfb519035792a13f33
BLAKE2b-256 4da8df16cda6ab076ebee5e2a96a81fca3d3fa2fd5f5e588f777d26acd6238f9

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 992d9a6cd556237f71b7a1399e4b0faee8b71748050c4c12978577263682e078
MD5 477bdb12117dc17e03afdbd91cc3a42c
BLAKE2b-256 1c113af79a1f5271ffa5df76b530dd1e3a18bb9f33d0af11d617adae7479d842

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 81c364a81caf690fb27e1e495f198c200fc4b4a283d756f104142021a7a11aaf
MD5 5fca43f89f593e2ea9eb8f4640faffe4
BLAKE2b-256 18e395ec737c7d963a319d1fd4231826b54e35c6253368945d6cf51acb25d228

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.37-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.37-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 cf8da5b844e2a2aeebde828f3cc7dc4917474f5cd5872309a3cef2d6c4018722
MD5 303f400c2fe9265022785ae63e5c3c93
BLAKE2b-256 e39f97785bd2245766ceea89756888bdf2b88f8ec93f1d34661bef0d75045c73

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9b6214e6ddd21f29d5e201ccb5d37027de5390b8d4c6436af24eaf2334cae1a9
MD5 6a23082927f75da849007ed9628066f0
BLAKE2b-256 8a70e9eaa3ccdeda7e2882475103a3ab8e638dda15bd515d313d5e9839724ff7

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 460d7aac5ea72e2eaf07abd0904ddeca894ff5489b006ee6140c4bf3776dd7fb
MD5 d7a7017d84cebd592177aac521fe4585
BLAKE2b-256 07070b11f994c9a3c3a1dc9cb0bb0424ecf40ffc550daf861ce484f183566139

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f01531115445828dd4c0e9f5b96ecb85a63a4808f6e4bc3e2f50003cc7714fb5
MD5 55d50d433786921aa7758463d4b72cb5
BLAKE2b-256 d2126179c53105b21057f336e107f77a93a528c20e6620221f10080a2647c36a

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c7332582d81a4c0809f0b7e34d508f614c4ac99fe1cfe056b0f0628462f506d2
MD5 bb963f5af3f232559c7db6cc4e4d1550
BLAKE2b-256 5975c199c695a5c2848d2ff2d712692c39242ab19fa8e0096f0a09eb79bc5a65

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9ce5ba42e20381741eb4471038c26f73bbece454dacd9d4b61cbcc42e1a92567
MD5 e49041d2237d9b2b577ddfd97f205d67
BLAKE2b-256 15ed12b8851da8bc0619a74b861f16aff02913179318510aa297d2be993e0b18

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a3bf57b1d5a7882ed14c650e95920c438c393a9e040292d972750cf085c321d9
MD5 64d2084367dcdd0e2cb265be6df46621
BLAKE2b-256 82dcad613ef8d9d0985aac52cec17bea383cb5682b365bf3dddeb42909143c89

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3f8be8d2e1ca2ca859fe43aa5012d3401eab43a5202d0a5d18dbf2b6c9ff731f
MD5 bef0804b3d4a4cfe53298af5f516075b
BLAKE2b-256 99e9071f41a46894c8567dce8db18888e6654e2d04f953c8feb1070fa4f8ac91

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.37-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.37-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 9986e2a6a6e1a9e81e73630394e8362b564c2e9d79ac98923e39961200b5110f
MD5 d4697fe61752da2753d673c901643676
BLAKE2b-256 0fc9bffec1c7d2d8d59a156dbb3314d18fe1ecc23f8b00559c7c067e84a767cc

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7ab52bd278565fdb8cb8a71ae03fb59f85411810f92c081917f62a3fa0819d09
MD5 bf36a34b338162a2efc19e7d87f27231
BLAKE2b-256 9baa1df151a657ae807ea1e191d979f298b3eeb3d080393115d50cc727b77082

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 685a632d095a45a680e24e4773889d9e23533ef2f6ac429749e4863169d71ba4
MD5 2b8f5e2f49dce66ba3084e44216fb4cb
BLAKE2b-256 8667fc4c3354068248f6e0ea95c9bba3a76f32e3faee689eaba987e4bfc1efe4

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 478796c3ec76b6f64ec51b8abbfb49eb9af974ce87f93455a7ad43caa4d1f4ef
MD5 d20eae7ba1ec9f01daa44b447d9387a0
BLAKE2b-256 8d3f38b482a561eebfa9a6690ea8330c355a6dfc3298bef042d384ccb7aa5b7c

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7c2016fb675e283577fcb7290c99862432561149c9f61839773a0f85c414b037
MD5 c91ea320d64ad5c8476a7eb565477fc8
BLAKE2b-256 74c3b58428432c72868651f00e525d9c9ccff39cc80ae24ccd6e3520d4f5433b

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.37-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.37-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f47f49d4c38431f7bfa2bd7fb555867d93f0055804f0b56c3309da94e0ff8f7f
MD5 57d338122e42e0bcf60cc00a944e4f23
BLAKE2b-256 3b1c51756f5a609816398137507ae0d62be7b47d28a97e523d1f45dcd222731b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page