Skip to main content

A pythonic wrapper around FFTW, the FFT library, presenting a unified interface for all the supported transforms.

Project description

pyFFTW is a pythonic wrapper around FFTW, the speedy FFT library. The ultimate aim is to present a unified interface for all the possible transforms that FFTW can perform.

Both the complex DFT and the real DFT are supported, as well as arbitrary axes of arbitrary shaped and strided arrays, which makes it almost feature equivalent to standard and real FFT functions of numpy.fft (indeed, it supports the clongdouble dtype which numpy.fft does not).

Operating FFTW in multithreaded mode is supported.

A comprehensive unittest suite can be found with the source on the github repository.

To build for windows from source, download the fftw dlls for your system and the header file from here (they’re in a zip file): http://www.fftw.org/install/windows.html and place them in the pyfftw directory. The files are libfftw3-3.dll, libfftw3l-3.dll, libfftw3f-3.dll and libfftw3.h.

Under linux, to build from source, the FFTW library must be installed already. This should probably work for OSX, though I’ve not tried it.

Numpy is a dependency for both.

The documentation can be found here, and the source is on github.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyFFTW-0.13.1.tar.gz (114.4 kB view details)

Uploaded Source

Built Distributions

pyFFTW-0.13.1-pp38-pypy38_pp73-win_amd64.whl (2.6 MB view details)

Uploaded PyPy Windows x86-64

pyFFTW-0.13.1-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

pyFFTW-0.13.1-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.9 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pyFFTW-0.13.1-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyFFTW-0.13.1-cp311-cp311-win32.whl (2.2 MB view details)

Uploaded CPython 3.11 Windows x86

pyFFTW-0.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyFFTW-0.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyFFTW-0.13.1-cp311-cp311-macosx_10_13_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pyFFTW-0.13.1-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyFFTW-0.13.1-cp310-cp310-win32.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86

pyFFTW-0.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyFFTW-0.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyFFTW-0.13.1-cp310-cp310-macosx_10_13_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pyFFTW-0.13.1-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyFFTW-0.13.1-cp39-cp39-win32.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86

pyFFTW-0.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyFFTW-0.13.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyFFTW-0.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyFFTW-0.13.1-cp39-cp39-macosx_10_13_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pyFFTW-0.13.1-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyFFTW-0.13.1-cp38-cp38-win32.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86

pyFFTW-0.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyFFTW-0.13.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyFFTW-0.13.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pyFFTW-0.13.1-cp38-cp38-macosx_10_13_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

File details

Details for the file pyFFTW-0.13.1.tar.gz.

File metadata

  • Download URL: pyFFTW-0.13.1.tar.gz
  • Upload date:
  • Size: 114.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for pyFFTW-0.13.1.tar.gz
Algorithm Hash digest
SHA256 09155e90a0c6d0c1f2d1f3668180a7de95fb9f83fef5137a112fb05978e87320
MD5 4ec672c53ae63593b284369a8bbf4a3b
BLAKE2b-256 9fbc7376df0393e816b60bdc627fc8f653706f4caa95bcf79d07302a672f893e

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7ccfa55d50a5464890a9486b835965e29f9df4e9d3e856cc51c9d2a34964e4a8
MD5 97559a0dee345f493aad64aff0129df3
BLAKE2b-256 641a606f5b9d72e1fc3499a01cb7211a5971463aac7a8992c8bd9b347f4466bf

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.1-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e68503033864f9650f480624a0830b10367ad446cb7b5bef33d0d1c596519446
MD5 3f77734d1ea0a68139fa14b637d300f1
BLAKE2b-256 8fe380c4202461d0a0e44bc714b9a782620a8f9855cc514b3eab777807281609

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.1-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 415040bcadcad887bf112d2db0ff4b13e808d1aad7fddcd60acef20e0e11c84a
MD5 cbe6d378a5ed7b0e1d7be77ab016723f
BLAKE2b-256 efbe74c0073e7b050b65641156bda0f7186c43d07a4c07babc9305437d1fcacf

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyFFTW-0.13.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for pyFFTW-0.13.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 11c280b8062a201cc6aab6641b7a4f4d45d8e5f5f2d9ba2c1514c9510e0c5f32
MD5 edbf6bfedb83ae40f5941c9dbe82ead7
BLAKE2b-256 59963b18e02e000b4876ff0c221440545b36a7a13b8631b23e386ac8625c84d5

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyFFTW-0.13.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for pyFFTW-0.13.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 51675f9bc7536a3ac9893d8277a3af000ce4207ad978db219bdc715662ce1bcb
MD5 3062d3e77f6ac40402c0be4564ada98d
BLAKE2b-256 41966b9bf2e831cf4a95b662097d521ea5c6734d5ac7665a80dcb74c5ce7cc46

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8bfce5e4190b07af8dfca4bfeef7481ea61148744bd92d4df944357ee3939a83
MD5 2806900c6d1e8dbb15683fc4f0b0ae42
BLAKE2b-256 b635f7c831976409ad47165ff72e511afe69af981f566ba903952c9e4e15b049

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5b5ee9b582befebcdb29a8d73e03e70c96ecd53625c9c72eb753a967cf2979b4
MD5 f0c084d5deb383bb8eea836b2846a06e
BLAKE2b-256 529598a4647235761e9430e9a8f83f1b8d6681413d925f100f1b40edea2761be

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.1-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 dee09034f5d0464b828a8fd37da46776fc740e31870dd9e5d36d15c34f72102c
MD5 31f66cd9aca88082a4a2448db60fadff
BLAKE2b-256 c0fbe1867c2c10c5472957d79bcf1cc193e2b92d5ce3db7d8b1c9a5be3c1d4a0

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyFFTW-0.13.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for pyFFTW-0.13.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 60a09f9e80544b82d18682f7301942613fcb34f0daf316f2833bcea13d76fc0c
MD5 e9c85595f302bf095e36cf16d153116b
BLAKE2b-256 1dff0db6263b0203e1f71ba517cc18c049b069753478730bc1b3ea967477daec

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyFFTW-0.13.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for pyFFTW-0.13.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c2208655e0b24b2afe4bafd05eeca5fee8e8a56fa045e296f782b1f61e088dfb
MD5 6773bd5c4cc0e134bb254a189daa9b79
BLAKE2b-256 678ce204347c48d7fbd6784bbf005a316673ef5f2e8ca2208e0fb2a8f13b4385

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f46337a3fb8270ef1237db25097c21905f5d2b045f49afea217b603a320c329
MD5 cacebba56b835b65fab3a8c03de941e9
BLAKE2b-256 2d0b892b876ce00b4aa592d820867970de8e761eb71637ba74b5049f7f9fd46d

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 48a571116ab78c44cbd86fb46c5df021b1199e4ea9c0c607d14a7c7c5b6bab3a
MD5 c9b2586a580c9f2f7963663cd6ec6c70
BLAKE2b-256 5378166c827f8320da6bca57c688ce8d875f43d545bd1f571312bb0efdc5f4a9

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.1-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 bed25dbb4b10454b564db951bfad976a382bc8d6af38d7f0995b239f17f58a0c
MD5 3eab924ba04640669c898552f7b0fc26
BLAKE2b-256 0e5f3b1e6a721690e1950fa3fedfd2ba3beefbbaebfa35892e449fdc91f19fa7

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyFFTW-0.13.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for pyFFTW-0.13.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 af58834b496b473419c4dcd47e01657d1d066e9c23198e1cb82eba82356c9097
MD5 b6ba2cf002b5dfaa30455edbfa88a1ce
BLAKE2b-256 282b8f130d75ab88224de919fcd08dcc02ca75102a0227850f00c27178a31c21

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyFFTW-0.13.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for pyFFTW-0.13.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 18ac39489848a10785ddd998df242f58d5f75017c414297fee470bfdec202168
MD5 366e9153984c8d2caa1f379c3fafd940
BLAKE2b-256 c8f4ac668d9a25973f37cee574c6d15134c80face0d8a560fa49051c0b772202

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d799b442815f56b821b615ee3e8960ab9f3bc1e7a4bcbcf5813b847005875b47
MD5 c751e60dbcfabb4ae57971f2cb1cdd84
BLAKE2b-256 6adce30b7ceb66d9529df86db6a22e454c92740b177847240334a7ea2bc6929a

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9a67d3109fb2c549ee95c8dbbcf07020400672cbfb48f79c3f88b615a1c95598
MD5 dc61bcf4048e94fe7a54caf32b45f8c9
BLAKE2b-256 ca2fde0a1023ea389330e37af8a16ba0f56dbd522dc94f1ab8a674ab9ef70fb5

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d872744959a4df7307b32fbeb288137ed242cf24034a791abb3ee901c8c1bf3e
MD5 10c853f6c1b60c79059feb64bd8e10dd
BLAKE2b-256 128f53da83226722e0484a13815487f83c7df86d466645f04f06264e16216eb7

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.1-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c05b7ddec15070c72704d0ad5e632222b0775327ab6890af288a2a36eb15043e
MD5 a584ab107941e0971712cf735cf888ab
BLAKE2b-256 557f8ae84358d2ca4ef8d8fe32a0eddb5f7b080669a28ded52fcfbb1c42f4051

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyFFTW-0.13.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for pyFFTW-0.13.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8ddcdebc29c58a65eb43802462e7c21a8db7d70d2e4b8a79e43630c9149448f8
MD5 3a23d8759daf230a61ac191aa13ff1fb
BLAKE2b-256 9f3711a6955c427a1a5ab9cbad47f6f4b1349593742f526e97bf196c7e02e9be

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyFFTW-0.13.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for pyFFTW-0.13.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4a03adbcfbd52038dd6e5ad2a9697cba881c80d40a625d942e5a6066a1f83884
MD5 0b9150a7fd5e86acef72be0de57aed65
BLAKE2b-256 184676db0218562236629d7edeb8915e01dffb0888b217d7859f0c705f9600b0

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6c948799bfee686cb17417c06c8d3bb7fb1b867196bc4939963b18a1108c62ab
MD5 7bf4c8ba4d988b015938b22996815e17
BLAKE2b-256 3c4828b10c8daa2f5f5a48e8bd08ec667d08351222a30999e65d3daf8fc293a8

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2998f3633a430567986bf47ec3774ed50356faded66264f766d76efd117df1b3
MD5 a050785f1e69f0e7d899323a2c6f5f0d
BLAKE2b-256 4cbb22ce52cebdee975034b905fb79086d4c857e7ef733011ae09b9d04d03d11

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1a8f0e4207e24ec38a50bb6442614d4bbf135af2ba23db6546759f54a36c11e0
MD5 f376867b4430901961ebcec1cdf0bfea
BLAKE2b-256 c0af3950e248b99411b0715fb346f380d2f09b652b3b6205c25087f0b8a025e2

See more details on using hashes here.

File details

Details for the file pyFFTW-0.13.1-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyFFTW-0.13.1-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 04bbc06da1e46cfec05ace62591aa00cadfe550d920137022cd210b1806e03e4
MD5 60d6babd113762fdf269a10a17454b54
BLAKE2b-256 a890692537feb638e65246f87a929bdfce8a6983add51663e1d41ae97d990c0a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page