Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError

v = SchemaValidator({
    'type': 'typed-dict',
    'fields': {
        'name': {
            'schema': {
                'type': 'str',
            },
        },
        'age': {
            'schema': {
                'type': 'int',
                'ge': 18,
            },
        },
        'is_developer': {
            'schema': {
                'type': 'default',
                'schema': {'type': 'bool'},
                'default': True,
            }
        },
    },
})

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.11.1.tar.gz (237.0 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.11.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.11.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.11.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.11.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.11.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.11.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.11.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.11.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.11.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.11.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.11.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.11.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.11.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.11.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.11.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.11.1-cp311-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.11.1-cp311-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.11.1-cp311-cp311-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.11.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.11.1-cp311-cp311-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.11.1-cp311-cp311-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.11.1-cp311-cp311-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.11.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.11.1-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.11.1-cp311-cp311-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.11.1-cp310-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.11.1-cp310-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.11.1-cp310-cp310-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.11.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.11.1-cp310-cp310-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.11.1-cp310-cp310-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.11.1-cp310-cp310-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.11.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.11.1-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.11.1-cp310-cp310-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.11.1-cp39-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.11.1-cp39-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.11.1-cp39-cp39-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.11.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.11.1-cp39-cp39-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.11.1-cp39-cp39-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.11.1-cp39-cp39-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.11.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.11.1-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.11.1-cp39-cp39-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.11.1-cp38-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.11.1-cp38-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.11.1-cp38-cp38-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.11.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.11.1-cp38-cp38-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.11.1-cp38-cp38-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.11.1-cp38-cp38-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.11.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.11.1-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.11.1-cp38-cp38-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.11.1-cp37-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.11.1-cp37-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.11.1-cp37-cp37m-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.11.1-cp37-cp37m-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.11.1-cp37-cp37m-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.11.1-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.11.1-cp37-cp37m-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.11.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.11.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.11.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.11.1-cp37-cp37m-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.11.1-cp37-cp37m-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.11.1.tar.gz.

File metadata

  • Download URL: pydantic_core-0.11.1.tar.gz
  • Upload date:
  • Size: 237.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for pydantic_core-0.11.1.tar.gz
Algorithm Hash digest
SHA256 e1e72ba09e743ba0be0c0e4b0aa764f45f568ebdcf668875bf8b206287bf59e6
MD5 b0798e5525b73aac76c60a828a4cd162
BLAKE2b-256 7a54ac95d0dfb3ac81bd4e9ecd3100e63ce8835ae88745d1736ecfa8375f3d19

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 16778aa9640befcffde0f097a333f6cd7a5c34eeed9a2236b62e5274512c34d2
MD5 a068d841386662e3b542498896ed158b
BLAKE2b-256 8202962231a1fc7cdf71f05729eaf6b700215092e51cacd6640c38da91ccf11e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d19397a1043e358064f8349eeeb6f486d0867e9063721934a2a6df3c94879e2b
MD5 b721f96b94f0c449a7f670c9b465a674
BLAKE2b-256 fcedb975466b4326ef62de9c6c21296c33052a6b56b450a559ef876ade99f9f3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fad49ec1e344e271cde902927ec15dcba018fcd74f94e1b14843ca540997a7b8
MD5 cb1785b53b1c4a870ce53090d1b9e08f
BLAKE2b-256 478ace49b663fb4f86bffdb0c0a6e03bfbbea7d1d3deaf517e6a1a2597cc3ffe

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4d8a998835f65f6925c6c6751d9f1cbd8fbbeda5846d6e6b5d11af4af734728a
MD5 b61383a5681ca272b09bd81c9c112c7f
BLAKE2b-256 2c1e93f71c3a3b7bf7ca339bdfa54422440b4ab33e076090095d215ddbf933f7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7d4a2bd32f7fee467dc7199a73c1036fc4eb3d0d9656299c474d3d2d5c52654a
MD5 2e7c502887b3cdcf5f68d77d8667996b
BLAKE2b-256 28f35fa00f5903d368e4dd34dd5925842e0b2198f7db8c782ebe0bd42b047933

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f2d721df40a507b3f2d0af831295803462a155f409133101827a13dba443b196
MD5 6f1ced0fc2b71103d85a208c03e069a0
BLAKE2b-256 4fc3954ed1f1ea97c97ab1679ab91a3218bef3d168584ef272ebc1a72eb712b7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 483da50ce6c23be112e5a3a1449b80a812bcd05562636f0fa7f6a929db61cd34
MD5 85cb28f8b2961b88eba34c23e13fdabf
BLAKE2b-256 b93be3b755a60ac3841acc3e86efa57acfe1684eeb3ce79a44daead40f79b097

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 534ade680c092c451f8c3dab5610fc15b180e5ab41e34ecbd2cf88becd80baa7
MD5 b8073f7948e45d50bee94c57f07d6289
BLAKE2b-256 28a274919ee11b8b05750131f713cfc11fe9c9b04b6665c98752f619ec4ba885

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 61cea2d1a9a40eb19d22e23288e3fec8a3ee4da95f2df61243e46addd6a3a3fc
MD5 a91c8b9556bf7b51b9404b1401efc12c
BLAKE2b-256 30052e16fc374f491f412e909a6a9b67fb85c684f3e4da603dba6458ab577436

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 44b0a15e5de70acb146209f1bb8120f110a8faf1fe113694a734efe6908d575a
MD5 ae8c65cd1a0a7107b5c2a25786410294
BLAKE2b-256 d5f230b767828280d6e3c95fd9e4c0e71bdbfed1b7bf8aa259656f491fdef0f3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 25428fe814195e43c3452e33d57d2625c642820aab97a5d3aecca6bac51746a5
MD5 f9e3221e413d9e6de9220b5d7cf16cc5
BLAKE2b-256 a7dd6534e32280ab5eb953723aae62cc6d8b6eb645cf46349e3f70e56d67c760

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 051dae931bc8647784c9970bc680e856ebf94ca80d2b883de17a62e2ff2675a4
MD5 b8ea5bbd830ffdb3482ee260b9027172
BLAKE2b-256 60f58b8a3c1b1c3b9f7eab7edb5b268b74b086b39e742c531e899085ba737cbc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ddd2cc617822fce2bbc3c8d916fe410c64b0cf8b9abf7972c05e72281e28ddd5
MD5 1ee99910a652b6586cb8b657ab6c8712
BLAKE2b-256 031fe781eade7576830ff9700174c92025c1f09207e6ddef25df7cc9d7e4f5cc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ca7ba11a3d78d2610998e6d94a99c658e71039d5c4cbf63b9c197d7f6f2df884
MD5 b7f27d8732ca2725666f48d03084a306
BLAKE2b-256 0cc18056feed0470a689285af467308d56232e05e55002e4f223022e92c89875

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fbfa5e676b9fe8fb14d8a8974dd08c6b0e96dc72b60ac88e67fc08b0597a3779
MD5 50232ecdfc279b398bad79f457548bd9
BLAKE2b-256 2089d214252d46cda28e1aa001d76f064c81bf27f6cc7d8846fb540a568520fa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 beeb1fac0857af5c258aae8d1022b68acc334e70c4a863c0765ce20cadc48861
MD5 1ce7b3544478a9ba5e1e245ff3cc8771
BLAKE2b-256 3ddb2cfb52c2464338686d7cdf784e8b783edfc908a212e373f2f4561ae49b5c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 79f895fcb2e2850c72c329f9eba7ba5f85aa2f9bd65139123b1f58cd76468eaf
MD5 aa00dc4f6d28f091eb3722ceb5547eb9
BLAKE2b-256 7dafc817bf5f76387338a727a5e0e19b5216bb7ca4ee80be0b22a567252adc23

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d19a2e3c2b429a9b7bd05acf6b61fc5357999549867e6b3e3a239868f68e05bb
MD5 2b7a44f31881886d4636277b991d0c85
BLAKE2b-256 933a10b11725c306b8b5799e702ed6a1b54ec536611c715b215b4123488fa513

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 432b827203ffb2a52380ada893aa443bb543b6a094cc6dac87e0cb04982f34a1
MD5 c34a7608c389a242385648bf0d4e328e
BLAKE2b-256 c3d1f444343f4b63f7ad1b1475f382354c8230231738609d9d6f30966866893b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 1a77d6bb6d1acf96e1870ec19f68c6359924e5555e3d3479130a187c1b866d13
MD5 674f946702135b51df78b21fd6d5c5b9
BLAKE2b-256 29616a1bc8eb5f15f6a303b030694589ef8a168016ac27754703a91bbfa35788

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d1f869f55a058aa9da5d4a829b6120675ed701112564cc29425a587bc2a9b51f
MD5 c5578324a4bb3464a00bbcf2b691a0b3
BLAKE2b-256 2593fa8f0c3254c88e5177d842da2a017023cfe8af48148334f0c58395681010

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ad96c8d3a932a9143b6e0b7bf44469a3e5ce41101a9e7b24f90e0af7ed64e0f1
MD5 8278230317f54d50409986f8cd9d1e21
BLAKE2b-256 be86b2f741449ae1f818558bf19993bad7e18732a22f467f2fa6b129eb58243b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 f7f8b99b3498ab848e3a813447f97b70181a123274d6d0a46f68652fc277b7dc
MD5 d99f6fd103e10c520bfb5a19c966bc99
BLAKE2b-256 d22303d3060d1bdccc3e9bf8e695b3a64ac71f6e821a226981104b674d9156e1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 db4ea11970cd39812464bbc98c995f0512f34c9a14c339b11c6520cac0420d46
MD5 e2c555561b6d61943ac7d22a4f6509bc
BLAKE2b-256 2c0a1aaa4942d01e6cd17ecaa353eadce7284ec4e648298325ac0952c7adc617

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 5e94259712577d9be40271af5eac08f8e794e4bb20199faff32b6ec2392ae412
MD5 080be6872748bfe7633ef63d53422558
BLAKE2b-256 33915e1dd24fd7fd11ed162374783c1db597b30f901cd2982297144d8f0a9979

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f136948880c28ff3b1e450c21401e2b1482946f218f9d6fd588162d27ed62f5
MD5 cd9099f2196519682a680b0b2dd7217e
BLAKE2b-256 00fb2d329ab5e6535c67cb644f2819b0ed44bc9dfc04b97dd589487e26903fca

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 96895aa7f54c086edb7f7818eb7f5e769f03f459797337208bcb23980ac32ce3
MD5 a807abca7a3e5285065c7b21864d3dec
BLAKE2b-256 ba3126c09e3f8aa0d7cb3d1d236fa05d4db954fd1476457076912eefcfa66dd2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 bed0257a6c1b153d64bf8bd4c45334e9b56f69c903c1c3afcfa7c8677174baea
MD5 46b3c1b71c0cd20c9a8fb2a5709785d2
BLAKE2b-256 3f75a0d70d59cd89e22869c2fcea0c1ed24a9a267eab0ea944039429129aa41e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 45612c289e9c2afc671acc2d5f94ee8c4a9cac4f792d51862e1de63a78ecf8e2
MD5 7a0fb959fd175e569fc0024dbbea15b8
BLAKE2b-256 d8b08a1fdbbc8b190f6ab3d4d5f37587fe8d3ae5fcc84c1f88bef223c2772679

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 c1e60b64e517bafd85fe5df0275bef18125dbf1e9f98b47511ad827160e5a7b6
MD5 23e0f968c5b243caf0c1bb356bffbe97
BLAKE2b-256 4f635ac2170ce6134f38b1cbb8d22cb6e9476be747b37b31a1113cdb90846186

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 375bc794c756623f119251cc1c9ad7d8a2301db19de3c8b9b3a02a38899ab4ad
MD5 32e62f283672f0963a28a81a02ea4597
BLAKE2b-256 72f7fbcdddd8efc73be0d3dc089c6d714689663a55ae4906978e33a5ad78b6b7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 7d10d512195169951e1c5362b08a2dc39ccd7b41aff5958df5f4f12b19f3d98f
MD5 f2e50a502c6713a2e978fcf563394c60
BLAKE2b-256 ef99d453b778588e90a98eb543314f584e1fee48d04257416c19051b157d4cdb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 202485c9337100d7f19483bbf859634f0977d149a0aeba52ac400dc7ec3c2073
MD5 3a643a82f30779476ba0d68c7ec98cb5
BLAKE2b-256 7f511b953c262f59f12eae14ddd258f871677c4b0f64bca5d8db7cebeb47840e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 6c70c986dc690c39a30464eb589ccafb64ab80b7ecfa212ddf9d516ccf73ecf9
MD5 deba78952f04fef21662d2c6ee8ca90d
BLAKE2b-256 19693650a7dd5f3acca4b66632743fb28166a9adc4fb7d99932ca4c3e03cb69b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 816f18d9a2d5ed28082026ea8c0a55395e8c2d773743b18414b892461236aeb9
MD5 ef139cc65ad5b837fdcf2f380c720b0a
BLAKE2b-256 ddf167de8d30e826c3f794b0a12ed29840598a525e117d0b5e873acce0274f60

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 456fa5db635d2f8f946b66fac9c679edc06adb0a91f3c874a4b7caa8d5ebf783
MD5 c8662c32bffbb7fb859d0f331cb604c8
BLAKE2b-256 68b55393b583db52318d96b4b82d943f25ca06f07b6bdfe73dec9fcda1e85bf7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 1e9a9120489e3b4a71d0b0ee657e481be406f439ccaf9b46e8c298730721e1f7
MD5 00cd86db898670d103e820c6bf4ef5c6
BLAKE2b-256 b9f68ddaa98cec18bf1de34a11540d15ef1e7dbf2e3cfbe59bb48e95395b59be

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c1121335ff57ad86e7b047f58b306323678255e68a63e057ef0f1201d24f42b2
MD5 ea88df79c64a66e1f38b37381f51a875
BLAKE2b-256 d74ac1c46174fec824561bf84fe2862240c6b7a5d0389a0f689254bc2436296e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ac402f8402c35681182ad940b1974720b3e7e98dbe6e78b6ca0944f0790eecf
MD5 447a1bc927729caa5886785bcaf0df45
BLAKE2b-256 83b94ac975cecbc14dac633e8bbf62ae36a90a4549a56a8ceab918db2561283b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c0d76a6dc29a84b8c7f2cd55408a32ab2fcb49578ccc89fdc2a172a2929bec51
MD5 7cbd9ece089a0e390f2b79e84832e947
BLAKE2b-256 6d4e60aa3f1128728200bf218cdb54c83017493dc58a3339e2b5dc700afef8cb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 241cce8ece3a23539a37b1ab55ee327d67996b67c6948da2134f3c9a0011490f
MD5 59e41bddb4e2d685cd25c77d27b31d3d
BLAKE2b-256 df2171de43bffdee79b077927d5a0db109ac92979ed1625e814352d5c943b1e6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ef26649b73e264599e21b74af82cf6c6168d7f2245f2fa7db67c8abc815be6f3
MD5 3d5e86cf9a3045838ca7ab579a9fd6ac
BLAKE2b-256 74cef1056cf158b0f2a0867e7785424977b2b23ac0743f3685d45420f2fa32b2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 7f9fd4bab57d2c47738b0d5774fe476e396ed289384d7e88343ce71bc3b8bf5e
MD5 9ce42236a2efeade12cf218b2872d8ac
BLAKE2b-256 3d75df731d35302f667941147a517c808dd5060db0f1015dcce286151e6e1550

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 c34ba3fe2344d102c8528227d835d24bcc0238c9ebc3c438074f59efeac16604
MD5 c1e30641c17c8b062ba68b6a506af276
BLAKE2b-256 cd2222917942d24d697999aa3e57e00bc97510f65f6b8b101daef045a5baff05

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8d5c49d8a9da60b47edea447cf95a33848a55f323b9649bb305739524d3ca03f
MD5 3eaddbfaa352b472e18998773991d590
BLAKE2b-256 abe753562cc98285c4ab32d25cb8dd11b46e08c122a7cf220e65b98a178fed66

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4394df780b6eceb0ba4841b96bf4729e8e1d9b908100186f5cc6bc57ab4a84b2
MD5 87e60b2a55d9e3060b88ef3137073e59
BLAKE2b-256 ff1b27d9b0171464415c6dba10bbb5ae170405bfe522337c854167b283282157

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 7d6ea3cc9b963b0c54a37689d75b7f53830cef0cd8bdf288cd4bb6e4df858143
MD5 bb3bac83b0992e5b00bfe4d197d9fa63
BLAKE2b-256 7d62511134d694ce9cb41d705453be059c0b5e8ba5d340352cb40208b0ee19bc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 6b1869270f3f2f2476c241662fb17aeb8cc5d4a8aeb98f1bd0391c6850d2411e
MD5 5e3a99bd4f3141a57b0fa66bffd7c65b
BLAKE2b-256 00ae0e10d3db03afb1d1e74ad8f649a345df3294d40c2285bcfa3c570e6ac7b4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 7d42cd3b489c70825953ae4102659727719f4bec355cfc996513658e17b3710f
MD5 b990c72dd517f8fdae161753d4fc5974
BLAKE2b-256 14e28e5eb20b2cbde7eb26b106900d2341a8888612c1be54ed3c194209638bf3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 afb4e30b4f6a43303cf3fc8c297c17078e884ef69c477bcdd7f722a245e80b58
MD5 9da6d43dfbe688bbc417eb81612e5946
BLAKE2b-256 9d1bf47dbc4f14234d774f5cf6ec39bc22a718910a887063d0cc8702ccc3ad3a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c1ef8dca05f2824ac54b9381d9af37d9641348f80a4c1028eecfd1378140d7d8
MD5 6c7d4b25629c9bc9b88be92010a9a3ab
BLAKE2b-256 a0e070ddd26f9f4fccffb126ab4b2c650ed35b147361a6f956c6e3d5af263eda

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b626edac6dea9e756f608ea9a1b3d1f3eb5f74046d67fced9e265606ba21bc74
MD5 7b42d380b2087501a0b31d6bedf446f5
BLAKE2b-256 d55a2fdd4afb34885c4b7a4f637ab26866b9de6e01e3ef9dbe9ed1c1434e74fa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 153e0d7e49cc3582b4bf4061dbd57d9d21037cbf6d9d873501cfa98c9c0b9551
MD5 26aa482dcfeb10dcffd4c33ab5607e45
BLAKE2b-256 5bbb7a5e78a28bfa6986567f3637cfddbbefd93f006d81d11785665f5cc15433

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 c8bcc9a88df21ae234178b7bc537f29a571e67f1c229d60a76e2561b800d5cdf
MD5 ad4572a4adeeb43987dd79fe4aa23f54
BLAKE2b-256 4d3ad6e20025d968cf78d0e880dc894cb66977c6be12c22698067547b9bf7241

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 a95b24b9f7990506fe1578483f1d971e4cd909e843e803096c3cdbee7835da60
MD5 315dff8b5ba032027104c1388e7a8ff8
BLAKE2b-256 646ba9f956e8bdc9ac30de25854388cb934da7024fb2b0a555d39fd62151cec7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 a6fb44089c95f2687c8b44d20895cea290b225f18c9bdc607998bb94a2329349
MD5 64f6380ac15cf63925381428a0841592
BLAKE2b-256 17ced99e6faae9deb68c86acdc9dc156e8325cba7f622920fabbcc1ade37867a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0eb58f3da888910e30bfc229507aefa72f44682e5a77c2f620116f59132a7399
MD5 d0e70240e72f83814600af447a66fdc8
BLAKE2b-256 964d2947a3fe68370ef99d58fe9dfb7c2f86f0f830b500c01d568617948d70f6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 dcb8bea85513f8d268e95aca3d45c71ec8a14a55919c2c5b4b7221c279dc66e9
MD5 1f470ed79189bd124b9e144a479eabe2
BLAKE2b-256 2aa27a178e807c768c731841df3391703b7ea15a4d72707e832ae2e4199e0ea0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 67b7db3ab88f2a8e9a55f87f6025a68fc6d698612d2dfd0690eb21e4b08e58f7
MD5 b7b91069117ca1afb73164dfe9c32530
BLAKE2b-256 50c8458afa53087388798cd6327d66e48f326000ea35edd9ce0b717cb273b176

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 5a060bc7d36f357ee1e6ab419919c4e4f7a8ea6ab5032ff3001ae969d2289ad0
MD5 cc942aacf0da3678c3ccd56c41004797
BLAKE2b-256 549b8b85453c9eb0a0499745f6519286ba974eb7acc89cbcaf4bd7a5dbb2d44d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 e3e255ba251176b28aa14e8977012bb01e512a7568793491d61d52e573549f0a
MD5 7de83d1bff1d3ac4c41abf6afad71436
BLAKE2b-256 218555b1d07a544f4843bc15d7dac32781606395d5c74b2c1de8ae69ba24bdda

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c772c0ed67b4fe8962343fe340ef3646c2df4eef99f6368752f76b43b0d60fde
MD5 7605dc4d1484edb87332834fc31c3604
BLAKE2b-256 23446e9331d800902255d68d7ae40dce727e56b2094f2d2af94f5063c980c396

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f5ed17f9757820d887116d9130bdf106794e018d3220cf9049d6a9cc04e9c859
MD5 d843a9bc0f03b3897cf14915d4f5c74d
BLAKE2b-256 e9d6742ec40dc418136c2ec52a09df7652c36956456d335bfe22054bdd599424

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b6b0199cbc34e197a9303937fd5e9cf9b97259f3c4e3fcaae1019f143d83d772
MD5 7451990f88cdc646b42872d2d853b301
BLAKE2b-256 5532fb03f6fa5b185df9915327c5dee38f37a5770058cfd9680764b0bcc02327

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6449ed2896b64a5cd5bed45535f720d63efd401cfc22b2e7e33ef5abfeb9b0c6
MD5 c36309cd23fa8177e510832f28f837a8
BLAKE2b-256 ff0d3e91343d3c17c737a129cca4db04ac7f34246b7660fce1d45a2f069379fd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 76bfb66e0b577af9456b7d865658212e3742d273120c110d3b68ddb767569cd0
MD5 31a8ae9c859e9bab51148ebcfcbc82a6
BLAKE2b-256 eca753b6369d1d9c1ee8c75ba58e933f66575347898863045edfd88472147e3c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 c341b4adc6579abe34c8758a5c81f04285e07e4b6706a75359ce7af7443816aa
MD5 7b332c7c7a36d77fcb690e41309c9f3b
BLAKE2b-256 dad341dbe58eb82cac9b96ba3d042cdd8eae87db019cb8b4600270009c0f7939

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 547923f8a9633f50be33f679bb5027a0e3c23e2009659029562b4f639de87b49
MD5 015998c1373251f0ca9a1f05a200cca5
BLAKE2b-256 d4f5a56d5b0ffebfe557fd21871155a5f713ac3d5d0c39a29e303e6e67316115

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b7c3cc18f68105d018562ace8a0994f89e59a53259ce6f0f83f25bc256cd6e16
MD5 2cee50ab9c5eb97612b8e34b195b4c28
BLAKE2b-256 1271702985918f9322712b9fdd767b19bf467a5a76f67097422a3642c287a4b6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4516cb75578bc1c159e99891811846c2563b9b932401dac61a2bffac27bcaed9
MD5 49fc4627b88ac544fd55ecb816b998c1
BLAKE2b-256 6355aeb98c3cedcf74b23af7bb0a21c274c89ee525b049d6e08a86a5e7f057a1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 a6b0fff540e233201bed68eba8b1d935db4ee083929fb4ea79b7799c91d3d12b
MD5 76255397b94d1af03d78797b322295b4
BLAKE2b-256 b176631a0ee09d83b90eeb9450f77c21ee5870262af1efc072c7704cf7dfc9df

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 3806f4a5242e03359b5428d8a2a25daf1bc19bd9c26fbcfedd74159c5c3deab9
MD5 68bee871f7865045fa164d7c18542ccc
BLAKE2b-256 ef4d65c7492ac9b1268de869951e3a37ae061676f527fd4cae7932228449efd7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 65b0e30549100bf0e1b7f246a032505fdc0a14dbcc2bea87802a33e7764cbb6e
MD5 a01be60c6e193195efa72c094e31f3a4
BLAKE2b-256 74b6b0b6056e568e9404207d351f0e31b55742929511d3e73163fa8f253a9b3e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08b3b4b27d4c1fe251135df2b7d0041315460535a10a4210267e47c4cb463d5d
MD5 96994e187a8b29a321500cc511174b6b
BLAKE2b-256 3529dd907ce11c13766ea7e7fb2eee584896b63047a03e9a4e26babcf499075e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 18b9565627e344482e8fa03c4a4beafd5824659c549cc63991dfb67c1f7725ed
MD5 f550138b1b6d0c50e308c20d92380e9e
BLAKE2b-256 4bbee7a098bfffc3ea9caec33bea5ca0f2ceb8a318988557245737c1d9f97f67

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9319b9c60498a581d1bb98e97b02778f9198ffbfc85fb9caa164c16d55c48cbb
MD5 a9e60c959cff53ce832c04a9ed44114f
BLAKE2b-256 c9be8da5b7e83bfdda65d4cd3ab803a86b4ffcf0ccd93275d775fb71169585ab

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1d48e7e834c48083fe94a2b308f1bc341ca1f1805bcbd6e9977f24d0987a81b6
MD5 7737f6e7b7ae4337100263e34e1ada4b
BLAKE2b-256 cc709746b8c44a28215f57030157e7214e9f913511322820a91d2b7bd7a0845d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.11.1-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.11.1-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8149b646c1edb26501e5fec05c104a5be82cff57b9e53986f89821ef070fc6b1
MD5 26d71dacd6a7cc5b423ddc4dd041b180
BLAKE2b-256 0a8d1decfcf84c09999f60727ea808618ea22b4816e898183582cc4195db4978

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page