Skip to main content

Uniformly remeshes surface meshes

Project description

https://img.shields.io/pypi/v/pyacvd.svg

This module takes a surface mesh and returns a uniformly meshed surface using voronoi clustering. This approach is loosely based on research by S. Valette, and J. M. Chassery in ACVD.

Installation

Installation is straightforward using pip:

$ pip install pyacvd

Example

This example remeshes a non-uniform quad mesh into a uniform triangular mesh.

from pyvista import examples
import pyacvd

# download cow mesh
cow = examples.download_cow()

# plot original mesh
cow.plot(show_edges=True, color='w')
original cow mesh zoomed cow mesh
clus = pyacvd.Clustering(cow)
# mesh is not dense enough for uniform remeshing
clus.subdivide(3)
clus.cluster(20000)

# plot clustered cow mesh
clus.plot()
zoomed cow mesh
# remesh
remesh = clus.create_mesh()

# plot uniformly remeshed cow
remesh.plot(color='w', show_edges=True)
zoomed cow mesh

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyacvd-0.3.1-cp312-cp312-win_amd64.whl (70.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

pyacvd-0.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (94.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyacvd-0.3.1-cp312-cp312-macosx_11_0_arm64.whl (64.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyacvd-0.3.1-cp312-cp312-macosx_10_14_x86_64.whl (71.6 kB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

pyacvd-0.3.1-cp311-cp311-win_amd64.whl (71.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyacvd-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (97.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyacvd-0.3.1-cp311-cp311-macosx_11_0_arm64.whl (66.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyacvd-0.3.1-cp311-cp311-macosx_10_14_x86_64.whl (74.5 kB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

pyacvd-0.3.1-cp310-cp310-win_amd64.whl (71.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyacvd-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (98.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyacvd-0.3.1-cp310-cp310-macosx_11_0_arm64.whl (67.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyacvd-0.3.1-cp310-cp310-macosx_10_14_x86_64.whl (74.7 kB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pyacvd-0.3.1-cp39-cp39-win_amd64.whl (72.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyacvd-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (98.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyacvd-0.3.1-cp39-cp39-macosx_11_0_arm64.whl (67.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyacvd-0.3.1-cp39-cp39-macosx_10_14_x86_64.whl (74.7 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

File details

Details for the file pyacvd-0.3.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyacvd-0.3.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 70.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.6

File hashes

Hashes for pyacvd-0.3.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1d955c24b9982dca6b656e64bfd9abd8d9521c6ebba2f3792c4f698d0f2ac1c6
MD5 be47787bdf7fefdd0eadb0de08e4277f
BLAKE2b-256 1d28486a057f5a36512ea59e2e462a0a701df76e5d89554d16320f62e156505e

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4fc6fbd7de6df2fb7309061fbf2e52327a080d7f685b914c4e6a13fddfa72461
MD5 2e95bc7b7b9b0e7cfd455583fa5b329b
BLAKE2b-256 16b4e44892dd8cb34db8caf51190324432c5e011cff4cdf6ab687535b797bad8

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1767d44097e6406099499edec416274756a1c8067bf2b42b2b3d8940225f902f
MD5 00e45482c97fdff03dff1c7e3672e333
BLAKE2b-256 b641707384c4c64930f378442d960dfb5f51e4a683b968324ae37a1ea13fd958

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.1-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.1-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2236235be6656c6bb9956b2c874cbef5b8791d0b322ac8b0fe98bf23126f294d
MD5 e6780755e5efc9d7f756b4162ae62f0a
BLAKE2b-256 72cc7d55c62748422c448ef8754da23f3379edb6ae8652598475f10654485eb4

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyacvd-0.3.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 71.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.6

File hashes

Hashes for pyacvd-0.3.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e5fedfc34278ae43df47486423fa86b6406ea769204a1ea49da70709381755a3
MD5 3537d78880fdd7bf8192ae980d051246
BLAKE2b-256 a1ce62c947470d41bb78aa7779621ffbbdb75fb601d85b758ab4e72ddebbdcfa

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ff788659e44b64a0ed3e58a8e4a26d67d0e5fb0abadd8c220f516907cc54269
MD5 bdc8bf98dc1c2700697c62e8c3c13b16
BLAKE2b-256 739c3791338f89cb24eb00fc5631cdd6d549af7117d43576e04c8b8339c93009

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 54ede7af9714d6ea68503d2ae7bb385a8a992f7de6fc2b7b1e8513e87fe640e4
MD5 26c35c8f312e25c4c20bdf23d86e7abf
BLAKE2b-256 415326c8079e2550c4d2b838edf98b572d9d05c84fa0049f5202c96d92af9ab5

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.1-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.1-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 38f271eaf16d05ca9d3caac1c5c21752c09586b82ac6d80709a7bb31ca51d73c
MD5 38f95d4e53ce43787ca0619bf2ab0a5f
BLAKE2b-256 66c1a3f8ca2cfdfca013bd5e0d4ac5a9ec471f37bf7542d6aa7a569e5b90d7f5

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyacvd-0.3.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 71.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.6

File hashes

Hashes for pyacvd-0.3.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e6499c9d5a0787839273b26f359dc972941de8a8090bd8433eb1d8c6fa29339d
MD5 ec12fa035eb0c6f6344ba79751e63509
BLAKE2b-256 43195f8be67c9c6c49d407323b14ccbdfbfa2dad2d2d6807694ea41e62521ba0

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8abec6efd013e06f706cf14f794a52ecd40878b89e369db94f9190f06e0ac8df
MD5 c852592bf69db91302286ca6b3f1d399
BLAKE2b-256 3b95fbf3d2a7c06eb67d7f430ad84be012837ac3ecc2de52c5cf6443ae8aa5a2

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 950904f608ce91bf18e9b0ec012b7ffd60d57d8e66e6dbc9a2aa622fd9fab502
MD5 0fba25b3a4ccb7c0b01c2dd869e8f071
BLAKE2b-256 6ec5e42142f4fa4b38b41bebe991f269e52e60b3481580462b6d191f0e7aad74

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.1-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.1-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 333218930031b1c612a6dc1a3e0674cfee35e5020b2a476f43c502cc03af5515
MD5 f5b150c48d09b97712649a58bab22289
BLAKE2b-256 ee2ff87aaf297ad15f66cc95e38cb0a4bf6966396da97c2712f4edc31c88b6cd

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyacvd-0.3.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 72.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.6

File hashes

Hashes for pyacvd-0.3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7c738930b918c63d5ad683825207c3968c30cbedfbd76690f5e1c940f7ac7165
MD5 6cf083232b3b2915dfe94ae32ca32c0d
BLAKE2b-256 e5e00fce6023e0b3de37b29e7eb69aa3a066f190a50dad78b941af393511206b

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d9afaa827797d53d4f892152c79cdbeb2599ff24c947b5d2768e7cc24a9cbfb
MD5 e6b37230e8ae384b22ba2a5d55b6d909
BLAKE2b-256 5ca44af95bec2068641ef1afa20a3f315a16bd6323ce6f8aed97aeb69bc23d18

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8a1ea9c5a2aae4829707aed991c876ac4e6a785783f895efa16053afd394cbe2
MD5 6a1b217be853ece0c9ae096c36e29e2a
BLAKE2b-256 c514521b7b55ce62651ed780e07e46bb81c8741736e51aae2ec706d491ee4a91

See more details on using hashes here.

File details

Details for the file pyacvd-0.3.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyacvd-0.3.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 91af3616602426d3b045628fa3697e60f3d973692fe9ca189a45563a4648b840
MD5 dbee787d6cc0a2ea12151d854a6d1d46
BLAKE2b-256 4cd0dc9141ba4d340d0de4d2c3115f3b01c805cf88a4ba7e7ab97782437498f8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page