Skip to main content

A pythonic wrapper around FFTW, the FFT library, presenting a unified interface for all the supported transforms.

Project description

pyFFTW is a pythonic wrapper around FFTW, the speedy FFT library. The ultimate aim is to present a unified interface for all the possible transforms that FFTW can perform.

Both the complex DFT and the real DFT are supported, as well as arbitrary axes of arbitrary shaped and strided arrays, which makes it almost feature equivalent to standard and real FFT functions of numpy.fft (indeed, it supports the clongdouble dtype which numpy.fft does not).

Operating FFTW in multithreaded mode is supported.

A comprehensive unittest suite can be found with the source on the github repository.

To build for windows from source, download the fftw dlls for your system and the header file from here (they’re in a zip file): http://www.fftw.org/install/windows.html and place them in the pyfftw directory. The files are libfftw3-3.dll, libfftw3l-3.dll, libfftw3f-3.dll and libfftw3.h.

Under linux, to build from source, the FFTW library must be installed already. This should probably work for OSX, though I’ve not tried it.

Numpy is a dependency for both.

The documentation can be found here, and the source is on github.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyFFTW-0.13.0.tar.gz (113.3 kB view details)

Uploaded Source

Built Distributions

pyFFTW-0.13.0-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyFFTW-0.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyFFTW-0.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyFFTW-0.13.0-cp310-cp310-macosx_10_13_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pyFFTW-0.13.0-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyFFTW-0.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyFFTW-0.13.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyFFTW-0.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyFFTW-0.13.0-cp39-cp39-macosx_10_13_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pyFFTW-0.13.0-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyFFTW-0.13.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyFFTW-0.13.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyFFTW-0.13.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pyFFTW-0.13.0-cp38-cp38-macosx_10_13_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pyFFTW-0.13.0-cp37-cp37m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyFFTW-0.13.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyFFTW-0.13.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

pyFFTW-0.13.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pyFFTW-0.13.0-cp37-cp37m-macosx_10_13_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

File details

Details for the file pyFFTW-0.13.0.tar.gz.

File metadata

  • Download URL: pyFFTW-0.13.0.tar.gz
  • Upload date:
  • Size: 113.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0.tar.gz
Algorithm Hash digest
SHA256 da85102405c0bd95d57eb19e99b01a0729d8406cb204c3900894b873784253da
MD5 bfbfccf6e2956d2c283ef1a7a0fa6b34
BLAKE2b-256 18a15eb99c183af0a49bf632fed3260a6cad3f7978bb19fd661a573d3728a986

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyFFTW-0.13.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7d2bb583cc7f1625a78f9ed35a9587c7689ebd364f39dba2091784eeca255dbf
MD5 221ebed37181d54170f68b93151b092e
BLAKE2b-256 88555742cbe66f4658bf949b1551e5b479d075cf684622a83e5a8004b6fe6c11

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 812284aa174df9d7997e645d0545e349a988e22f7d73d8852b1bcc2fc98c8355
MD5 89eb16371538d9a720c2078b02e641cb
BLAKE2b-256 76c6b02298e972fa105e6323b7d35ecff9751a26cd2e492b6822e6cef9888001

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ef4cb18150d3ece2f40ef702db79815c951ff2188e0e42417cd756ca7c59e107
MD5 bf9adc36efd5d90b83340cde5a4450b2
BLAKE2b-256 05b8c155ff20204559f975f4713ed03c5afca36c2eef78ec9b678e744bf8b7eb

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: pyFFTW-0.13.0-cp310-cp310-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.10, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6500d354d7d6b6bddd975f912446d7e4925015f28ed130311e998dc2e78e529f
MD5 c41c59e9c6a0b7d4f1b25dceea4e06dc
BLAKE2b-256 d1f14981197ffdf3843509a7c2267c3b813bbc70f98838e4eccd272eb6c5f94e

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyFFTW-0.13.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f1eef10bc76d079215a9df6f72e9a772d8d9efa1f16aee2bc35a72e55fe9010b
MD5 73ad30c6bd8999e3da7561d91f709a53
BLAKE2b-256 04bceea3661507de35bdad2e3e7f9430be34d1711f2b48839ccaa1600aec45e3

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f4ee76b3a0a5fed63630a5d94c74dbf0aef1a02c44adeebfdf21ef1bce5a06b
MD5 75d8091f716c3447142857e882da6bc1
BLAKE2b-256 6187566f1fa79e924e41d39ba4170a7d4fa8daa626daad97f18217333265233b

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b57d510e3935b5d23e47b861acfd1f38bc296a39782127dd51d0cf92e23bd552
MD5 66485d08e0b6d6389e9fe89a7dbf7256
BLAKE2b-256 8aeda64ce14f924fe77e3e162ab87ec3f10a4bda142db882e71ae1ca9086a793

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bdd544995589708640483fe17f42ee2724a9221240ad7ea7dac8287799683e7f
MD5 f7e1e3dc8ac7b781d4ae07f23fee8c4c
BLAKE2b-256 39b4348d2e18edf833024b08e8681adeb0d967cbf352d74ba63104f0cc335fec

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: pyFFTW-0.13.0-cp39-cp39-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c5eda166ffc4c799a4965a935da5ccc15c64b7850512cf88c4e0916410367295
MD5 0e7a71b2d735e8a4ea4e3df905faba2b
BLAKE2b-256 d6f231fe4cf78a60e71c34eca584ec9aac2d8b07b3664e922d5743dc8f838698

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyFFTW-0.13.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 830716cf70e09dcf5bf929685b0c3b2828704cc093f164e41fabf8f3783b5652
MD5 5ef958e901d4d918712e954326d2d955
BLAKE2b-256 b708a4cea491e39c0bc4ac167e7d66c340e4cbe10d5c69b954c058d3f4a3d404

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fffd908f98dd5dca27736205465291f854e5fcc3a1de68c0f463464a563fa548
MD5 e01babe3d1965f84f62ea409d63a40bb
BLAKE2b-256 db460224b52e462e7c1d62ab66c819f2d82b292efe76d865a4c3aa0762cfff91

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 91da522996b863a0769a643f039378c4e6611fa1095ecbf98b83b00a09fe8a54
MD5 de95bdbb84799282a1a45e6d68cf460a
BLAKE2b-256 15aefca23d882475e96d7367fa327de293b394b2f5ea9cc8828381fe904afa24

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d6d34fcfefdcb523f2dc7298c7d7203b2d59dd32f150068ee5d6c306ce04fa38
MD5 0cd3a204d8aeeca969b78d9d4334bfae
BLAKE2b-256 87f1053b2d05a1b385e49358699e97a7e6e705452a940162377f2f736e2253f2

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: pyFFTW-0.13.0-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8a1527524e99a5246c1055a4b6e37f93413ccc28a767fc9552dcbed8046b25ab
MD5 37df3750928a436c93a73598e13c6fde
BLAKE2b-256 c7aafb6c3afe90ef7a4a8b436df07ae1a39e169cc3d4299058327937ec5a4f2f

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyFFTW-0.13.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 31f0c1038cf4f7609a4e02c07d719efcfd9ed895022c3495c509d66cda9e1f12
MD5 525f02e30fc7cc21d68f7137c3bb189e
BLAKE2b-256 ab6e6de609f0746fd2fa1271d7de736445b738cf6b95bf3e41387039a34e31c1

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a1a5a15ca428586d602403721015477f4f49a558222637dd1842c42026ce049d
MD5 951ea3103e47aa5f4e818bee09be28a4
BLAKE2b-256 555b6d8d1572bbc24d3e4d0946efd410354cbb331a48194c43c6cbb60be566a4

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 da4ff11dc57b8e7fa38ec010a14bf00f8e7d9ab29eb5dff5470e969066bd538e
MD5 2526289e2e1d01ac6f3a9b7362128841
BLAKE2b-256 b3c3d9204db01869fedd63e451affb340bd38463ef71b4b99d1e69b4f04ffcdf

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: pyFFTW-0.13.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 faf315b76e7061c2601a7c1857f502c75a1d551309c973c7825d61d14631cfe8
MD5 5362f2d6b3e542c457e714b8ac5c7a58
BLAKE2b-256 cfb116a1b39edd2f7ad3b0927b2827893ad286772c86a3cb5b2b8c9819d1bacd

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: pyFFTW-0.13.0-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0c02cb325d91a7805a896461bc93b1837e8f43b2d2b289b096b48118d45b5b0d
MD5 6e10c5b6db9192c7f3f833f62e1c07ee
BLAKE2b-256 c302475493f3ab248a25da70a2d47bc53968d816adedbd2b65b71a17a1a96d68

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page