Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError

v = SchemaValidator({
    'type': 'typed-dict',
    'fields': {
        'name': {
            'schema': {
                'type': 'str',
            },
        },
        'age': {
            'schema': {
                'type': 'int',
                'ge': 18,
            },
        },
        'is_developer': {
            'schema': {
                'type': 'default',
                'schema': {'type': 'bool'},
                'default': True,
            }
        },
    },
})

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.11.0.tar.gz (236.1 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.11.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.11.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.11.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.11.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.11.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.11.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.11.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.11.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.11.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.11.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.11.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.11.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.11.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.11.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.11.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.11.0-cp311-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.11.0-cp311-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.11.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.11.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.11.0-cp311-cp311-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.11.0-cp311-cp311-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.11.0-cp311-cp311-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.11.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.11.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.11.0-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.11.0-cp311-cp311-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.11.0-cp310-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.11.0-cp310-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.11.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.11.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.11.0-cp310-cp310-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.11.0-cp310-cp310-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.11.0-cp310-cp310-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.11.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.11.0-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.11.0-cp310-cp310-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.11.0-cp39-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.11.0-cp39-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.11.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.11.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.11.0-cp39-cp39-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.11.0-cp39-cp39-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.11.0-cp39-cp39-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.11.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.11.0-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.11.0-cp39-cp39-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.11.0-cp38-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.11.0-cp38-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.11.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.11.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.11.0-cp38-cp38-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.11.0-cp38-cp38-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.11.0-cp38-cp38-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.11.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.11.0-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.11.0-cp38-cp38-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.11.0-cp37-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.11.0-cp37-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.11.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.11.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.11.0-cp37-cp37m-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.11.0-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.11.0-cp37-cp37m-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.11.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.11.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.11.0-cp37-cp37m-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.11.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.11.0.tar.gz.

File metadata

  • Download URL: pydantic_core-0.11.0.tar.gz
  • Upload date:
  • Size: 236.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for pydantic_core-0.11.0.tar.gz
Algorithm Hash digest
SHA256 60489ba51b25e6080e0782fb5223c28a16492ff4a9876a4811a35e65a7a195a4
MD5 e4c45fe5d155bc5387db24f89ad2256b
BLAKE2b-256 7d99d75e834115f968b4017315457b47ad1843ae0c73fc8057b6d0f9ec376d96

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cef411bdd8e60eb8e17f6bf26073cdbc4fc0cdeb4ee11570b5f63eee633bb880
MD5 d92a3725aa1473d945c0319aad8b18dd
BLAKE2b-256 aa77f7be53789d189e843ccfe28a21a97c006b52c670b09beab894ef0d265271

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 122bfba355047a5528e1d1a9ce88302b563cb4c4504a7e199cc99bc5481e0c37
MD5 56cffe79208399e98ad7a7bb3ffef254
BLAKE2b-256 b8c55228014168059f5e3c68f7e41b722c3393f7a3c910024f86e30e6ebaffb8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2cadccb852c24a2c60d55618c682b36f76569f0126617724296830255f4b191
MD5 e53e240d3e12e55fd8073d5bbd77fa62
BLAKE2b-256 f9ec281a0bce4ace5e070f77dce03d5d7b2c83f5806dc9b57fa06e7b356343d2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5096addfe3bb69e93f2b4a1e21cecc83192dccff4436c146a3deb35b7ed504fd
MD5 8f7a00c04b91b0ae7543d3b9356dbd46
BLAKE2b-256 9913463bdf5a24f408c486b73d4d35683a076ad9508b6740804ecf87547673e9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 5b46d156482e02b03d9263656011288c6d7cad8074d67b934d8d4139e36161c5
MD5 b1f0c44ba28afdee851af0c3505cf929
BLAKE2b-256 0c546e38946f1395128391ba6765de3f4abb05a4f0e07a0105b8039d56427abf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a5fdf76728da5a2fad5a416b208362ad7dbdef4bdb4ce6744d3b6eea0a372c94
MD5 312993f93e6937868f1ca67f2d5c9349
BLAKE2b-256 cd56ae075bc4bd09db38ce5b53bd85e6616c188e87fc6bd2363ee265f981b196

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e207c8adbd65b719d534905c4126e04743f9d215c0dca04130d22814c28e5a2e
MD5 72b83be97080f11512193d6eae720e11
BLAKE2b-256 3c3a29c30e8aa6ddf88d79213336c741629e3370cdf9c400dd6f69f2f56ce018

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 282c1d193af6e246f313b5dd38c2294ca45dadd991af4ad515eccd6256d2e819
MD5 0ce90b890b5b0d4b0cf57fcd6bbcc322
BLAKE2b-256 c881c652037695e09de7ed3d479115284bed7fa4fc0173825a1c2cd72d3c38b6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a378d141c436335bdebe76a530a1d064d825185b96d7b058eed5093afe8336a
MD5 9e3b54d0b44d75066530386c1ebebd92
BLAKE2b-256 b75747cc73d24987dcb7ef97750f7400b3b1b3f0796e9811fe809b392bb8be9f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d80c45d1b5efc514a0a5805d0673bcb140ed84e7995b188c9a5342e3268a903c
MD5 7f0231f0e8b91de008f054f10a9b8407
BLAKE2b-256 564b78fd85609374854d550c6547c8898315ef6befb33877b357a629d28a337a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 743cb4b57fda94ee1327db66ad6b283b1acfaee2885add7f21a650f563abeee3
MD5 d74f1465f10b82e976904c2ce8db316b
BLAKE2b-256 0d40a105bc74678ce465575a1ccff805ebaeceb3cfe3b68d73223d120a956759

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3bfd24178591244ffb2b5493e8b4bc22cec547abafec59c7ebbe16bd7785215f
MD5 bb4b299856c511e49d567f8d86acb536
BLAKE2b-256 bbe2acb37fb0a407b4eca9dcd7439a605c89b9e4922faf402e082b8caebce21b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 07b8b6114edf03d5a8d122696218a37b93802c1dc6d5b8eda0e101d0d5eaa3f6
MD5 6a6dd6077d312295765cb6b4095d7db2
BLAKE2b-256 4d59c8c4efe991bd57b92349fd28924ae9f3b491aa83fc9d4c5751550443d719

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 da76c0443139323abb3e68a633efa48964065929535d8087e89e9fe145ddf508
MD5 2df57d7521353004474ed2172708d4a0
BLAKE2b-256 9d5d13e1e6ccccc6b1d9cb42b0977f50e9ff2cc15cdc42577c5a4a5f5203a3ac

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0245e4d2994d72d0dd9f763b7ed9677d9c002508fe0e67639e5dd9683077d249
MD5 efc6ef4345d7436d0d8fc2e14d494b20
BLAKE2b-256 d8092888715f337a1b53ef9b88f0efe5d70321280d665fbc181373150751ba4b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 14ab8bc918ef31af07c95eaab46f6f4c8d737ecfe9d706e70c8bc3691af4e89d
MD5 c9c27521102c35a496c1e9c8508b8f57
BLAKE2b-256 3480da7f63f8bc38058d7d1129782604a9eece5abb96ebfbbfe12690368563cd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 d2951d4939c635f35a4ff1fbde447c4440f2a95ead3acff8236c01056b88a8cf
MD5 1b0e2c973d23912af251488e50eba51d
BLAKE2b-256 93fd35ef81673764495a78d17b88779f50f313d7f7c74190246fd27e96691314

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ec31cb90074ac864d8e4f1615651ad6eeff1a6cf7860748edbbf86b041270262
MD5 0922f9f9df60b85a82e7e3de378b93f9
BLAKE2b-256 e01c2183c24c06d28a328107fdc119722fa2a4364c3a3bac802fda0465170da1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 28ddb08a57f4cdf3648c2772428e580c4d7421e70332b9aec471f8668eca5387
MD5 9168c50a3f6dd1d08e9ed92b4350f11a
BLAKE2b-256 86eb8f6b2c37ec683a156dee919dbbbb80debdff00d707ac0bb0cdef74b0fde5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 b56822ef14a5e752dc6f932e5a79433615ce99675c8257da3b5f99ad45cb4479
MD5 c6a59fb99fdc7a0227c6ff0e60058cfe
BLAKE2b-256 a01d83f2d40876b5c9ccf8fed601fa1b9c42b69955ec3b2b4a278ac552e73904

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6498bb31237782e160bb18ca7309aba8f23dfbfcd897c436a97db9584e4b2a7c
MD5 88a4b4f32409020f9be098026e809ccc
BLAKE2b-256 0dcf249b79898982b82b97e5ed9efd3665e762354be463f013e95e7a59bd415f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 068891c1637a7decd3e38a45966483bcdaeb41b2e327ac6c00065041aca20bfc
MD5 c02d6e55faa94838c9feb9c261f10f9a
BLAKE2b-256 ec730aad342cbdba32af221e8ef8931d4f24494aa99b4b03e8c65599e96f733a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 5585ddd468f658778fdfa8cb311fb932437dd2039579c1a2a221d5ec810b6c0d
MD5 378e83258d5e0889e96be56e421a823b
BLAKE2b-256 eb6d1d94e92a86ae0977dacb5ec0b8e1f75f94d16ddf41762e939c80e7f2555e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 a5f743bae4ce859296f4572ef17e902ffbb86283e153ef2d736a4cddefd8955a
MD5 e6d9c94c1abc20da4abe2441c65182c5
BLAKE2b-256 d65c3eff868dafbd986fc73efba20cb1253be4d13f30333f2479b3f1ab6e8cdb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 7df2f864c367b1e5dc878045a6ee8d0010cafaf4185586f0e8c776d6a6fd5e9c
MD5 86f6a48f8b4493e62875fc92367b3695
BLAKE2b-256 f350ed0154d8cd7472bc150c8d998c8e6d4d20ba96dda61ab9fe56c0680a4697

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94e1ac4b8c2eaefa8342d82adfc58746492613b13fbb5bd95c84a6359fe0479b
MD5 f91353a5b8b9b5fcfc21a5c73a2d98a5
BLAKE2b-256 e25068c1fa476a7aab580914edb77a195b3d259fb2546edd1229afe215575290

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2c3e9e78f35f1d4a4c3012b7707e0a98d388296540093d138364e4b33ca2cee0
MD5 dd27fa170f7df3b20e1290ff1dbc889c
BLAKE2b-256 1be05e7e4bc44629719e94c2f3c9a3111c56daad73796793f70a7d75205578fe

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c299db75b52a7e7c0d2ff34b16337e72f9cd941be54b2c9b1577495bedf91c70
MD5 aa0672b5c65bb3613c5e91b8e86a98d3
BLAKE2b-256 fbceb7ebc06598c8e6d71dbc63ac1ec21cd676b38b89237952c005d80b5c424d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cfe64f02b8eaff86e041759f3d8b65fcf5f86e0bbcde9a44c5a3785fe4760490
MD5 c65cb05852c31ca488612e8a82cf0793
BLAKE2b-256 a440192aa64f6c073d324eb44f3a7b06920cc5847ca56dab2f2e0f7c5d5f40a9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 fc0146cfccf4c41c1e6150bf648624a1ce86d65e77628be1bff2c379f2fa9807
MD5 e7a416801e378a1fbee4236beb73b9a1
BLAKE2b-256 a677e49ebeb518a25c904ea5e60ddfaa3aba4600677f4b6db48468cb44608594

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 eda09a4a9645c16ea1f2f99c43c6542b3c80d1bcc732b4e24171f1d8e0e1e388
MD5 f36b192ecfbf8243232a2d846e521f1e
BLAKE2b-256 353a5704803896faf4c6b8d2b6e5086d1eb64b14b865404b8273903f216c063d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 f9e7ddb70e7bc44a7c8dfdd723e780bb6be53f2839e933cb7268ee13afb923b4
MD5 9ae8aa67192053f54f35f290a4a6167d
BLAKE2b-256 c9ec54cd2641b35d6e886a1e1968b8ed963cc6cc8c938d8e435e606415b081c9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 29823178c5e3b2b96c146355ffde2fc4f11dc8c773995f570397cc04b38f1c57
MD5 ce6791dc8bcd6deefbccf6dbcf9deda1
BLAKE2b-256 d115badf3978ec62fdb49abc27e20862c1274e673a7b99032431627dbd294a3a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 45183925c876205ec63d7f0d69cfe1e7c5e910f08b6941cb38128d06d5bfcdf7
MD5 1194cb8edbbe06ae446057ad1a06d569
BLAKE2b-256 53a2fb22e5ce0438ad6e91fe1af25d3bbfe91600274cb8465c4434ebb2e74b5d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 c12ee23ddd8b4daec583a81314fa95c2ddeae2146f347a2fdbfa3d22ba785d22
MD5 30c72a552135703d3f3739f73800b7f2
BLAKE2b-256 8d495ab8bd82b291d60533e4783f52b94fe992342d5c607e89a96eeaee1c169a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 9b17d677f3a2fbb505214affafd2b690a778dce2e7b9ee5cf6cd139129153e26
MD5 e9366c3ad1d287565e0ca84a20f1a284
BLAKE2b-256 b795d4814d59c849135674002a5b50d670b1a05610a0531854e38980c48fa1ac

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 b1efb3c322b42e791ad4882ac981a257962d96d84e3ec945f9550bd58e331406
MD5 d173bf4130225b4387fe1816ffaa5638
BLAKE2b-256 a9363a15b0c75041b602e2df27ce046ba66847fa76e90aa1c2cc2faf2f500e8b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2ec17fec2f98a8a52d3c3e71d6a4a32a018e9d55f3f6c65904277c9ac2e5958
MD5 ac409a902c1fe3ba23b23e05a061ca00
BLAKE2b-256 32d58b634ff8c0f06b7ef0cb8b7194f6a3c31a16e821f6a969783143fef7f09d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 83d7b8b28c0d9b112827bdcd1746a59e9a4c24517558f2cdaa6c38a72125e94e
MD5 ad7baf47a78d70415936c753b1e4216e
BLAKE2b-256 304639078931bc2abbf6701a75f03afdf144eedf8685c87c3eba4a98d684f263

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b2fe683f835f310cfe21f37173d2ec1abd4ef88fad79260f2e1bd9ec259a8e18
MD5 a3190e148d61bcd3fd21847485cc7103
BLAKE2b-256 7a5423a1479176d512e12065e8abd6e5e2e6bb8c1357b04fdb2db4d5e830721c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 61662988b3b1cd7ab6c847eeb44f4c45004ab968e8faa9c2e4de3ed822bed782
MD5 1b5872b2d12a6a3040f36582248dba00
BLAKE2b-256 7261853d8647bc47f78be2e205286a7dbbb4ec5897fa01df9cb6514ca3283da5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 2ce44fa003edcbc0d139abc161a871a9170e9196f3b1fcefe56a36e1060fa3a3
MD5 75608e9969d792d3bade17fdaaf6e2e5
BLAKE2b-256 1c79ff5ccdf2afd3c8469bbfb4c024efe439a8faf95176ddc6a24012c66a3e54

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 50d154a44d4ae43d9511bf11713fb137c8975cf6428c8ef10586acc930a8124f
MD5 5066e22cc986caf347f703a9abf04615
BLAKE2b-256 b888d55d2547167e2cdf04c64aa45535b1e1383f4ce45c54c99a785585e82f04

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 d8514b97ad0bd78f69a613615b3907ea091a244473a0d5d271c4ef4496da9f2c
MD5 2da5d7ac4ebe2f550dfd5e16b0004b8c
BLAKE2b-256 fe0e5b36ad4487c99bfeb4ae21c39d938a517c5a73cc94e309048047739fce13

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 994cfe71109eb076ab5a28afee4462905a35bcf658e461bb2b542370a326ecb5
MD5 83dfd0e36a1adb52b784a780c851fd83
BLAKE2b-256 7a4f71998d66d7caab75c1e32295c2efb3570cdaa591e3adafa46fe3f6d2603a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 47c9bb81636f66c081ae230645d96ba95ab265633a0fd6e099fa7172b2f1c39c
MD5 ee53f3284e0d86790aecac67ec44088b
BLAKE2b-256 c23d7cae5819c9f2c6f2b7b7b45a0c183a6fbd288ef6f0ebac282e65cfda33f8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 0f71846ad908086feffca75e7f5eee3f27ae763064a916bd4c108a050cf86f5f
MD5 7e48e9c5a6cf89769b97f3d1ac82620a
BLAKE2b-256 dd4eda1404357e09833c86da3bd0f4b52908ea79ed0cb0eda05981c5e433d6cd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 f6698ee41767e3d66e6e9bbf1388d633e51120c8e6d9485a4a759b00a3fd5eba
MD5 64101407f7c28d175fe135b7f0e71238
BLAKE2b-256 415bf24000d8d41288ca2536d23d6fceead21bd58afd1722216eafca0d1ba127

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 474b2722338d16fe60c84ea997acef9b5bb9a867f876100ea5e46906abd37a52
MD5 e803b9cf06ae0a2bc3ece7fee0446062
BLAKE2b-256 78fc7dec944709b748fb0bead490ca28db02e215822ea10912bd4d9d6bad3bc0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c3b2c1791580632550ad30ec12529f444af40e8b5c15d58d83038b5bbc9e687
MD5 e75340f97339edea5d301bf1e02c28e9
BLAKE2b-256 c30401822f525541f0e364e1e05b305b833ee9275dc01cc90b4e98067e6f9b6c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3575d1879c8145bf1dee96f66e451e20270d6e0bc2f53749f7dff045f5010bc9
MD5 88db5b7cf953716ff36bdea6f6b9b790
BLAKE2b-256 9e70996959714fafe66453138fabac7e198421a094d6bf9e6e18f2ebd64c4ef6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 85a08bda45767f9661707de988fbdbcc2196741d61797e96d0b09a55ceb60154
MD5 435a3f72c5217449091a3010ea20e96f
BLAKE2b-256 c9ce6c5db6fda8624abc0dbd03babae38caedf11f0e1a9c2b163b5e73ff75f4a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 55e71c7ee7574141c8f45ce6ff4d0ccefd32fa8c6985dd117009b0a5a602df1e
MD5 2a482e36ad425a4342559eefa11a271a
BLAKE2b-256 6700bf2cfc4516ca9fa0e1a310df782289cb096d9402035bcb5bd0c6f457cf6b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 34777302a6ac8856dce91452878dfbd9ba88e34c28cd23bbe38621d74080e644
MD5 1296b6a5a6c807bbe9331e7519c4177b
BLAKE2b-256 5d1efb01eaaf18c745d140a5e9abdbb18bfafc8ec55c1a43d89df1e87a07860f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 8837b5a8c28830e7812acef5a490e3d67d7362d3a8aae64ca69dc9016dbdc9c9
MD5 c529d81060ae6255d8c5fa3d7e73a73a
BLAKE2b-256 4a8e4e8f9c26f43c34daea49e612b3eb835ffbe513b063367211a18c37f27244

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 9e2a2c87ba36e88db709d1cfb4e5a7dcaa4972bf4bbcf250ae8c838c8f2850fe
MD5 d3b91a63254ee2549d7d53a834291f47
BLAKE2b-256 3dae2fb66fb853ab059a51fa08c83fe4cc763806f2a1911643a32eb8e4d841ea

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 435f6b3bc104c2d5e419c79c43b059e2f11712f7807dfda21f9775bb3469049f
MD5 2fd86d8e04abe50a72f123e3fdaf584d
BLAKE2b-256 233bedd50917d37776212582877c9f59658046390a15607bfb5e66cafd48919b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 adc2c13c6ad048bb70348caf6899383edf3e18db6409e88923ed8a5becb7c86e
MD5 c9fab561a53065da0cc2194ef09f1ce4
BLAKE2b-256 016f52c22a17d56aaa1bec5645030d19c5d94b14eba4398853938bb46392c09d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 eb1d72d588b99f95c68465e8b30c3514014b24fb42fa2d40b53c66b509787d08
MD5 3279d23b8051df8ace2eb7affc705670
BLAKE2b-256 0e015449ef5d95cbe607d771e2b566c6a434bb661e4a6ef6162ad5f016261ef2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 7d84e57a9ce58220ffcd1f5a7234b430acde1359c87943e78499ede88df88acd
MD5 26c0fd0e34d7d38dc37bc11fb2058963
BLAKE2b-256 df2bcb7663703794a46e22229e797de3e054214a4235e2822605168b3ca279de

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 58170e16fd59096193389695843a08dafd5b7113b51f77d2839ff0fc28fb7774
MD5 1f21d30bee80b5c20f5f7848a9d02d69
BLAKE2b-256 31576e27f4eae0ba5c5f18d4d631191428876e6a53072c0bbd7cba02751e7e3e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d95eba89a7e532db4a41c6d79234e2a366560de9495556d47255a8e74b3d4dd6
MD5 7f9ac154d6bbd93bbc8894a8a769e323
BLAKE2b-256 f51dc9186669d1ec4228b2c3073495a3e87ba09e4a0a076950fbf707961a9593

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b016bc0c8666506919e6d14b6f2ba4ed7f55c668f581cfe5f8bfee7924a85f97
MD5 3464940dd03ba84654316569ba984915
BLAKE2b-256 38fc72ec4aef1bf9ce6436e9db88b5708a22b7945401bdcfc9603950999ff2df

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 d5dafbe781daf3525cb35dc6debcaede7330fdda0e0172079c88465842c4f0a5
MD5 7b443fa8d752e40fd07096a89ae9b490
BLAKE2b-256 c31cc8c425552431e25d8aa8e23d5129d1f86eff463f7162e0ba3d1cf1f67bf1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 26fcbcb7aabc7fa874d437ac87fbd39479c5578be74eaacddb2661d21baa6131
MD5 c2d6dedc38c9cf40a077acab48f892c0
BLAKE2b-256 06fd05855d286c0fe8e3f757301e5224db8df573c2e72527bb12d0f0a0587369

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a3fc488be184613db836eb25f31a4c0c52dfdaf7525ca6b0b1775f748ba38784
MD5 0ab1fdf9846ae35d94bd8f71007c63a6
BLAKE2b-256 a2a93600f4c5cb7bbb4417f5cdef59e90dc605a11119c418db3fa0b6f52d0b9a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 304b27d3f65397ee08b6973896489f3ded5425888c07aeae2e93e1b4b662b3bc
MD5 0be31530cc9f057ca75461b64a232d07
BLAKE2b-256 2baaae6ae9d4e7190efd51c1cd91faaa2cee19bf517eb7b0e03a74607b89a231

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 58edb7b96e31194d86e7931049afd19716db09ec0c96925d706ae72d9db97672
MD5 ed98cc899e10f43f70cb30d7cdc8d526
BLAKE2b-256 1d36f635099d3f8ac9bc4204f64d95bab43bcc120e37f6e775747180b8f17949

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 de601d045315b5cf0810914b288a511117e64472cfae4150b353801b04f3314e
MD5 bc58179246d035d7108c28312b46da63
BLAKE2b-256 b843ea58f47498bde87152b475bd45c7dba39c0e2f0fa74e804cb9d832a4f86f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 91794eb2ac538ed2579e5d906a0f3660e1d91905c1145ac14f1cc4df7370b0fd
MD5 a171d0e8907b8b989c624dc163b7cfb9
BLAKE2b-256 ba0f5fd80808a41dd7c6c7c4c5a6aa0eda52abce9535e734fc3358300e7333ce

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 aa7a4c8f70abe2761c7b0ac0f9341659625b565776e0d013fc88bf4fe28bac21
MD5 1e35264c5987484b19b893a0fa4cf67e
BLAKE2b-256 24b3dc936883ec8dd05ddd36ff56c9d5f675da015334fd0e93c4f5dd8052a11f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 a6d8e108874d45eaccfebfe467eb18bc9b10b16c791074747c32d1e5e9d40e2f
MD5 36613c0cfae3b19c0ad4c4ecaf6001b3
BLAKE2b-256 425e6064e1de4d348556a9994edc433192cc0c9f2c93189bb82870b5122ddfa5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 90e016be152b598d92329ff28be120eb19cd8784967b64bd5c2d4df3f4f96e36
MD5 259ee2df80d3495d13abb051fb0489f3
BLAKE2b-256 0a1796ec6fa3e68a5669f77577e06e70d4ed55da224906d9a86b97b7f39091e1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17a3c79b70b917e9cf434cdb9cff8c389b647656ee261ef698b2b162439123d8
MD5 289a862e7b16482aba8103f9b09400b4
BLAKE2b-256 ca7320ac1109d5bb5f50583bcedfcb84efa1288100ccce944fef7ed2297017a0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 89b517f53aa2d1698c1723c36d47dc554fead7aa832ae9453cc411db9389545d
MD5 c0bd88a8fc571d94a416f00829e98b07
BLAKE2b-256 9a4b18239844606c42404e3011110379270133fa8c52430d4bae6fb73085f41e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f4006ff8a474c46b7d0788f76dad7d7bb26fdd8c2234c56185c84d137581a9ec
MD5 a2ac7661caf388a6b851d7210bde6f3a
BLAKE2b-256 b6445d5e975527971f8462c6a30d833854f5e265cdd57796eb7499671867d1c1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aff883831708c4bff0a6887b0870a6751573fc4e646f790d5172e82399db2430
MD5 825a1a50672ba52602d52b35c610c770
BLAKE2b-256 e0d08ac938445ae22f92059775a330d91d98704bb1071744eb76ea790ded9f39

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 eed83bbd72358fd1bfa9de5d0ba681042105a67729671ea86367b70bd773e00d
MD5 68db7c799ffa63c20bf3e338aa407b03
BLAKE2b-256 3b3617469455dfba410ebc981f1f99d9dace5149fc516fdc498909db9e2c3437

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page