Skip to main content

pycddlib is a Python wrapper for Komei Fukuda's cddlib.

Project description

cddlib is an implementation of the Double Description Method of Motzkin et al. for generating all vertices (i.e. extreme points) and extreme rays of a general convex polyhedron given by a system of linear inequalities.

The program also supports the reverse operation (i.e. convex hull computation). This means that one can move back and forth between an inequality representation and a generator (i.e. vertex and ray) representation of a polyhedron with cdd. Also, it can solve a linear programming problem, i.e. a problem of maximizing and minimizing a linear function over a polyhedron.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycddlib-2.0.0.tar.gz (169.0 kB view details)

Uploaded Source

Built Distributions

pycddlib-2.0.0-cp36-cp36m-win_amd64.whl (255.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

pycddlib-2.0.0-cp36-cp36m-win32.whl (199.1 kB view details)

Uploaded CPython 3.6m Windows x86

pycddlib-2.0.0-cp35-cp35m-win_amd64.whl (253.9 kB view details)

Uploaded CPython 3.5m Windows x86-64

pycddlib-2.0.0-cp35-cp35m-win32.whl (198.0 kB view details)

Uploaded CPython 3.5m Windows x86

pycddlib-2.0.0-cp34-cp34m-win_amd64.whl (272.9 kB view details)

Uploaded CPython 3.4m Windows x86-64

pycddlib-2.0.0-cp34-cp34m-win32.whl (215.3 kB view details)

Uploaded CPython 3.4m Windows x86

pycddlib-2.0.0-cp27-cp27m-win_amd64.whl (270.7 kB view details)

Uploaded CPython 2.7m Windows x86-64

pycddlib-2.0.0-cp27-cp27m-win32.whl (212.0 kB view details)

Uploaded CPython 2.7m Windows x86

File details

Details for the file pycddlib-2.0.0.tar.gz.

File metadata

  • Download URL: pycddlib-2.0.0.tar.gz
  • Upload date:
  • Size: 169.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pycddlib-2.0.0.tar.gz
Algorithm Hash digest
SHA256 621e4a1d9bf187093918c455309937024c47f43253122dea3276bbb958fdf170
MD5 d7ee589d5197a56e2bcd978307a9e394
BLAKE2b-256 1ce7ba71780e10fd9787cd7f1e05ce81859433b5c8e9abb135b4039202878ac1

See more details on using hashes here.

File details

Details for the file pycddlib-2.0.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pycddlib-2.0.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 fa7391e247aecc195bf117966eac91eeef6336914749b22eba3f2c89e86ac147
MD5 d4bd4660b09de27418b096738cbd2148
BLAKE2b-256 cda2b17779ff02cc4c499ccf9cfed2ec5688d2c538b6fb3a254d07395da9c2f5

See more details on using hashes here.

File details

Details for the file pycddlib-2.0.0-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for pycddlib-2.0.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 cef7195e25a6c6448f993008a10dcc506ea4d38e4d7fabb76a52c7b06ca8740b
MD5 95038865b8c20821d03bc37694e857f7
BLAKE2b-256 742383041279179aaddd3ec577f0a13c2904c55915a0aa9f334104599d2774dd

See more details on using hashes here.

File details

Details for the file pycddlib-2.0.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for pycddlib-2.0.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 e04de1987aed340ccca5c33062062a2bdfce9c6fef3eb9620c464c0bd94a81ad
MD5 cad7ed140af065cb4118cfec965b6153
BLAKE2b-256 66420930d9c4e3dcc22d64b2bc7d3e0a1efd68c50fbcd7ee084a78fb6cfac26f

See more details on using hashes here.

File details

Details for the file pycddlib-2.0.0-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for pycddlib-2.0.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 0ade4e46249d4aedaa310a8d5ecc2dc68c36845394642724f0e506a9d1d96a72
MD5 2b3a12f8340009710fbe94104dedf406
BLAKE2b-256 a42e88761cb1f9d81b946bfab7a58fcd154ba07996ccd67f511adadd52c5aea2

See more details on using hashes here.

File details

Details for the file pycddlib-2.0.0-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for pycddlib-2.0.0-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 c63b16237733e9daa22192fdb977ae0e8cfecec1f067169485873b20cd5440f5
MD5 b6a42a23eb0b1225bab192dc5409cc2e
BLAKE2b-256 6b5375bc23eefc1b45cb8288205c897caa632e540d0009468d00c9cc96ac99fe

See more details on using hashes here.

File details

Details for the file pycddlib-2.0.0-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for pycddlib-2.0.0-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 00684bd1dd8f1b014a1cc67b3d52f7752fbe0de1456bcbd9a9602f7410ac6a3c
MD5 84493eaa2209e490822c1ace0dedd504
BLAKE2b-256 26ab7492efb854b5e3fd37b5a534e7c2644d9700387eb1e2814b508924edd360

See more details on using hashes here.

File details

Details for the file pycddlib-2.0.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for pycddlib-2.0.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 2eb11c1c2108f0af8929d9c72eb773dc980f1170514e42c4c4bae8a6398e6f2f
MD5 aadfcd73225ad0e95067d68d7b33c76e
BLAKE2b-256 01b6361388c73f26502103377bd925385b7687ae5da183c18f8f2e2af29d7674

See more details on using hashes here.

File details

Details for the file pycddlib-2.0.0-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for pycddlib-2.0.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 c8bece76fa0afb2d88bb56d18f4f0479876d55b17659ff5dfeceb443d24ee516
MD5 67e2256b47779580966f3ef0c9f375fb
BLAKE2b-256 c0944c4463d236dfc240d0c75e3627015e21d1c7c817963f5e196d5d30210e53

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page