Skip to main content

The ATSA cloud masking method for Planetscope 4-band imagery

Project description

pyATSA

pyatsa finds clouds in satellite imagery.

This repo contains the pyatsa package that ports the original ATSA method and code by Zhu and Helmer 2018, as well as example notebooks. Currently the python version produces nearly equivalent results to Planet Lab's Usable Data Mask for Planetscope 4-band images across Ghana. In cases where there are lots of bright impervious surface, bright soils, or water, pyatsa generates substantial false positives in the cloud shadow class and speckles of false positives from clouds. These are the primary issues being worked on.

Install

pip install pyatsa

Install from source with dependencies

conda env create -f environment.yaml
conda activate pyatsa
# or anaconda3 if you use anaconda or whatever the path to your python file is
flit install --symlink --python ~/miniconda3/envs/pyatsa/bin/python3.7

Differences between pyatsa and original ATSA by Zhu and Helmer 2018

  • When computing the Clear Sky Lines for images in a time series, Zhu set A_cloud within .5-1.5 idea, but low values lead to too many false positives in Planetscope imagery.
  • I chose to use Li's cross entrpy thresholding method in scikit-image rather than Inverse Distance Weighting to segment cloud shadows within the potential cloud shadow zone calculated from the scene geometry. This was simpler to code and appeared to give better results, the IDW method had a strong bias toward only masking shadows directly adjacent to clouds. I observed cloud shadows that were almost a kilometer away from their cloud shadows throughout Ghana, where pyatsa is being tested. More actual shadows are correctly masked, though more false positives are generated where clouds are not present.

Comparing with the original ATSA IDL code

The original ATSA program is distributed by the authors at https://xiaolinzhu.weebly.com/open-source-code.html. To run, it is necessary to have IDL and ENVI installed. then:

  1. Start the idl ide by calling idlde in the terminal

  2. Run ENVI in the idlde, isnce ENVI functions are required to open the time series file

  3. run CD, "<path to directory with ATSA-Planet.pro>"

  4. Compile the ATSA-Planet.pro file with .r ATSA-Planet.pro

  5. Call the idl script with ATSA from idlde

The IDL script will save out a file that ends in ".sav" (you need to edit the script to change the output path of this file on your computer). It will contain all the variables and results from the script. The file can be read with scipy.io.readsav as a python dictionary where each key is the origianl idl variable name. This can then be used in the pytests to check for agreement.

To run tests, navigate to the atsa-python folder and run pytest test_pyatsa.py. pytest will check for any functions that contain the word "test" and execute that function, producing times and test results for each test function. pytest fixtures are used to define variables that are shared between tests. These tests currently use two fixtures, one for the configsfor the python version (which are copied from the idl version) and a fixture for the ~3Gb .sav file that contains all the variables from the idl version.

Notes on the IDL version to assist with debugging

The IDL code has separate for loops that operate on water regions (identified by a pre-existing water mask) and land regions.

The water mask is 0 value where water, 1 where there is not water. The mask values for land classes are as follows.

  • 3 - background/SLC errors, missing data
  • 2 - cloud (see lines 365 through 378)
  • 1 - clear land (see lines 323 through 331, where idl returns 1 or 0 from ge condition)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyatsa-0.2.tar.gz (15.7 kB view details)

Uploaded Source

Built Distribution

pyatsa-0.2-py3-none-any.whl (43.8 kB view details)

Uploaded Python 3

File details

Details for the file pyatsa-0.2.tar.gz.

File metadata

  • Download URL: pyatsa-0.2.tar.gz
  • Upload date:
  • Size: 15.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.22.0

File hashes

Hashes for pyatsa-0.2.tar.gz
Algorithm Hash digest
SHA256 e5003b201065ead6feb99a1c9824e6474c9007d2bf98f8b436131834ce9f7ff5
MD5 f2d3113483ab714655c6a49ce5993bc1
BLAKE2b-256 8af12510a44384c8a9805e377e4a89575f6f1ca266357ebcd354fa5c00200b15

See more details on using hashes here.

Provenance

File details

Details for the file pyatsa-0.2-py3-none-any.whl.

File metadata

  • Download URL: pyatsa-0.2-py3-none-any.whl
  • Upload date:
  • Size: 43.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.22.0

File hashes

Hashes for pyatsa-0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6564135b1d54c5c1cecaded8c80985b48b878700b60b0a6406de6bc4bfe24ac7
MD5 1d8bc0fc238a68cc295936d9355e68cb
BLAKE2b-256 7906ef872a37084664f82734c7ac3ce1b532a512623071ae3e1d4a14d94fa122

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page