Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError

v = SchemaValidator({
    'type': 'typed-dict',
    'fields': {
        'name': {
            'schema': {
                'type': 'str',
            },
        },
        'age': {
            'schema': {
                'type': 'int',
                'ge': 18,
            },
        },
        'is_developer': {
            'schema': {
                'type': 'default',
                'schema': {'type': 'bool'},
                'default': True,
            }
        },
    },
})

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.10.0.tar.gz (231.7 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.10.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.10.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.10.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.10.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.10.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.10.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.10.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.10.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.10.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.10.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.10.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.10.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.10.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.10.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.10.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.10.0-cp311-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.10.0-cp311-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.10.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.10.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.10.0-cp311-cp311-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.10.0-cp311-cp311-manylinux_2_24_ppc64le.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.10.0-cp311-cp311-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.10.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.10.0-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.10.0-cp311-cp311-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.10.0-cp310-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.10.0-cp310-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.10.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.10.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.10.0-cp310-cp310-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.10.0-cp310-cp310-manylinux_2_24_ppc64le.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.10.0-cp310-cp310-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.10.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.10.0-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.10.0-cp310-cp310-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.10.0-cp39-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.10.0-cp39-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.10.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.10.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.10.0-cp39-cp39-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.10.0-cp39-cp39-manylinux_2_24_ppc64le.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.10.0-cp39-cp39-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.10.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.10.0-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.10.0-cp39-cp39-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.10.0-cp38-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.10.0-cp38-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.10.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.10.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.10.0-cp38-cp38-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.10.0-cp38-cp38-manylinux_2_24_ppc64le.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.10.0-cp38-cp38-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.10.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.10.0-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.10.0-cp38-cp38-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.10.0-cp37-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.10.0-cp37-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.10.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.10.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.10.0-cp37-cp37m-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.10.0-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.10.0-cp37-cp37m-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.10.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.10.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.10.0-cp37-cp37m-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.10.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.10.0.tar.gz.

File metadata

  • Download URL: pydantic_core-0.10.0.tar.gz
  • Upload date:
  • Size: 231.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for pydantic_core-0.10.0.tar.gz
Algorithm Hash digest
SHA256 f5decfd79c2336df2e92d771d99dbc32506c00142db4b13eaf62826017158fdb
MD5 3f842658832fe126ff36121e027aba4b
BLAKE2b-256 86055efad25d9b9a02fe372760a292c5076b53e0a97123e0d4b88e4fdce2498b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1beaff0a12cd21319d39a968f413a26c548146d672f2e66a6eec12aa9822a9a5
MD5 5b3d086580b723bc1cc3d82832202b18
BLAKE2b-256 1e2323e3705af548b51c85e4077eb9da97e96b6004413527b6889a2c7076dbd8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3e75a441fd45db9a692755f8bcdf826b3b0429521c06371f1d725b7c45a6593f
MD5 18bba61a461edfda4472f3dcab4d6a1f
BLAKE2b-256 73543f03c195145871ac54f2790e2a529327a1ef5afa8f854a1cf658637fb064

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41079874aac1f175ea22dd4029ac5fdefcc2313f1c265a56ad47c8272d24d021
MD5 b5786f93838a273f27628cd87df7a39a
BLAKE2b-256 722f0daf6d86b3416cc73e0f59bc98a87ca9fc183f443b13afbc8047a51d25ab

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ecbcda46a9377509af9ebdb83de54be51ae788a7ebc165b52df117a83f2de492
MD5 852176b4668d4f2cd2d553c29e508db7
BLAKE2b-256 f68b588514d7b141ab09809f4cbf85f5ff42080c8a8833786d8cc6331d0495ab

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 486e171fcd381307ac0568564f111923050a8c9a39bf346ec7246a08644f95cb
MD5 c9d7463513576fb2d7f9e5d784cbee15
BLAKE2b-256 cb6066dc01e28cf03aed552a6bebbec885684fad868694fd3ef958fae527c42b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 73f30051e3df329f5d531acdd9a6dd28b502e07e1c770c786286893c3711c956
MD5 1c5347dd7fbf65ca313d21495edf86e0
BLAKE2b-256 47ea262a282dd3b7fb963fc062dc4627f4d3f2a9164f25184e887a62b20d8b6c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d436208f7733b1f7d22be55a56ab2825c777d06869e8cf84614cd65d2fc548e4
MD5 63e2d22c2d9926a9eedb45ab3f678a80
BLAKE2b-256 983e32e0c52828ffdd25ff42c5068385c87a170142bb768b650a249c6521b52f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c1f5e0a06653c5adca19b525e726294ec54354435cf67a1baadb1a82b3f629de
MD5 a745cab2652491060fb3949311d7f221
BLAKE2b-256 71add65bc0eeb654f0f6e4ca86f2276b98b733e57bea13316db14bbba3a1cf68

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 48675f95046103797d439961caa048315989e10116f60fba622819b96b52a439
MD5 fc246b1a2dbc463aa397cfa81f3bc69d
BLAKE2b-256 5d9189e8c08971d3d4748b4e85dbb82aa1a5eb218d1e3bd95faa33100b6b3070

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 db758a97d5c9dfcb4b91e73aad5052223704c2d9744251fa75130ba8c787a367
MD5 ff7aa2ab0b917ec57021492d6e5be199
BLAKE2b-256 3e42b06b26ee57c18cae3f264634cd52180a3e8abc80f3ec34d15c22961f3c0c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c06ed506473e399d6b438cf456beb6da1dca4ca0ac0b2c91167a7fb89a6e8ff9
MD5 22f5ef697a766a7751dd24b7f15091e6
BLAKE2b-256 2769a8c495860728ea014d1f10b8ee87c8b176267e9dcedf7cb45fe39e593be2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e8f847b6878cd4f3bdd5a674c8e4da9fc23e042176a30c8567d01350d6374f1f
MD5 e06af70df1df7d5c2030b33ec8e4b53b
BLAKE2b-256 2e301079e3dcdfca18bf7963c26bcb17eb138005476cce2c1973c5a98c890865

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 14f53b170cf102fee28a8305361a429a6edc4ddd11bcdb4badb3c7f8eae91e0b
MD5 840445c410f599f8e0f0c591188dc084
BLAKE2b-256 0d01b7b6eb728050573af04c9790086f18d2cfec1b3bad9b36d6c84fbaaa7a2e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 78e52a07fe5a8a005db4a1583915dc6f84cdd941247b9a0e2684face6a58d6c8
MD5 d82f02c64475022a2391bf4fdaf5b0e5
BLAKE2b-256 21b277520f79309f965503e2eea1e6e3717ee16a94f0e8b4caf78ee620a34c24

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b8718b72c2bf1d10a4e2bcfab57e5a41fc866bc576d565651ab32342593aa957
MD5 beffd49b5670ba8a4ae1449f1e7f4a8b
BLAKE2b-256 db5d60d9e4705859559b4ba94957e4d5dac4738e55ab7da2cb21b6817a623ab0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5da9ce1fb7945a75cf398727010b2723da99d78f0794ebd5b29ead5602ea52e6
MD5 e30aef1e8693ee63c2fbff169ab8e101
BLAKE2b-256 523af4b7e08cb5698b7a85d506ecc9edf63fe136e46eb250c8ce8835b02b2119

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 af017c9af9665ff820825563cd98af018a8bbf71bc5afc73fbde471f24ca6d66
MD5 874abf6e5e2574c52bbae9fb6abe9658
BLAKE2b-256 1588061463dae1c231ec222cd88d055010e6ff67c35a7227aeb63be3ecce3b6c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 9b75a58884aa968fffb6321d35c50fe77dda15fc77ffad62e6af99d5e5f3b2f5
MD5 411b06f0fa0e2371aaea7b26a6e895a2
BLAKE2b-256 cedaeea7ab75a73a5c98b4d24c86cb6ba4a3201e93e4ef78c775c4b8dc494717

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 ec1050a17a6e642f418b4f09ba349682e6171aa53b81502887b44f48adee00cb
MD5 899ac0ed3b0a0b68e05077af7990f8e1
BLAKE2b-256 1a06d94dec1ca607727887c76c6e7339a2826609e5619eefd307b4036c94a207

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 c7aa8d2fbc882828f9645b63e0f45eebd081fcb84e1244337955967f0dc9e794
MD5 98ebfb44efc95fbec970403f7a39de60
BLAKE2b-256 316a783066ddd7c679d08c079a819bdf08ff04fddf774ce69755bb60b5ffdffb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a82b5394cf7ed9d61b0be9b3d473ef3ae890f0b14987572355fd9519b7e87aef
MD5 2eb83de47e282d66c9c8e9cc5587a025
BLAKE2b-256 5f3b875899d0a72714409d1fc30608f9e069bab7e4a8c7b25b75fc004d4d3614

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 10c9442d79ded81663cad314ce9e3c62f579a8f2fc5b632c61c072f5bd24cc21
MD5 1cb0b46156898f5ca652581459306ea2
BLAKE2b-256 fc96ad11656ebca901a814a8adbc279bdc8cc5d8950ee9923b3651e678bb0961

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 b0262a600698b839730c4c6d86274c52137295650e9ee48be707d718dc7cf006
MD5 21971c2fcd0a7475796076ce4d12fadc
BLAKE2b-256 5d1e41b428297a60d10a8b4d99a51164ae8932cc5d697eb6ae77754ee3f69855

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 7bb49ecc2cb6bce312b737ab74b7c88fea6239afc1cc25b8f9ab10fd6ec4e854
MD5 e9d284bc6020b84773521c0f4a2749a9
BLAKE2b-256 2b17d753f250ca1e89997e6b2dbb9c6a49381331345712221f3a67f7d13effbe

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 d5bf85acd596ec75859455841c239e7fd5019629c9a48561035d5f07de9447df
MD5 79c535650bb56aca7f1400fb82a7c178
BLAKE2b-256 e870741345f5feccd0d4e4e03dcb2ab2769a0d5e3c3136fd87fbefc58c53312e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 866debd39b71758b3cb8ddb61f8920f8f9d51679f97fa9e57830cb7e55dbd767
MD5 ae9257ec994b80869c73a56beed8359e
BLAKE2b-256 858871336425384c5598db52afa0c99610d2b9a8e893b719796f926d38119043

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0affc5357aec23ab3b7c7499a3d5c960fe30f60235671ae73349b0cf5c892404
MD5 f8d806aaf60e5cfde80c39598c541c04
BLAKE2b-256 a6e9ad067ab5970c980b9bb439633679d0ecbeeb3408eec951de40d04c55ba5f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 1d222ae33a8edb0c1527f8d6280fb733580c57a309e416d04449905d60e1901e
MD5 d100ca278b03e50cce5d759fc733a335
BLAKE2b-256 b6743817f3a832c78774a7c5f405000f9bcc55048666f9cb16f40bc8039cee56

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ee71e21a35582d43a8a260e037c502e82e0995a625bcb421d83bc85b34bb6f07
MD5 472d5b811c384411428c209bcb117b97
BLAKE2b-256 713d858fe815ddec2dde2fdde0920d787d622946523d33e9c6b5c95e192ffc81

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 99c6a742bcef4004adc4a263c3abb657a8ba87128c1a117dbd3ab2eb47ecb995
MD5 bb5389f3bbe7b869ad4afde5fbe16779
BLAKE2b-256 97ff091ca887bdf0c08163751918fdba64a58fc9b313720f202cb303925fcb1b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 c362633b6920ae44c9f69d06811b1bf2c403add4176279d765ed636360def7f0
MD5 621be7ea95f994187412d34b61c826e2
BLAKE2b-256 a193b7887b31bccfe773934e51b481ab8a73a52c956b31eba77ccb4c4f510d4d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 5294b9e3fb03b825b7ef443ff5613595cd8718d84648c137c7d1d39d0720d3e2
MD5 b8aef8ff8e174e97415ae20da46e106a
BLAKE2b-256 fba17b574b4dc1cda7bd7ed7e7a06ec3028fb43c88964df2c0d45f2ff478804a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 75764e767697223ccca5d0374924603801156a0ccac9deb7bf3018adce670847
MD5 0376566879e493e02757f541ce2241d1
BLAKE2b-256 55d6685707eac0d05819084c0dd7735026811e65e269cd2552523ce831583a3e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ea3dc69a3ecbfababaff7e8121c503a4de51b3f3c590fa1980f1cc981fc5b98e
MD5 eea0fe465d6733de35807f79cffc8e45
BLAKE2b-256 f967c56407ce3b179f8319042166d95364dd7214213f0720f2eb7e55fe2edf89

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 d4bf4f539c7bee881192d049da93d76867ce3c086aa152822a1c9a08fa7bd3ae
MD5 a0a3b510ddbbd856f6e5363b63fe060f
BLAKE2b-256 916f6b65c7fd3f751c39c9c49f7313f432264bd7d748c96c9c13d05c57fe0783

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 715fde9fbe82231d86c6cf136abc481af6816574964651f82d0f29c45388ba77
MD5 17b8a525c857247cd748f1e650b24c3e
BLAKE2b-256 ad066107a1c9d0e7ae82ed734f6bfefc818549dafae3a0fb49fbcae7d7019056

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 175878b0b55a95f81085da9c4326839a4fa8ea4b89e567dc59eb5ce1eaa03824
MD5 8aa10cac2d9f90af515930f258710561
BLAKE2b-256 f3492b6a463e9ec5e827fbe985f9f5a37b05f7048446b685fde763fa69612f3d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9d6dbed0f5ecfb452cfbd0ed64b5cd26b3c49f04db7e51cdf829f694855c827
MD5 9cbc2364d2d9b7aee07e33b4d31c6ceb
BLAKE2b-256 34d3c91dd67e313478c33dccb479bb97df9ca20db44939ef8c39415f1fe37f29

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c1cb9efb28ab85e0e36c92ca14653b297e66212def938de332e610cc5a089dd3
MD5 ff964fd2df727ad11652264b96c01e67
BLAKE2b-256 234801ad1b73559a0b387ad680bf870e362824a3188cb9607a9e33fdc80cf6ee

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 de79ecf8e1b92fecbbcbe902b4a85a2ab1f47319f7cfd52d83227fdcad208a8e
MD5 dfa971f29537b8843d6dfbf0906db87e
BLAKE2b-256 58435d7945815ce7bbe9193aab9a62f78271fa39bd7cd66cc9b33f325d909e0c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a2296deb13f9099a1a2a5c3d795163bcb5ff6fbe8978d1bdc084c2f866f0da32
MD5 5a9461c60e686184358c04ff3b28f1f1
BLAKE2b-256 8fe31ee919f42b90c2ab19f88b40b2e403afaf061fd720c5f8f944730d480cc1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 732e56f988939f24d720af50c08ab4326ac81a6b2c97d47ef84792b8c946e337
MD5 8e1a6cf15059f3c603311c299092d219
BLAKE2b-256 0a3e37d946866a5ebfa910ef8c89aa84321454662f581d077d4694d9a21306a9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 a58b5c8aa7ea3336b8e3bd96a96f87425576dd983b402ef5d82f255690cc8168
MD5 ce6e0575133192a5fff3aa9c6b9bd1ba
BLAKE2b-256 22de35f80a2d9318e128eab55fe4a0d4c1fcdb7bc75877d3cf5da4ef94303bdd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 0447ecc0ca390f265fb9c8b917473f3147d9f1c33a931a9b1b1bdef1af69ebda
MD5 91125f23a1cd1a247f81515c775c8f41
BLAKE2b-256 b5358e68fab200e2c7d10ef61cbcf21cea131172ebb4f3177fa69b70babae277

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 628c9990f85b764a835f229cf6c55a293207c9552ab03f81a1b6f6e27f472dd3
MD5 95d78bea179fece0f527f9e5d9ecd1e4
BLAKE2b-256 333063b6dcea6522eb029b98318fadc58ecff82158bee92286cafb9f3fd92acf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a74d91400e73d9d8bb3f2034e52ef97cdf7bfb5d36f0f22c07eaa49c1a6a4023
MD5 3cac206ed58d88000fc8f3b15ba9bb16
BLAKE2b-256 b95b2b72a1e520a606cc6d2b4a3c4f481373ed029552500ea9d6b6a0e8258c11

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 adf5943f5b71a125e7c3d972f0bba1d7e6b524b1ba3764ff8387596d5aad1866
MD5 ce84e24788505cfc9acaff3ec4cb40b7
BLAKE2b-256 91f7672d3a1a581d8ea207334bb54120f1f0b003f50e4c2a4a32f427d436e041

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 8af161d638465657d1a2bb9edc43f0ef12dc9d8859b797239275e1ea13a5d7b2
MD5 68a6cae966a658daaf0c8203ee7659d6
BLAKE2b-256 8028717475e849e2fb1fbff211efbbfee99f82b3f3ee7b1e0a417b767fdfcdde

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 0150729cd1077d4cc30825bd9640e1733003471e4574c15a296a17388c738977
MD5 8382d5a0c8cf631f97f48e0580290746
BLAKE2b-256 c62f1d9d552652902772a777ff0d3810490749d5c24474e34a0f931aeedac7e4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6485fd6eba0f39548d1c071578dd1b1dc06c268e592a59b59f62a9b994d45c3c
MD5 2f8446308cc3461a8e31e1d063a44b54
BLAKE2b-256 e9ede060fcd382e3c1b8ed6d4f3c401706eb1dff294ed5a461e2ff560f71c7f3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3891247ddc16b29707d32cd867dd0d5d12dd23b0b1d98f9ba08fec0e7ecc1381
MD5 1e92bf93f05ae174ad92f81103d524e6
BLAKE2b-256 0b2b10a7b5b269b9218a9fa7d75af9a6b354ec173e8f51624a0973a2a3a5f27a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 da01a9d4380fb2ee9702deb9d082c2568dd21c7539486e94fe2ac200f1c13bf6
MD5 f3af04f3f0f2cfdced69aabdf412bcce
BLAKE2b-256 be6deffd4414d667772e2596bc10b9d6a7bbf7c4a1dfbd3c37ed621caec3dd71

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a8bea2f6354e2ebc68410823f4a96e064e90ddf46e3b467c33f75898500787d4
MD5 c933afaac2d01c28f1dbbb6efd36d7ec
BLAKE2b-256 4e27d43d248dc311902b334220226c77f39716f0960dba2c6f6dec3fccf01804

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ef0fa31b9714bcbacc792bb93a0cb366060a5359c58c2f6e3e14c679572901bb
MD5 a8a4e2a79878444f612885873a207684
BLAKE2b-256 3707c868542cb79cc5ce9470ab5dc907d53555db6fd734e20eb17973a9629db9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 2fe9137a5ee31d65af0c9fb7265505de8bee14910c85ba7899256ea6f07adb8d
MD5 f3dfe9f19ceb320baa0991d3240fed18
BLAKE2b-256 48e078951f6c467262ac6100b559e5b1d2010e19d2851799a8b7c37a1b48219e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 831ff97b4506421e0340442763d4d9a69b6848eda7d7daf68cb1ab3bb3f98015
MD5 7f073d46b95e8e87c62ddd18504e1ce1
BLAKE2b-256 a4641e2c4d85a9ee561c3be7b0cb0c580718bc94e2f2de49e66b2fc93c78fd83

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 440c40f1c22a48e515a7004359d97958f26a1e04c0b45ce1a54f5c9f2b17a385
MD5 dbb1aa4fe1a1343d6a20c184695a312c
BLAKE2b-256 012d476dc30ff688de0e88db36c4637c95146e2660ee49b5ef2b3cf61d8927fc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 864ad3f411ca984bbddcd9ad22341e4194654cd332f0611a0b9537e73bc320c3
MD5 e29fe505381b4db9724f225a1198c058
BLAKE2b-256 5de725946a3a9ecbb4f48f83b7622149a2d18e5cd83422830bce0debf6fbdd0e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 706a591c3c7a6676c644b321ef4649f31b396cf89e8f9ec8a187ab66e8e6fac7
MD5 592a1f833f39f5d45b6d13da645d474d
BLAKE2b-256 7cc54af230bfe3c61052a06eff9f82f69084bac2d32f6d2e8120e81b8cb6c788

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 af6553999e482eda61848ef071c1aaed8f5faeaec9da3537f658340e37380ec5
MD5 3660b9fa04d73f3c61601b56b0ee4223
BLAKE2b-256 8ef30e7daed729eb50bb5f6be1cf7b39e6696dc9049a3bb591034996405566c3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 dd69fe50b39573adb154338bd3d9c0990a7b6bec608aa0198811cf9437685177
MD5 f2080e903b22eed13f9fb3de6bc454b3
BLAKE2b-256 9a2af55985fa9a1c701b017c0f3f00dbbaab344ea669d0b83e98dba3b6d7d89a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8400b7c4a36f96f523a610ffd52e4f6603842ce776f8ab5b62e4a34803c58732
MD5 630415af07510dc2200ce1e670b0545e
BLAKE2b-256 5b27ed1fb8308e555be06e156ec3609a626e133ce700ec60d0cc518a725e5d58

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1ece1900640f653fb4e2cc2962a818bc99bbb058f70a1c8073da811267a9915d
MD5 fa04823e25705b820623138be8b0f326
BLAKE2b-256 11671f75928d9d166eb4038dbe04035919c513399a314bf9b201886270568a09

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ebf1ea751db3665c6a579592ca64769766db072471038f3c454f48d90dfe279a
MD5 1e1a57693ce058f2934bbbd8a9108491
BLAKE2b-256 87de66551e7d684ff3ece017f3a306f5d4fc4aa025b507eb4b0a3dd9d01de296

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1888564844f55d4a9cd39309517d3487416e7784f21f06be367a39545f5b0676
MD5 b2cf89b8439693d02dfbb9d1047fdcf5
BLAKE2b-256 280282d7fa426d6dda07800a20afc0a3923aab3efb136244f426aa20961c42f2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3dd455730135c1fd36f5d361ca88469ba6b1cdd47b6a6c02288325dfa2d553ba
MD5 e74e9118e3da27bd05dade811852f01a
BLAKE2b-256 2a46b2fefb2296fc66b9ef1162cd5023593f9e90419029f5723aee25d08759f0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 1475f967407a3761d70cf7e56092ea2012461e15a4db4072fca28daed1488d3c
MD5 ea7be205cbb8b9dac2fd5f0638f8a870
BLAKE2b-256 6012a8bac8bf802c0b7db09e19eed244b1d62b612111c5487a36a336156e9769

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 41a15a658eb6853f1fe56fa1c86be1bcaabc140fbf5a937d839a11582404f017
MD5 bfc2321d2d6212ea5855f09f6f2df971
BLAKE2b-256 3542c2065f14a3d6542f43e4cffc0db1c1b3388ec741a6a470080c35332e07f2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 41c0b3e853155cf4eb809ae9a195229bc3bee3c47501e0dc555871f89154c597
MD5 e2feba62504ef5230bd54585252b751f
BLAKE2b-256 236fd708fd0e9b01d20847a97fe481e3666371cc228f0946cb732a496afa2a1f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 dd0271306c9a28a1b9891a2989ab08fb5606cc435af571807a4b6b71ef602582
MD5 81663306f04a668c30c8937b2575f698
BLAKE2b-256 5b91a579927c5c39a51ac95b6895f94aae42043a048396cfbb6afee520c4e52c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 deabe37c13cece73d6a11c577c7d460c005173eeb794c0567ddbf728a41e8ed5
MD5 1a0384158730b28cc47a236868c7c3a1
BLAKE2b-256 939338c113843b4f5f2ba2644ca20530d7c663a51de5235b34f85f12318d8bea

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 7a2c9c2290e2d2321b45769531ce90bd7610ed1db5e2bf0fbf0229524a06ca64
MD5 15d8c3b5c55e140f24188488c64eb65f
BLAKE2b-256 ddb8642cf71b02bcdfeca7b12915751ba8f1d9f200d189e7ef56a0a36a234b68

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 76ba4ffb449eab1f895faaef4fd4e466eda269f5fb47f86aa25819e81761e7d3
MD5 6d7e326d1f1ba2c47bb1b933eef8af1f
BLAKE2b-256 e5079d7841813673990ea06375d3ca917a2f0ed3af832b2971e474065e8d8099

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 36f23f4d0de7eca5a2fdea0d2bafce51fef75768fed2a0b432347dc981a36d3c
MD5 b11b5dadac73c9208eecabb50c2d312a
BLAKE2b-256 ebb4f594bff4e6fd3ac61363efe11b0cd2d63d23e9a2714fae44a9a5ec649d89

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4d149630146561d1a8f93d43f3e1a1885d2028602750aabeeef56dff3c09bedf
MD5 3fb454dfac9c477abe8bcb2e1cef0af3
BLAKE2b-256 d7c33234ce87b0d918f47f0bbb5f01ff48b209c1853bb7fd7b78e05e55e5dd19

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4ebb25d51c13f46604c2c030c88471e198078a5bf4d1acba2cfec58f706c7d63
MD5 d5e4339aa65c362fedccb1778c115651
BLAKE2b-256 d9dedf047ff03f66ae298316d21eb9f60fe6cf42d799289509c23ac6593ad092

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3f4062c6dd49d17f064c59ec308d13968663aa1970a426d078473ed465197146
MD5 645ef4b69c10425a902f05625cf9b76a
BLAKE2b-256 943ca33bef33982d4ef479cbb91ffce360d46cfde2d5167a1627035abeb4f7a0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.10.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.10.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 5dae3ba952526fc43bf717ad39c24dd5a79562d84b94578575cbec8a2d3da28a
MD5 a766e4ca0308a366c674868b3a431680
BLAKE2b-256 b0346b8d989e8005ebf3dff3536faf822bcda324624a304d02b2a55a9462ebfc

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page