A pythonic wrapper around FFTW, the FFT library, presenting a unified interface for all the supported transforms.
Project description
pyFFTW is a pythonic wrapper around FFTW, the speedy FFT library. The ultimate aim is to present a unified interface for all the possible transforms that FFTW can perform.
Both the complex DFT and the real DFT are supported, as well as arbitrary axes of abitrary shaped and strided arrays, which makes it almost feature equivalent to standard and real FFT functions of numpy.fft (indeed, it supports the clongdouble dtype which numpy.fft does not).
Operating FFTW in multithreaded mode is supported.
A comprehensive unittest suite can be found with the source on the github repository.
To build for windows from source, download the fftw dlls for your system and the header file from here (they’re in a zip file): http://www.fftw.org/install/windows.html and place them in the pyfftw directory. The files are libfftw3-3.dll, libfftw3l-3.dll, libfftw3f-3.dll and libfftw3.h.
Under linux, to build from source, the FFTW library must be installed already. This should probably work for OSX, though I’ve not tried it.
Numpy is a dependency for both.
The documentation can be found here, and the source is on github.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file pyFFTW-0.10.2.tar.gz
.
File metadata
- Download URL: pyFFTW-0.10.2.tar.gz
- Upload date:
- Size: 364.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ad202d40aa11b318f3e6d2ee028e26da4528674ea015cd29e0c218c619540745 |
|
MD5 | 20c0f3bb8153e7a4ab8bcbfe286248e8 |
|
BLAKE2b-256 | a0278e563cf640af13e25c84960e9425be62638cc6f1cb14d03b025602a591b3 |
File details
Details for the file pyFFTW-0.10.2-cp35-cp35m-win_amd64.whl
.
File metadata
- Download URL: pyFFTW-0.10.2-cp35-cp35m-win_amd64.whl
- Upload date:
- Size: 2.3 MB
- Tags: CPython 3.5m, Windows x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8c1591d9c6644b4730bfb283b1b7659055788d5f16ade790b3d812a91115da55 |
|
MD5 | f4f6b204bc2cdbaca24a2b09b6916208 |
|
BLAKE2b-256 | d57acb6d2a24bf87b280401cb5c75a7015b6fbae046b44077c8b5cdeb8099d26 |
File details
Details for the file pyFFTW-0.10.2-cp35-cp35m-win32.whl
.
File metadata
- Download URL: pyFFTW-0.10.2-cp35-cp35m-win32.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.5m, Windows x86
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 65b13c9bf7f1ffc11d90f7a001c718d98d3d78e984055c225b6744b4d7d8ace9 |
|
MD5 | a1f1e3615480fe57cc9682c3cb512106 |
|
BLAKE2b-256 | 0a2c9e0d6c8ea97494620baf8e596422bf0cce3d0d6e62c276bbad641617997b |
File details
Details for the file pyFFTW-0.10.2-cp34-cp34m-win_amd64.whl
.
File metadata
- Download URL: pyFFTW-0.10.2-cp34-cp34m-win_amd64.whl
- Upload date:
- Size: 2.3 MB
- Tags: CPython 3.4m, Windows x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f0681ac0003f28af76a769ba6fcc3b967b17756d7969e7f0e5a0d51c617daf3a |
|
MD5 | ac70aa1b4bd5fae90ef681e4ed28a24f |
|
BLAKE2b-256 | 5f11ed8367d7a7e639a91be797da50649f0102e3d409eef4e03975c915a90dd0 |
File details
Details for the file pyFFTW-0.10.2-cp34-cp34m-win32.whl
.
File metadata
- Download URL: pyFFTW-0.10.2-cp34-cp34m-win32.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.4m, Windows x86
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5cf0487dcdebf2265bea911d684ea1ce736f10311c76f3f13b529154fe6da19c |
|
MD5 | 5f9e4f824e0b09262447631ca76cdca6 |
|
BLAKE2b-256 | b635a561a81fd6536ff88da4011375c01dfdca9addcfbccf4c953b1d0dada4f4 |
File details
Details for the file pyFFTW-0.10.2-cp33-cp33m-win_amd64.whl
.
File metadata
- Download URL: pyFFTW-0.10.2-cp33-cp33m-win_amd64.whl
- Upload date:
- Size: 2.3 MB
- Tags: CPython 3.3m, Windows x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0d2669e0acd5102f2331f6e568cbabd0445d9fe8eed74832b4a5848b91e006b2 |
|
MD5 | 1acb9c29e3408c5bfa4717e756917538 |
|
BLAKE2b-256 | d218f30aba20eae11c2bca20970a45b5388138bdf405d329cd962b6cf2f2ffb9 |
File details
Details for the file pyFFTW-0.10.2-cp33-cp33m-win32.whl
.
File metadata
- Download URL: pyFFTW-0.10.2-cp33-cp33m-win32.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.3m, Windows x86
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 896dbd05bfab2a06e2dc1bb097729f556dda1c2affe20f4757538c3004a978fc |
|
MD5 | 1f8addecabd8994f6aff8a43d9bac39f |
|
BLAKE2b-256 | 250c7b80d4a351fc84f8887d50593a25639f780ea7c67ca2e266992d83191c10 |
File details
Details for the file pyFFTW-0.10.2-cp27-cp27m-win_amd64.whl
.
File metadata
- Download URL: pyFFTW-0.10.2-cp27-cp27m-win_amd64.whl
- Upload date:
- Size: 2.3 MB
- Tags: CPython 2.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bebd33545c05b4f9c414a712fa527d2a5dc585ca94a6ee70b3887336f6c6ec7a |
|
MD5 | 8178f1331133d586832d86c4205a5ad8 |
|
BLAKE2b-256 | 86375bfe61b066403bee95ddd811440e57d324876143fde2bdacc24e871e881a |
File details
Details for the file pyFFTW-0.10.2-cp27-cp27m-win32.whl
.
File metadata
- Download URL: pyFFTW-0.10.2-cp27-cp27m-win32.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 2.7m, Windows x86
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dd7b352add24274941e1e7e277ce4203d35d6f51a610368ba9cbeae9428deb46 |
|
MD5 | ccf271a43bf729b02d2e4840f791046c |
|
BLAKE2b-256 | dd9ad86e8970ab7a93ecedb7663176544afc926ccfe16f60704874a6558853e5 |