Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError

v = SchemaValidator({
    'type': 'typed-dict',
    'fields': {
        'name': {
            'schema': {
                'type': 'str',
            },
        },
        'age': {
            'schema': {
                'type': 'int',
                'ge': 18,
            },
        },
        'is_developer': {
            'schema': {
                'type': 'bool',
            },
            'default': True,
        },
    },
})

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [kind=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

Benchmarks overtime can be seen here.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not design for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:samuelcolvin/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/_types.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

This version

0.1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.1.0.tar.gz (129.3 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.1.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.1.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.1.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ x86-64

pydantic_core-0.1.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.1.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (890.1 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.1.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.1.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.1.0-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ x86-64

pydantic_core-0.1.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.1.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (890.1 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.1.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.1.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.1.0-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ x86-64

pydantic_core-0.1.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.1.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (890.6 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.1.0-cp310-none-win_amd64.whl (713.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.1.0-cp310-none-win32.whl (654.4 kB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.1.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.1.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.1.0-cp310-cp310-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.1.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ x86-64

pydantic_core-0.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.1.0-cp39-none-win_amd64.whl (713.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.1.0-cp39-none-win32.whl (654.6 kB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.1.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.1.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.1.0-cp39-cp39-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ x86-64

pydantic_core-0.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.1.0-cp39-cp39-macosx_11_0_arm64.whl (821.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.1.0-cp39-cp39-macosx_10_7_x86_64.whl (889.3 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.1.0-cp38-none-win_amd64.whl (713.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.1.0-cp38-none-win32.whl (654.6 kB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.1.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.1.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.1.0-cp38-cp38-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

pydantic_core-0.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.1.0-cp38-cp38-macosx_11_0_arm64.whl (821.6 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.1.0-cp38-cp38-macosx_10_7_x86_64.whl (889.4 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.1.0-cp37-none-win_amd64.whl (713.0 kB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.1.0-cp37-none-win32.whl (654.7 kB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.1.0-cp37-cp37m-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

pydantic_core-0.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.1.0-cp37-cp37m-macosx_11_0_arm64.whl (821.6 kB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.1.0-cp37-cp37m-macosx_10_7_x86_64.whl (889.3 kB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.1.0.tar.gz.

File metadata

  • Download URL: pydantic_core-0.1.0.tar.gz
  • Upload date:
  • Size: 129.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for pydantic_core-0.1.0.tar.gz
Algorithm Hash digest
SHA256 c6c8feb5d6dfd27d9acbdf005664a04d68494edd650d07879a819c82961a4a36
MD5 38e48c6c539fb8f8e22a5a5a63cfa25b
BLAKE2b-256 17971c1726036953d6fcf4f1e58fa2812843121f5c6121ec98c4ad99ddf7b84f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b853202c5d2fc508fbf4598536828872d491ce800ce9e7a690d2a07f71e4eae4
MD5 349865c5fd8afc5a808b62cd7725d3c7
BLAKE2b-256 44720243b03a45102f955f71cbf76817dfe32061dc0b62e2569ab27fcfb7615d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 60f2f35cecd0a79c4806ec1d0bceb46c6afab38e8e482a33960c5954c243fc14
MD5 e3683eeeadef67995b72385e4dffb640
BLAKE2b-256 a13f0e36f0de191a541e908923e79b51a8d1c37a005308771cee7d0c68476564

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eb4b2a6182889d47c7c393a009abd54c58144e7386ba43ae82930abc8558723c
MD5 4009d4867d642affade8ceeae38096c0
BLAKE2b-256 daf5f364d40e09407cac802c8cbe1a15668038fcef15630467e9c4e6bab4889f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c7708a06a57f21c2367ee2c0b79f2b70eac480237ee5f160aeff0e6bb231917f
MD5 e9106b02814a8fc235c6dba1e9a2d3c3
BLAKE2b-256 a0ce8281e7214b257875559cf6221c1649c4ce635eb48f220af84122ca0a6751

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 41f1c7cbcd12b203451b13c1d247eea4a580ee4308d4beae2f8f3193ba1206b4
MD5 b032343f9a87e603b647f259e75f7d57
BLAKE2b-256 6e8cdda0eb706a01db966d9c7927d723379534d4ed6b967cb610bb95a0a7b8a3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ce451f653005329f86d4499cc4b70f7185f642b39680e4f637cc06f52dd2cdb5
MD5 89654905ba26d1ea22576480b540be33
BLAKE2b-256 a71117b85cb15af87059b5f0ec0d79da9e5f3a29fc73deb5cd5fd237cd926b1d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9ca7256c5c91345a682a89503874b715618f5bd123381099c118c7ae6fa93f37
MD5 9e5743769a5ce81f37e6a78c18edbfb5
BLAKE2b-256 7d6b6ce16c297195c5a34a351dc8644e0302e58058320ebd74b7156bea302d24

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 6f3c6f51d1278c7645318ff0589814aac58d8f0e33b980f51fa6d7db05414dfe
MD5 57d0d649b29d737c8d3f0b12037d8d85
BLAKE2b-256 04713681dc4506ab0becd12f2722444c53a0fb9f9ed72e6646ce059b710fc96f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e7cc9548479b78a05c5b52f7e76e1ec63b39f5ac5bcece729365370a2c7aad67
MD5 e6f17ec031fa545dc69d677f79894903
BLAKE2b-256 07769376e9819b2f0be4558b0b6cf7315fb4efc35a7ebde73940c323b3aeecab

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 632c352e70105c0e62edfd2f2006edc83720154e78a9fd18a74208c028ca6fa9
MD5 e347b5ce5d09d0dc941d979f5653c60b
BLAKE2b-256 5f6bba7b000b5e015b04926260d117a8717c3efab610bda7b32c2c3823f054f4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7bf20ad77a6a306a19cea38e43b9b74ba72cc647a7345a850be378470447e38d
MD5 6b0d65d4892c39c4a7f80f8e62d772ff
BLAKE2b-256 76cd4a4af2c318dc8a00139070893cf87fb1df7961a064f2f562deff98a52af1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 0ddd412912288694d716369d8cdfe5ec0e526ce3c49d98b977f6562636b4b449
MD5 a4e1704b932a12940d26a9ca9bec50a6
BLAKE2b-256 29005d360a04fffb9521eb41039165aa29bdae07f4ac45311e194735ba23a42c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4f6bc49317ccc41e8ac74f29d236c1c47d791afd093ab63bf1f2c927bb470c85
MD5 d2a7cd5498d10419dc59346c70254a8e
BLAKE2b-256 20fab70da9a529a9de4e29a80d10cff0b36eabfecf356549084d4be77b2dffa9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 cd74045b73e701aa970278d8050a1c5ca84c300426c84ca020032428cc4ed1f0
MD5 484390f4716f44803ecff35e5642e8c1
BLAKE2b-256 6b1d9c622571a23e623f8768fd7a1e2ee8c7eedf1b81d20ae4a7bba73e702b08

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 69109ccc95d3661bb434db118b3b4a0b38d6aaa7924674cf978c58e6e3175bab
MD5 265b9cd2568f3ad4fb1348fcc4d79cb7
BLAKE2b-256 d83089219be9fb1879486c514c64804f87eaa31ea40d3babe019eb7358c68126

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 49e09aacfe7caa5d00c3fd3357aae514d6e401f980d19fe28dcd1aa15f5534f5
MD5 e9ec95373e5d92bb27e0f69f0fd791eb
BLAKE2b-256 4196bb52fca1bfd7f92108bab694806f8d54f2c339ac85991b4f15b3d06bea2f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c4712e6e0f1606efb676d7923dc7ae44b909a6adaefd6bb87f756fe6979d7f3a
MD5 2132c129ea8dcabcbc513cc03d93378d
BLAKE2b-256 e688282edbdae1164d8d4823fd728cc243c8ea91c6a0daf94a896198e18f1459

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f2f18e71eea46a6edfe5b5320ff53796b163e8ea504390e1d5d0eca39d5c5012
MD5 db130089ce1ff4162e1019630324beb3
BLAKE2b-256 7ccfac4338417858231ad779ea0166e9399aade73aca02a14498a1cc1f74b408

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 31a4c6fa0881dd9a540340e56ff2ca5207e6485cc4d4f140a07d83ee037cf86d
MD5 defa5f2933084ac87e4e64bb3518f64a
BLAKE2b-256 51c6a2635a7ee09c7c9bb16bf5e1af7fe98d78263022f7a4318c964035a22711

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 8d3828d160c29eb9b13504e67595a30c95f3392fb499984c4fffbb4164a4bcb0
MD5 087e157cd2d3ae25d1e9ce2a93de8777
BLAKE2b-256 125d30443e3bf19ef108fbcd6d2f8eee528f3c3f1349c7c5c5e4ce3d19c4fdbd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3e5c9af82fe8c4f28ef30951a9f0e0e070617b754966d4b1333e44f659cf1efb
MD5 8f6e4511645ac675d39f0c6f17b7e1f9
BLAKE2b-256 19766cac624c1cb42f24b8c7839aee25a04707412b408c02476f7b6f8ff2f0bc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ffe4863a77b7d48d77e17bbd320850edb16925e4f7761c1d83b49159c5fa94d1
MD5 a3b4ab93a8cf05c3902b69a39c081f63
BLAKE2b-256 8b79a974b0253fe6445e41652763317b597ad928897332d69b3a6df8b2cf0278

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 47949b4be6ee6efcd1ceb165e6b8446e9e5a5ea37faed27c2f795f051981462f
MD5 6720e43b55f8beadbb03ad1c0e99106a
BLAKE2b-256 dcc90be61ad1367f55d810d6e6ea5411bbd421a20dbdf1db424ebf15b10e9d18

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e135aa367705622ef7f4fdd8056de2558d642b7053f7ff6bf65ef9ac20c21ddf
MD5 c8e1f0c1cb2547843e61bb0313b33b24
BLAKE2b-256 1850ca642a060855db9e8d192f800e381eeb5aea14ca161faf549bab5821dd0d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 eda908d3362de9dfc3903d7680ed4785685debf3d31667f6d22228e7cf3cc5d5
MD5 7a107f4f7171e51784c7a09a05d47c09
BLAKE2b-256 f13c76a7eabfd5efc585ab656833f7ab19de0955db1ad58dea4ee909c939e9d2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 f300c8f6fc84fac383eba0dc9f1d05fabeabfe34ec8137e8a98ed4540a4579e1
MD5 19207cbcede2e1f99ab1aeae3e0ec202
BLAKE2b-256 e4e0bba4566c2bda43dca7daa5f1aa8f047d44c208e04cdcd389eb9be273cb18

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp39-none-win32.whl.

File metadata

  • Download URL: pydantic_core-0.1.0-cp39-none-win32.whl
  • Upload date:
  • Size: 654.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for pydantic_core-0.1.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 10f0f65cadd58f6fcbd7f406446645a3cffb00f2fd2681439368cb54135f5594
MD5 1781c855f75927da3c47f492e2e1560b
BLAKE2b-256 45b598b81d36ab72370840f07e3237bb29903ee6c4782f8c7ab896e542e4614d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 568aa1bad38fac9b117e7c7f75e9a20683d15de9abb72990efba199bb1b52294
MD5 89d66732ae6d6b98e1d77d5b19f6d1b4
BLAKE2b-256 b4c254360e1b6c552955ebccd840ae4e217f31456cf970eb28077ae3dd7e8d36

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f197b739a3ee35feec753893bf5ee93c8c79a8dda0f40d67ba412905104b307f
MD5 cb9510c6efb0dd0e244d0bdc2b97fd00
BLAKE2b-256 955b6269d4e5cc74b9017625a53e560f895a4ed478d2c4b97c7a8a857e800ccf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 68eb11ed35df2d502f98015c86c0acf5eef737a5bc50d30b718d43452300d0e1
MD5 10ce48c39d2651411151f61f60b5901c
BLAKE2b-256 3b3c42a54b7b1dde22a9170588b0498740bade0e682e0efaaf995a181444650e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f3991dfa43f34e81d2a6ae7d3d5469bd0b2cf9a4d83531ceb1a5c11ddcd72583
MD5 3b1495953302a11bec322a8e7f6639ef
BLAKE2b-256 a44a6111e09cb9ac92d381a0d9c9be2fc57da271209589130616e23b3d0166df

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 49b3a2572dfc213d8d9cbf08df3580c641f11d47a5fb7f610495726bf5dd917e
MD5 9b9e32031d8b14fee48deeb4968abaea
BLAKE2b-256 89cab8b1da727a897430a60e814d818992971f6e37d794c155f0eab4521a7fb9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 6954a6f8e402cb9ce7fc9133c4dd45bede9bda03b0d9082a1657c4fccaea4f0e
MD5 74e78d0eb5f1c99bffd412b42651bd4e
BLAKE2b-256 6ecf0f9b6c377a465c5551ca3360d32d774910fa2f4b58878b5642ced4ca9e37

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d5cb97425c939b9e481ad0c8c28e271ed63583ddaeb772445d11e91acf7c1c12
MD5 579eea40492e258542651d1bf3e60e82
BLAKE2b-256 43aec93e0379e05aa8a8db4a055c00654c716494ad9185752e630a993d514491

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3c6281f5085d6dbdb3795666143e72815be5a2c346cd8ebfe61ce84bf0af562e
MD5 a63e42afa6599948bd63da2206b1a23d
BLAKE2b-256 c8024263a82080733a299e11108560c641aff21e125664283fab04075f9fe03d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 f97601a5491b8146caaa20a5a175c74e9800d819b0b2c2c229639c124167e206
MD5 2f368b7d24a1f99abc5ca759e8bca912
BLAKE2b-256 6a54549a059b6e835fc99f8c2883d5b78be464fab2fa2715e6a5461770455fd8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp38-none-win32.whl.

File metadata

  • Download URL: pydantic_core-0.1.0-cp38-none-win32.whl
  • Upload date:
  • Size: 654.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for pydantic_core-0.1.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 a9dbdb688ea225fc9b41a62aaf26d2c3589d2d1cfd550f681484843ac32e259b
MD5 24a911976568fdaa0b896d55cb63c238
BLAKE2b-256 9ccc0d754b0861808e682a2e8d9b907a70143ed3f340ec08589bf7f06f03e3fa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a1bb326b958b625bf2444f51c8a1080e59935d46d00933714a1dd3aa953a6053
MD5 da8eb7061710a9b7fe1fee1de138991c
BLAKE2b-256 e89db0a967aa66441be5187a8482b41ab57aabcec23785885d7a29591ca9dcec

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 dcc7bb99040f5d17c5f325e9bd190baeae0ab29dfc88dcf409b730f2218dff8b
MD5 fecc9b4b75b0465beabcd84ceb39806c
BLAKE2b-256 7bab756a4f70c1a2f39bf4f552586532b22bbc5d987ad54b3277dbe5e6aece2d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 f914d1930dc95e94b62b25ac632be815f55d594adc3b73aeca6fe02bbaac4f9c
MD5 df7e7891c8f6a21281be823c00c109d5
BLAKE2b-256 ae054a0b48595b46eed3179a1ba6bfe28943e8e833f72f5e2a4adefa27b6742e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 160ebb6ff7efc7d6878302f3da4aa1f7c758598c4ad26aba18708f811e5b2c34
MD5 67ea3ab520a8d60e1795b09421c04e53
BLAKE2b-256 ecd609eea72bb5908625c8fe1f4f3942ca080a7a8522e589e50557a7fcd8e55c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1b9585fe65cb0d817fd90cf865070fbe3816ad5ae787644a9cc5223f1fb25775
MD5 5d194f86cd546c5266b05598ce3949bd
BLAKE2b-256 5e287b1539dd92255fbc30cddecd67998efa22195cc7c740ad3c51d3f8aacc37

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 51bdc8ea4c6de890cad60991e5cd5262c36c2636b95f2e45a7f2424d830548eb
MD5 d1340b82821850a026434e79751d5bc9
BLAKE2b-256 b6f218cd44726f01d947f3d96bb9d14f344b9bab40dd6b43bafe22d5434937c2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 55d363126e14dfccd97bc32f46413635ab64ea1e0f0c4c802b35accb0403135f
MD5 d822f500f18b3a74ef7dedb6157d87ca
BLAKE2b-256 47e619073d38ec2d3b914fda338e5ed35b186d94fbecc2a6aac347e89702d544

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 577cc48e8fd41431fb3734c249f01ca8a9d7c7deae056775adca52890e8ada54
MD5 306aa0ca06718bfd8d8a7a43575bc8e8
BLAKE2b-256 ec06a35edb4ca290bf6c885b67a6f9c109dc8fa58250e9b0cfbd33fc4e49b011

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 dd95fb3d812aa05f0a68a4b555ed32265f20c4d146d8d39097eb3d248c507df8
MD5 61d2ddab184654f8a46a28f2599b3aee
BLAKE2b-256 f724146b87ae312996afb9e3638ed65d9a1e4572c6ff8dd10f5c6ab52323c0cd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp37-none-win32.whl.

File metadata

  • Download URL: pydantic_core-0.1.0-cp37-none-win32.whl
  • Upload date:
  • Size: 654.7 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for pydantic_core-0.1.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 e7c0c920549c0baf8764563beb6264e5a76c6fbf739f9d4567c7b4515b054486
MD5 775d5566d1075a6e132cfee4652fda1b
BLAKE2b-256 d972e2044169f105bd2c6a0918c5e00564c293799ffa93da4e03210a775a34cc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 417ffddddc58ee68af9cf10f5e7791bc8579748b03f24f08a2ccd3e09f4c58ad
MD5 417e44d2ca64fd2213c6c2a338ef74f9
BLAKE2b-256 cd3e32c0ceea9b8bcdaffef2f00b243fe4f6bef3dc9cf8e6e5eb653048b2fbda

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ed8ebc98a113a1787706ffae4ec87b77555d8d8c397f9ed72dc7d7ad4efac0b8
MD5 87c1004fd6ce6dc455c3397bee71752a
BLAKE2b-256 a4f55ded61e56a659f6a778718368f06574f4351dc013be7d365c61dfcb149d7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 b92ae255f0638f038fd74bed65d6588046bce50459a9afc6265b5fa1efe890dd
MD5 b097e3059f5de48351cc610e42f5f1b9
BLAKE2b-256 9c159a3b4c6bf2e7c087bf06bb17b45553a644d5b16a2c3463c89a370846dd54

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c59885bff0097b21f3942f7dcaec270f495bccf76542131e7524e3a52e65f77c
MD5 5f9c7a9988d7631de1ac2f8d43971e60
BLAKE2b-256 4d652e97ca2be8b93b6938b2ffd5a3c78a8e926c9c5698ac5a8f0bba3e32555f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 adb6d225d61602763f546c11d91b9dd71a317e4936c9fc500832b3099363c5a2
MD5 b64df2b7d5326f36e8a50b7a18113626
BLAKE2b-256 b5c5310cea2c949f0116db4656e8b1810c0a73ebdca1de3eab914f9b35e60f23

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 54ebc7318344ef519f52f9762fbab79f5ddea4bcf453b87877eb3ebacb92d895
MD5 329cc3115ae34ab0bea285666ee5b129
BLAKE2b-256 b481a3b3b161bf6468da57ef330fa84c5b5031690c808812efb7e8e6a734f774

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69b0a0532f64bb64210616ddb7b4f2db63fc9a966351a54396f15a858c86d6ea
MD5 497255f6f5341846c9233e1c712024e0
BLAKE2b-256 0515d19214d7f3cc488cf7df65bfb73313d3c55470e10b8d29442ea7675aa167

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.1.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.1.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e6b2ff50e44ea7e2ec1751fd5e1e0dedb2d5e9618412c10c0a3dfb09407d9f4a
MD5 f3a83f316c5367bf0b204ba472619a61
BLAKE2b-256 7a14adb9faf73a71575d56a5febc19fff003815669fc0a77d37874d1d96f48dd

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page