Skip to main content

A pythonic wrapper around FFTW, the FFT library, presenting a unified interface for all the supported transforms.

Project description

pyFFTW is a pythonic wrapper around FFTW, the speedy FFT library. The ultimate aim is to present a unified interface for all the possible transforms that FFTW can perform.

Both the complex DFT and the real DFT are supported, as well as arbitrary axes of arbitrary shaped and strided arrays, which makes it almost feature equivalent to standard and real FFT functions of numpy.fft (indeed, it supports the clongdouble dtype which numpy.fft does not).

Operating FFTW in multithreaded mode is supported.

A comprehensive unittest suite can be found with the source on the github repository.

To build for windows from source, download the fftw dlls for your system and the header file from here (they’re in a zip file): http://www.fftw.org/install/windows.html and place them in the pyfftw directory. The files are libfftw3-3.dll, libfftw3l-3.dll, libfftw3f-3.dll and libfftw3.h.

Under linux, to build from source, the FFTW library must be installed already. This should probably work for OSX, though I’ve not tried it.

Numpy is a dependency for both.

The documentation can be found here, and the source is on github.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyFFTW-0.11.0.tar.gz (132.0 kB view details)

Uploaded Source

Built Distributions

pyFFTW-0.11.0-cp37-cp37m-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m

pyFFTW-0.11.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pyFFTW-0.11.0-cp36-cp36m-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.6m

pyFFTW-0.11.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pyFFTW-0.11.0-cp35-cp35m-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.5m

pyFFTW-0.11.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pyFFTW-0.11.0-cp27-cp27mu-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 2.7mu

pyFFTW-0.11.0-cp27-cp27m-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 2.7m

pyFFTW-0.11.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.3 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pyFFTW-0.11.0.tar.gz.

File metadata

  • Download URL: pyFFTW-0.11.0.tar.gz
  • Upload date:
  • Size: 132.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.3

File hashes

Hashes for pyFFTW-0.11.0.tar.gz
Algorithm Hash digest
SHA256 282ab6fd1937f7e743c99cd5099e50fa312b4b9c39136c502d3d14408e863500
MD5 cfd27e8db7b11d1650a19a478c8def43
BLAKE2b-256 64398ab4ffd393bfff34619195227f6cba218972ab9536a46a4845b4e3c8ab25

See more details on using hashes here.

File details

Details for the file pyFFTW-0.11.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyFFTW-0.11.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.3

File hashes

Hashes for pyFFTW-0.11.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 add11a5d7b404dca6ca598e22da8ee41c2d76b0abac8b6c9f7ab2bee1d5b0a4c
MD5 00ad40c5791257f0010cb104a8292a37
BLAKE2b-256 7bb5e7713335864683553fe07ccc6b35e065d80e51be7e91c8e05e5b2b7430d2

See more details on using hashes here.

File details

Details for the file pyFFTW-0.11.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.11.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 183fad1467a292bd795c35746fa64eca03ae379c2de430719b26ba5149a7f3d4
MD5 a685e87bfb139ae8215001f3e88237cb
BLAKE2b-256 84d594f9a13d72a36242d5a90b700f3cfbdf44b0f94ae2ce3aed848dafec3854

See more details on using hashes here.

File details

Details for the file pyFFTW-0.11.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyFFTW-0.11.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.3

File hashes

Hashes for pyFFTW-0.11.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6d4d4922f623d3326dfb47897f8e28d766ff722a18cd379fcf468c1b393b6bca
MD5 2091c004bff2f213369aabd701ae3ea9
BLAKE2b-256 8bc92d91ba33ae4d0a038b3b5ae7787d6faae59e7fd0190093afb648ce6540b4

See more details on using hashes here.

File details

Details for the file pyFFTW-0.11.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.11.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1cf2caa5a26eb03d3cc286403939e8fa05aa53ce6a0b6839feebd81ce6363aa6
MD5 0958f613ce80e501125bf253fa66d3eb
BLAKE2b-256 f0870e9cc803a5c97747672f03f696965a6cce5f0cbeb7747333fa21fd932f1e

See more details on using hashes here.

File details

Details for the file pyFFTW-0.11.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyFFTW-0.11.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.3

File hashes

Hashes for pyFFTW-0.11.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 43257251e65fc361838eb6e5dbbb0b6639854b4379e14b5f2aae4a9dfc2c4cd5
MD5 f58242f83d3942b4e59e3a607b552b04
BLAKE2b-256 24d019ae9b89e8a0f19ff7ff76a56b8f00ff9787dfe822c981d8ffd9558d58ca

See more details on using hashes here.

File details

Details for the file pyFFTW-0.11.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.11.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 75bbe077b3cf152ede587b96a4c1b718df54217193ad1b737b8972d84dec860a
MD5 91e54f05a7be1952258557b1fac04212
BLAKE2b-256 1d3e21422b1e430adbcc477036437b2221c5140b5b057917a4d15bcbb6f192c4

See more details on using hashes here.

File details

Details for the file pyFFTW-0.11.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyFFTW-0.11.0-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.3

File hashes

Hashes for pyFFTW-0.11.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 20ed18c7e8fd426e29fd9912a09a15208834c67f09c4215249a189f5bc225d4d
MD5 33c3f7d80609df55422ff017f13fb9f8
BLAKE2b-256 5b500b2258cca0037cdb29163dfe8c1b7ee388719d5cb547af60f1b1cbe37b89

See more details on using hashes here.

File details

Details for the file pyFFTW-0.11.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyFFTW-0.11.0-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.3

File hashes

Hashes for pyFFTW-0.11.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a88032980fad3ce4a69ebb712faf97920a131593272f03f21e451b18b49fb8bf
MD5 f859171972cdf14d8973d6450e8b479d
BLAKE2b-256 16d3c9ce6173fad42ae695a9ef7024b2db73978b95d6f1ee04d095ad443c2592

See more details on using hashes here.

File details

Details for the file pyFFTW-0.11.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.11.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 64de0d91c2d6c4df8d4ce4393521dceda4b65b1d3c1b8f5886a3c4ebcdfdb162
MD5 00d992d95aa58064708ea3908d6b9f23
BLAKE2b-256 026e3eb3626178874b6bb7a35f02c5e4918eb5bea21453713ce8d4b8f96301de

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page