Skip to main content

A pythonic wrapper around FFTW, the FFT library, presenting a unified interface for all the supported transforms.

Project description

pyFFTW is a pythonic wrapper around FFTW, the speedy FFT library. The ultimate aim is to present a unified interface for all the possible transforms that FFTW can perform.

Both the complex DFT and the real DFT are supported, as well as arbitrary axes of arbitrary shaped and strided arrays, which makes it almost feature equivalent to standard and real FFT functions of numpy.fft (indeed, it supports the clongdouble dtype which numpy.fft does not).

Operating FFTW in multithreaded mode is supported.

A comprehensive unittest suite can be found with the source on the github repository.

To build for windows from source, download the fftw dlls for your system and the header file from here (they’re in a zip file): http://www.fftw.org/install/windows.html and place them in the pyfftw directory. The files are libfftw3-3.dll, libfftw3l-3.dll, libfftw3f-3.dll and libfftw3.h.

Under linux, to build from source, the FFTW library must be installed already. This should probably work for OSX, though I’ve not tried it.

Numpy is a dependency for both.

The documentation can be found here, and the source is on github.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyFFTW-0.13.0rc0-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyFFTW-0.13.0rc0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyFFTW-0.13.0rc0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyFFTW-0.13.0rc0-cp310-cp310-macosx_10_13_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pyFFTW-0.13.0rc0-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyFFTW-0.13.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyFFTW-0.13.0rc0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyFFTW-0.13.0rc0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyFFTW-0.13.0rc0-cp39-cp39-macosx_10_13_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pyFFTW-0.13.0rc0-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyFFTW-0.13.0rc0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyFFTW-0.13.0rc0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyFFTW-0.13.0rc0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pyFFTW-0.13.0rc0-cp38-cp38-macosx_10_13_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pyFFTW-0.13.0rc0-cp37-cp37m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyFFTW-0.13.0rc0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyFFTW-0.13.0rc0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

pyFFTW-0.13.0rc0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pyFFTW-0.13.0rc0-cp37-cp37m-macosx_10_13_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

File details

Details for the file pyFFTW-0.13.0rc0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyFFTW-0.13.0rc0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0rc0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 12971e1252de97884f933384bea7b4af87d2086019d26d00dfa299be7d3781ca
MD5 7944bce047c7e0d1c49bc89e30e229c8
BLAKE2b-256 c0187f9fb4744f2e3ad4174b2b5f25d3739d95db51169947fbb9b0f7180d0f94

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0rc0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e157e4f531d70463c171eae8656a6cad7b0b212bb5fc5bb7efdf8730653de398
MD5 8714e32b5564bef8aca2d277a53b2169
BLAKE2b-256 dbb17df97a006146d51bdad1d78a84734d323930e52d1fda25af4a1a9b2fb921

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0rc0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5b671269702e259121ccf4f144bf3c63210ba050316895bbfb25e98b2a6400c3
MD5 be500abc4421ecb43038eeabe9ad68b4
BLAKE2b-256 8b6ce1a9f1a4b7d0f873b8a8607af79033b333b91ee492fa804f6b52e0cddeb4

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: pyFFTW-0.13.0rc0-cp310-cp310-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.10, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0rc0-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 18b883985d24271e388b9fa0724294267ab4039db374c85dd58e8ef6be7022a9
MD5 0de64491a995fb5b591624ee4426e555
BLAKE2b-256 55220208d9d504f9fc55bad11884c104d556f3bffb02aba8e711da1054bc55cb

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyFFTW-0.13.0rc0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0rc0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 674fcbcec52eaa6b385ae220b0a287c998a2f1eed0e0fd4e3f32999104b37c62
MD5 27866ebba433f6f8a06bb6975a9e5776
BLAKE2b-256 9f5601663922589fe57192fcc135794707886123ab292db38c52c2925b7795bb

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 933f759ecf972bfb6e3144a152ed15cbce465f5d4f85ebae70c1e174b62ff6cb
MD5 617b537aae329c1d2504ed7254d62038
BLAKE2b-256 73a9f19cc7fd1b9c12961bd28c81adb7c0e3aa0372a0696fd0e51143ce954348

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0rc0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 01c5fd16f53f7a7cc3f5c553729ca80f534ff3fd8cde0a5e37650a303c0c595d
MD5 53f5329170017f966c2babf5c988eaba
BLAKE2b-256 1895b30153659ea800606fd995e2f4cd3d815ba85d1b4092d52e30ed6af0a7f6

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0rc0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b007b5b2feb0c7c4be6f192f62eae87dd5e6f2ed87af0ad1f9273e6a7bbbacf6
MD5 97184d4e45d903fee6a8f8a29825219d
BLAKE2b-256 cd2f9682a756a5f918527877752a785489cd585a5891be2b0472685766b1e801

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: pyFFTW-0.13.0rc0-cp39-cp39-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0rc0-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9c95f4c076424181ed2fa8c7bc785a663228a29301e2a10b4f3a1c36f6f75ed2
MD5 907b0e13d2a62c9284fd07889e6a5a72
BLAKE2b-256 c00117c38963d8a8ee949889c12c54e27e225e484ffc3dcebbd30eb4b7e212dc

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyFFTW-0.13.0rc0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0rc0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a9def19fabe151c9da9cb02205b98a1e2c8f6e1e9f80e3d517fe721b4e065f6b
MD5 2ce99b1afcb8e1dd9355922c0032e580
BLAKE2b-256 3e6561867ae00d9ae1f06ba6dcc61b22d0bbfebe66ae0afa2b52e9d3995ed516

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0rc0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3d832eb3caa0981efee976d4dfe9d3945db7d2442e4415dd4f37110fdbbc5fb8
MD5 6e0acee21e87a1bc37fb8b6c05063014
BLAKE2b-256 8c07fcdbb67a323fdd571cba2da935a6a966d45324bc8c1356cae38f18d036e0

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0rc0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3fdebb002bac548e6c3fd50b9a15377cd097bf007df5d9e3bfec9c6daaba1850
MD5 190d4becb7df2a4b3fe9e9ccecd0bb5b
BLAKE2b-256 e847c08e2c6cba9fd84891c0bdf2b2bf6299047c7e52d2da949923acf7e6803e

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0rc0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2eeadf4fc3c48e6918a7b1117e279235eb20722b9d129bb26932be9d244fd446
MD5 5842da5a46cf4f6ce01903d0a8a9870f
BLAKE2b-256 06bcae83b9697bac97c2d2a9b42e24486f8232a78c9bdf59cc11c21294888d5b

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: pyFFTW-0.13.0rc0-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0rc0-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e69eaf6c946705318f48c6e5f0f9d54bcd33e8f132b0d9e50d3fbb928e1e61e1
MD5 d0974050bfc01576e3c290e328243305
BLAKE2b-256 e1d2fd23cc52dc6f1f7068f4e29dfccf34f12ffdbbb7af5bb8ab28e426365e8b

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyFFTW-0.13.0rc0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0rc0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 181667acbbb017604347b97a58f4be30590988741b4d45be7f38883de91d27f1
MD5 04f3da806f37a36e8ba1e8d5850ed67c
BLAKE2b-256 8067ba260ea6b7158491f5b1328f7c5ccc5946f219ea7d2099a6d47231d9c353

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0rc0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79dbd1fd30a3e38836118b2ebac6720af88680c2d2da4cf595c1b52d2d281e63
MD5 0fb323d51ca8422265dab3ac139598d9
BLAKE2b-256 9011b4aee937e1c04da3a1f56839f1e2271678f72bd9d236200cdcd98ed1e225

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0rc0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e3b128277914da293dbb235f74d0e6d3390d235d521ccc4d9470dc1c807bca3a
MD5 6e9d7a01d9d5b34d0f802db84dca10c0
BLAKE2b-256 5ae514e43f6b46946738cd9b7771ee97ecb4f40c1b14a1422841f7de13781a8d

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.0rc0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 d67206b63af75cb38cda13afaf7cea5568d039c67c5c6d665295b81fff533ded
MD5 3952be5f8976500bba5845053f06ab2e
BLAKE2b-256 a16316195600ab5b9c0407325eb7db02ad5fc08a611e4af867ff5b4adf7baf06

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.0rc0-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: pyFFTW-0.13.0rc0-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyFFTW-0.13.0rc0-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a12e0006870582e09c9246ddc7337996cce814b576a221496d515a28c644000a
MD5 36cf4c88ac3760ef6f65a33c94f5a1a4
BLAKE2b-256 dd76a2e7607ac11c53350aab0e1ec7e2decea0848f6da3a33e8da48567c85109

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page