Skip to main content

Python wrapper for CUDA-accelerated 3D deconvolution

Project description

pyCUDAdecon

This package provides a python wrapper and convenience functions for cudaDecon, which is a CUDA/C++ implementation of an accelerated Richardson Lucy Deconvolution algorithm1.

  • CUDA accelerated deconvolution with a handful of artifact-reducing features.
  • radially averaged OTF generation with interpolation for voxel size independence between PSF and data volumes
  • 3D deskew, rotation, general affine transformations
  • CUDA-based camera-correction for sCMOS artifact correction

Install

The conda package includes the required pre-compiled libraries for Windows and Linux. See GPU driver requirements below

conda install -c conda-forge pycudadecon

macOS is not supported

📖   Documentation

GPU requirements

This software requires a CUDA-compatible NVIDIA GPU. The underlying cudadecon libraries have been compiled against different versions of the CUDA toolkit. The required CUDA libraries are bundled in the conda distributions so you don't need to install the CUDA toolkit separately. If desired, you can pick which version of CUDA you'd like based on your needs, but please note that different versions of the CUDA toolkit have different GPU driver requirements:

To specify a specific cudatoolkit version, install as follows (for instance, to use cudatoolkit=10.2)

conda install -c conda-forge pycudadecon cudatoolkit=10.2
CUDA Linux driver Win driver
10.2 ≥ 440.33 ≥ 441.22
11.0 ≥ 450.36.06 ≥ 451.22
11.1 ≥ 455.23 ≥ 456.38
11.2 ≥ 460.27.03 ≥ 460.82

If you run into trouble, feel free to open an issue and describe your setup.

Usage

The pycudadecon.decon() function is designed be able to handle most basic applications:

from pycudadecon import decon

# pass filenames of an image and a PSF
result = decon('/path/to/3D_image.tif', '/path/to/3D_psf.tif')

# decon also accepts numpy arrays
result = decon(img_array, psf_array)

# the image source can also be a sequence of arrays or paths
result = decon([img_array, '/path/to/3D_image.tif'], psf_array)

# see docstrings for additional parameter options

For finer-tuned control, you may wish to make an OTF file from your PSF using pycudadecon.make_otf(), and then use the pycudadecon.RLContext context manager to setup the GPU for use with the pycudadecon.rl_decon() function. (Note all images processed in the same context must have the same input shape).

from pycudadecon import RLContext, rl_decon
from glob import glob
import tifffile

image_folder = '/path/to/some_images/'
imlist = glob(image_folder + '*488*.tif')
otf_path = '/path/to/pregenerated_otf.tif'

with tifffile.TiffFile(imlist[0]) as tf:
    imshape = tf.series[0].shape

with RLContext(imshape, otf_path, dz) as ctx:
    for impath in imlist:
        image = tifffile.imread(impath)
        result = rl_decon(image, ctx.out_shape)
        # do something with result...

If you have a 3D PSF volume, the pycudadecon.TemporaryOTF context manager facilitates temporary OTF generation...

 # continuing with the variables from the previous example...
 psf_path = "/path/to/psf_3D.tif"
 with TemporaryOTF(psf) as otf:
     with RLContext(imshape, otf.path, dz) as ctx:
         for impath in imlist:
             image = tifffile.imread(impath)
             result = rl_decon(image, ctx.out_shape)
             # do something with result...

... and that bit of code is essentially what the pycudadecon.decon() function is doing, with a little bit of additional conveniences added in.

Each of these functions has many options and accepts multiple keyword arguments. See the documentation for further information on the respective functions.

For examples and information on affine transforms, volume rotations, and deskewing (typical of light sheet volumes acquired with stage-scanning), see the documentation on Affine Transformations


1 D.S.C. Biggs and M. Andrews, Acceleration of iterative image restoration algorithms, Applied Optics, Vol. 36, No. 8, 1997. https://doi.org/10.1364/AO.36.001766

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycudadecon-0.4.0.tar.gz (52.4 MB view details)

Uploaded Source

Built Distribution

pycudadecon-0.4.0-py3-none-any.whl (21.6 kB view details)

Uploaded Python 3

File details

Details for the file pycudadecon-0.4.0.tar.gz.

File metadata

  • Download URL: pycudadecon-0.4.0.tar.gz
  • Upload date:
  • Size: 52.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.0

File hashes

Hashes for pycudadecon-0.4.0.tar.gz
Algorithm Hash digest
SHA256 5c05a485f5538c57fa266fe2397d0886fd8801d9d26b63e743902656e4d73947
MD5 df5c0ed33fc24b4ea5bd0915b27e6c59
BLAKE2b-256 9fff639bcebd3971de9157939338a6012633bf4d75028c6d9ee6357c2662a2ae

See more details on using hashes here.

Provenance

File details

Details for the file pycudadecon-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: pycudadecon-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 21.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.0

File hashes

Hashes for pycudadecon-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2458f088bc318a49ba00267d9b32da66cd7f9c67b59f10206e4ad25f404eac58
MD5 fcf25b162bd743d1e1dcb433a4b795c1
BLAKE2b-256 296a8f321907763884367cd64966ae815d3bb2b31ce6e54e621637e08f0f9c15

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page