An ocean data toolkit developed and used by Axiom Data Science
Project description
# pyaxiom
An ocean data toolkit developed and used by Axiom Data Science
## Installation
##### Stable
pip install pyaxiom
##### Development
pip install git+https://github.com/axiom-data-science/pyaxiom.git
### Gridded NetCDF Collections
#### Binning files
`pyaxiom` installs an executable called `binner` that will combine many
files into a single file. Useful for cleanup and optimization.
If you have a script that is opening and reading hundreds of files, those open operations
are slow, and you should combine them into a single file. This doesn't handle files that
overlap in time or files that have data on both sides of a bin boundary.
```
usage: binner [-h] -o OUTPUT -d {day,month,week,year} [-f [FACTOR]]
[-n [NCML_FILE]] [-g [GLOB_STRING]] [-a]
optional arguments:
-h, --help show this help message and exit
-o OUTPUT, --output OUTPUT
Directory to output the binned files to
-d {day,month,week,year}, --delta {day,month,week,year}
Timedelta to bin by
-f [FACTOR], --factor [FACTOR]
Factor to apply to the delta. Passing a '2' would be
(2) days or (2) months. Defauts to 1.
-n [NCML_FILE], --ncml_file [NCML_FILE]
NcML containing an aggregation scan to use for the
individual files. One of 'ncml_file' or 'glob_string'
is required. If both are passed in, the 'glob_string'
is used to identify files for the collection and the
'ncml_file' is applied against each member.
-g [GLOB_STRING], --glob_string [GLOB_STRING]
A Python glob.glob string to use for file
identification. One of 'ncml_file' or 'glob_string' is
required. If both are passed in, the 'glob_string' is
used to identify files for the collection and the
'ncml_file' is applied against each member.
-a, --apply_to_members
Flag to apply the NcML to each member of the
aggregation before extracting metadata. Ignored if
using a 'glob_string'. Defaults to False
```
##### Examples
###### Directory globbing
```bash
binner \
--output ./output/monthly_bins \
--glob_string "pyaxiom/tests/resources/coamps/cencoos_4km/wnd_tru/10m/*.nc" \
-d month \
-f 1
```
###### Directory globbing and applying NcML file to each member
```bash
binner \
--output ./output/monthly_bins \
--glob_string "pyaxiom/tests/resources/coamps/cencoos_4km/wnd_tru/10m/*.nc" \
-n pyaxiom/tests/resources/coamps_10km_wind.ncml \
-d month \
-f 1
```
###### NcML aggregation reading the `<scan>` element
```bash
binner \
--output ./output/monthly_bins \
-n pyaxiom/tests/resources/coamps_10km_wind.ncml \
-d month \
-f 1
```
### Creating CF1.6 TimeSeries files
###### TimeSeries
```python
from pyaxiom.netcdf.sensors import TimeSeries
filename = 'test_timeseries.nc'
times = [0, 1000, 2000, 3000, 4000, 5000]
verticals = None
ts = TimeSeries(output_directory='./output',
latitude=32, # WGS84
longitude=-74, # WGS84
station_name='timeseries_station',
global_attributes=dict(id='myid'),
output_filename='timeseries.nc',
times=times,
verticals=verticals)
values = [20, 21, 22, 23, 24, 25]
attrs = dict(standard_name='sea_water_temperature')
ts.add_variable('temperature', values=values, attributes=attrs)
ts.close()
```
###### TimeSeriesProfile
```python
from pyaxiom.netcdf.sensors import TimeSeries
times = [0, 1000, 2000, 3000, 4000, 5000] # Seconds since Epoch
verticals = [0, 1, 2] # Meters down
ts = TimeSeries(output_directory='./output',
latitude=32, # WGS84
longitude=-74, # WGS84
station_name='timeseriesprofile_station',
global_attributes=dict(id='myid'),
output_filename='timeseriesprofile.nc',
times=times,
verticals=verticals)
values = np.repeat([20, 21, 22, 23, 24, 25], len(verticals))
attrs = dict(standard_name='sea_water_temperature')
ts.add_variable('temperature', values=values, attributes=attrs)
ts.close()
```
An ocean data toolkit developed and used by Axiom Data Science
## Installation
##### Stable
pip install pyaxiom
##### Development
pip install git+https://github.com/axiom-data-science/pyaxiom.git
### Gridded NetCDF Collections
#### Binning files
`pyaxiom` installs an executable called `binner` that will combine many
files into a single file. Useful for cleanup and optimization.
If you have a script that is opening and reading hundreds of files, those open operations
are slow, and you should combine them into a single file. This doesn't handle files that
overlap in time or files that have data on both sides of a bin boundary.
```
usage: binner [-h] -o OUTPUT -d {day,month,week,year} [-f [FACTOR]]
[-n [NCML_FILE]] [-g [GLOB_STRING]] [-a]
optional arguments:
-h, --help show this help message and exit
-o OUTPUT, --output OUTPUT
Directory to output the binned files to
-d {day,month,week,year}, --delta {day,month,week,year}
Timedelta to bin by
-f [FACTOR], --factor [FACTOR]
Factor to apply to the delta. Passing a '2' would be
(2) days or (2) months. Defauts to 1.
-n [NCML_FILE], --ncml_file [NCML_FILE]
NcML containing an aggregation scan to use for the
individual files. One of 'ncml_file' or 'glob_string'
is required. If both are passed in, the 'glob_string'
is used to identify files for the collection and the
'ncml_file' is applied against each member.
-g [GLOB_STRING], --glob_string [GLOB_STRING]
A Python glob.glob string to use for file
identification. One of 'ncml_file' or 'glob_string' is
required. If both are passed in, the 'glob_string' is
used to identify files for the collection and the
'ncml_file' is applied against each member.
-a, --apply_to_members
Flag to apply the NcML to each member of the
aggregation before extracting metadata. Ignored if
using a 'glob_string'. Defaults to False
```
##### Examples
###### Directory globbing
```bash
binner \
--output ./output/monthly_bins \
--glob_string "pyaxiom/tests/resources/coamps/cencoos_4km/wnd_tru/10m/*.nc" \
-d month \
-f 1
```
###### Directory globbing and applying NcML file to each member
```bash
binner \
--output ./output/monthly_bins \
--glob_string "pyaxiom/tests/resources/coamps/cencoos_4km/wnd_tru/10m/*.nc" \
-n pyaxiom/tests/resources/coamps_10km_wind.ncml \
-d month \
-f 1
```
###### NcML aggregation reading the `<scan>` element
```bash
binner \
--output ./output/monthly_bins \
-n pyaxiom/tests/resources/coamps_10km_wind.ncml \
-d month \
-f 1
```
### Creating CF1.6 TimeSeries files
###### TimeSeries
```python
from pyaxiom.netcdf.sensors import TimeSeries
filename = 'test_timeseries.nc'
times = [0, 1000, 2000, 3000, 4000, 5000]
verticals = None
ts = TimeSeries(output_directory='./output',
latitude=32, # WGS84
longitude=-74, # WGS84
station_name='timeseries_station',
global_attributes=dict(id='myid'),
output_filename='timeseries.nc',
times=times,
verticals=verticals)
values = [20, 21, 22, 23, 24, 25]
attrs = dict(standard_name='sea_water_temperature')
ts.add_variable('temperature', values=values, attributes=attrs)
ts.close()
```
###### TimeSeriesProfile
```python
from pyaxiom.netcdf.sensors import TimeSeries
times = [0, 1000, 2000, 3000, 4000, 5000] # Seconds since Epoch
verticals = [0, 1, 2] # Meters down
ts = TimeSeries(output_directory='./output',
latitude=32, # WGS84
longitude=-74, # WGS84
station_name='timeseriesprofile_station',
global_attributes=dict(id='myid'),
output_filename='timeseriesprofile.nc',
times=times,
verticals=verticals)
values = np.repeat([20, 21, 22, 23, 24, 25], len(verticals))
attrs = dict(standard_name='sea_water_temperature')
ts.add_variable('temperature', values=values, attributes=attrs)
ts.close()
```
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyaxiom-0.0.7.tar.gz
(22.9 kB
view hashes)