Skip to main content

EMMA: Emma's Markov Model Algorithms

Project description

=====================================
EMMA (Emma's Markov Model Algorithms)
=====================================

.. image:: https://travis-ci.org/markovmodel/PyEMMA.svg?branch=devel
:target: https://travis-ci.org/markovmodel/PyEMMA
.. image:: https://badge.fury.io/py/pyemma.svg
:target: https://pypi-hypernode.com/pypi/pyemma
.. image:: https://img.shields.io/pypi/dm/pyemma.svg
:target: https://pypi-hypernode.com/pypi/pyemma
.. image:: https://anaconda.org/xavier/binstar/badges/downloads.svg
:target: https://anaconda.org/omnia/pyemma
.. image:: https://anaconda.org/omnia/pyemma/badges/installer/conda.svg
:target: https://conda.anaconda.org/omnia
.. image:: https://coveralls.io/repos/markovmodel/PyEMMA/badge.svg?branch=devel
:target: https://coveralls.io/r/markovmodel/PyEMMA?branch=devel

What is it?
-----------
PyEMMA (EMMA = Emma's Markov Model Algorithms) is an open source
Python/C package for analysis of extensive molecular dynamics simulations.
In particular, it includes algorithms for estimation, validation and analysis
of:

* Clustering and Featurization
* Markov state models (MSMs)
* Hidden Markov models (HMMs)
* multi-ensemble Markov models (MEMMs)
* Time-lagged independent component analysis (TICA)
* Transition Path Theory (TPT)

PyEMMA can be used from Jupyther (former IPython, recommended), or by
writing Python scripts. The docs, can be found at
`http://pyemma.org <http://www.pyemma.org/>`__.

Citation
--------
If you use PyEMMA in scientific work, please cite:

M. K. Scherer, B. Trendelkamp-Schroer, F. Paul, G. Pérez-Hernández,
M. Hoffmann, N. Plattner, C. Wehmeyer, J.-H. Prinz and F. Noé:
PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models,
J. Chem. Theory Comput. 11, 5525-5542 (2015)


Installation
------------
With pip::

pip install pyemma

with conda::

conda install -c omnia pyemma


or install latest devel branch with pip::

pip install git+https://github.com/markovmodel/PyEMMA.git@devel

For a complete guide to installation, please have a look at the version
`online <http://www.emma-project.org/latest/INSTALL.html>`__ or offline in file
doc/source/INSTALL.rst

To build the documentation offline you should install the requirements with::

pip install -r requirements-build-doc.txt

Then build with make::

cd doc; make html

Support and development
-----------------------
For bug reports/sugguestions/complains please file an issue on
`GitHub <http://github.com/markovmodel/PyEMMA>`__.

Or start a discussion on our mailing list: pyemma-users@lists.fu-berlin.de


External Libraries
------------------
* mdtraj (LGPLv3): https://mdtraj.org
* bhmm (LGPLv3): http://github.com/bhmm/bhmm
* msmtools (LGLPv3): http://github.com/markovmodel/msmtools

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyemma-2.1rc1.tar.gz (663.3 kB view details)

Uploaded Source

File details

Details for the file pyemma-2.1rc1.tar.gz.

File metadata

  • Download URL: pyemma-2.1rc1.tar.gz
  • Upload date:
  • Size: 663.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pyemma-2.1rc1.tar.gz
Algorithm Hash digest
SHA256 4c7fd55706540b0187174f12656aa2afad1b2cd0fe1222f7579d7695a8dffefe
MD5 9d939f64b913cda4dbb49ec96a9f8cfe
BLAKE2b-256 9275afa9da7a4e730829b583eb1e0851397b9a4775d823721fc9d640cb1812a4

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page