Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError

v = SchemaValidator({
    'type': 'typed-dict',
    'fields': {
        'name': {
            'schema': {
                'type': 'str',
            },
        },
        'age': {
            'schema': {
                'type': 'int',
                'ge': 18,
            },
        },
        'is_developer': {
            'schema': {
                'type': 'default',
                'schema': {'type': 'bool'},
                'default': True,
            }
        },
    },
})

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.12.1.tar.gz (237.1 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.12.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.12.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.12.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.12.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.12.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.12.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.12.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.12.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.12.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.12.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.12.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.12.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.12.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.12.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.12.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.12.1-cp311-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.12.1-cp311-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.12.1-cp311-cp311-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.12.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.12.1-cp311-cp311-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.12.1-cp311-cp311-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.12.1-cp311-cp311-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.12.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.12.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.12.1-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.12.1-cp311-cp311-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.12.1-cp310-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.12.1-cp310-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.12.1-cp310-cp310-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.12.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.12.1-cp310-cp310-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.12.1-cp310-cp310-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.12.1-cp310-cp310-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.12.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.12.1-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.12.1-cp310-cp310-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.12.1-cp39-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.12.1-cp39-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.12.1-cp39-cp39-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.12.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.12.1-cp39-cp39-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.12.1-cp39-cp39-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.12.1-cp39-cp39-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.12.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.12.1-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.12.1-cp39-cp39-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.12.1-cp38-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.12.1-cp38-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.12.1-cp38-cp38-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.12.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.12.1-cp38-cp38-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.12.1-cp38-cp38-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.12.1-cp38-cp38-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.12.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.12.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.12.1-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.12.1-cp38-cp38-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.12.1-cp37-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.12.1-cp37-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.12.1-cp37-cp37m-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.12.1-cp37-cp37m-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.12.1-cp37-cp37m-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.12.1-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.12.1-cp37-cp37m-manylinux_2_24_armv7l.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.12.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.12.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.12.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.12.1-cp37-cp37m-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.12.1-cp37-cp37m-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.12.1.tar.gz.

File metadata

  • Download URL: pydantic_core-0.12.1.tar.gz
  • Upload date:
  • Size: 237.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for pydantic_core-0.12.1.tar.gz
Algorithm Hash digest
SHA256 b29b3c48fad081b842f86f0399fb51e11155029ad6e0ee66515b1d710b3744d1
MD5 4c14b4ec3a5ad1f7f8c7ce796e7be119
BLAKE2b-256 abdee2e937eae04f1f6b0cfc6950a79de04233c6665449a05529d72c98566483

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f300b0b4b99e6e80dc2568ab020e9ea4e56304d60ca099c8b963d239f7588ef7
MD5 921f82a870e7c388d3643be906f44a90
BLAKE2b-256 c4b95cb21f1c6c0bea102bd05322bfd47fcdd72033a7ceeefc9941e24834b846

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ea75cc8c265d73d6cebc2d857f2f3571a574b162054903d8066a0f8c1b9abebb
MD5 7e5320b225fd9206de91497e477c0ddd
BLAKE2b-256 cc5a35b98a7b503f5a58691d39e3325c81776118246d75f96b332c569a3b83dc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 851f302f397b4cf3db86ff654d1105f0cdecc80543c78bcd8cfcc86d49e6a9c1
MD5 a5a912b8fb9dca34b3f0637ac29ef0a2
BLAKE2b-256 2a8343552ce3fc207fbfa1e409ece5a6b200cad717ef14748e7807f289643e61

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 33ac8a103dbc8fd80f299697fa266180ff959f5650495a500a27fc6bf72ed3c0
MD5 ff3e570cde3ec158ccbd2aa15fbe7896
BLAKE2b-256 d1e95ef95c93915a1103b985682d8df3270ff21d6d5882650372d5525c5772f1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 bffa831d3286e2cffda850c29273b86a9309f6e50e8620dbff9969fb5a60a870
MD5 f2ff9a57a996b2682bdf408917cf69d8
BLAKE2b-256 ca318f89764c7fb3c5f287308d075201d2d19f701d8fe25ca3cd9c818836e597

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6801665ef3db8063739b9f35039a8b44cad5373b3d97e8ec9d9905285a250586
MD5 a0603f112073c2d586fa07851a21c4ad
BLAKE2b-256 99a39caee33a29e8362c8e73db81f10f94a13cf2165c6031a98b0c5c44f634a0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 541a134a1b7aea3ba57693dab6c66ab7e9f57c1f4b126ae86e4b62e6ed67a057
MD5 35604ace6a35a1a89f49f72f66649dff
BLAKE2b-256 ca8ae9d1c2daa9503a6c5520fa550b906b122a212e1ab9322799372f51a94b4a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ae731e49ca6f86ae92919f38aee8967ecebf50366d9c2805ed91b6f22e588dcd
MD5 df3e2a25751a79fc3c4487e6636a5e0b
BLAKE2b-256 5b464fb7b50a2aae2424feb9c79c189095973e4ad70a56989ef85e1987ed2e86

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9d0e9836707cd44c18a1102ad90571fa82ea45ad5c11d4b173ae82801efdae6
MD5 825d3a72702bd5f1375d702cdad07f39
BLAKE2b-256 46f3eb14eb869cd38d5ac37273337d1936cd80a27b270428f210e4c7c3b4a11a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5c3218b43883a855bfaed15896a574ffc5a57972a393f54df58f2face8c0b045
MD5 7ccaa259c04fe70d0c4385c786fb6b44
BLAKE2b-256 2b9befaf36170eda570b29a0dfe66623162bb9afc1bfba11c890d860a6d29a39

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 d3a42d392d405add882f4245906c38312ff136073029d2f460f761cfde01e71d
MD5 7fd5c14dcafb7446021225b4c5577be7
BLAKE2b-256 c533c29dd28223f014ee413557db285fb348d5c8cc064b2690a8f5ac30578b31

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 98656eedab7606698e791d83bb46f74fc8191240286d44d6902b353524a74baf
MD5 8e38205c98fdb256a4087646426968bd
BLAKE2b-256 7ff97ce0bea91ec4595484239d079dc63fe3c844179ef38025aa635af8813a55

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4acb6026e18e0a169f863276f047491bf7daeb80ead5545ac69130f9285e417c
MD5 ec87385096183f9f6662ab164f53ba83
BLAKE2b-256 8c9d2f9bf50791ea82d73320207142fdae764b6aa21f9d1b02532c09a94bac6a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0cf0a7aeef5ca8ffcbfe93bd0f7744c5b41029e0040c20e7cf5f6764209049c1
MD5 50a131d6c3c8605e349e5815bbdb5875
BLAKE2b-256 38005a68d535f7499b329cb4a9e2cb3548e05db8aa72fa0cd66693e5a249c587

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a8c6c5fb42a7b2e1d6a3b6975fad88d7228f35bff244aaf866515469c4ee04b
MD5 8aa13879fac86fafc57e28b7a8087184
BLAKE2b-256 67cba059da755fcf458d3ba16d12f769b09b285ff64643afa1165067b5c2820e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9477b55783fdc67061a14dc5faff6fc2cd4b7163d58b9a6cbaf6886e8a686b1d
MD5 ae02de3ad9bbabb9272bb3d06bbe09d0
BLAKE2b-256 9aa04feb33c5886f415b84c2e86b1779ed7e98a152d9a2b4850307a2261e9cc4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 16f7c1c8aac3d0f186927a9f2cd2b53207d118d2c2324fecc44d829e90316dc3
MD5 bd4efe3f5b8e107315c83e88e887213c
BLAKE2b-256 7cdf9707ea55500e8bc99dd836c2eb4c399df12a7819dc4ee7c0336beeb5ffba

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e2daa3f27347b7b3a8b182bb44a866a58c7906675fd784664508f0b7f6536cae
MD5 1f75c93dfd85d737dccaa567a45ac46b
BLAKE2b-256 cc844badbc06bd2cd884c8188d0dfbdcf8967716e3043ea0193677780deef69c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 0a33d89d7f4154c5326809244030921aaf319e123f685ab8477147ca772a8ea9
MD5 b661853c0e8205c14ef11cf503f9d8c6
BLAKE2b-256 1aa435cf3f67b670d5ffcf02b0b64ef4a66ebec76a9d7a88c3c154c6d70049aa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 3f6dfe9fa21f772da3aac99debdbee6c4e0a6dafe19eb665d69c7b0b5468560a
MD5 2a04eb0cada4ecf2be1ebb60b8947003
BLAKE2b-256 b12a8cd6024c6c7edcafa14cdc76ee666a9409621987050f25d5ec11bc378221

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1a16566f8f47a8863d13344654b8ffe891e47e425281e9d987d0dd478249811a
MD5 fa565e0db7d6cf58ac93ef531b474150
BLAKE2b-256 f4f181790e62c994b440f82d30ac5445f8870ca72a3ab305f22d4432220b6d97

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 482331692ed1efb7e2b9df0de0f3fced0b811a30d1e71a4cd51c3f30a1fb8278
MD5 3f46e8372e90f1e47ebd01b049c75c7b
BLAKE2b-256 b5522d17c44a7ca35349ffd9cd435c6de09d3d630e2d40e08f9583aeadd0c231

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 219a46b9a9868bc5bed19eec1c2920d0ec81ca081aae58e018fe8904503966a4
MD5 a4dd51f3c57780a531a458a98273f200
BLAKE2b-256 525ec00c51787282e14d9f5fd68e49d63d26383aeed70a8451d09d196eb0a1c1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 51402bd5b24eddb53998ad106de31dc458c119cfc25e0f477615dea28d57ba02
MD5 23bf75b178205b7c65dc1349a3ee49c4
BLAKE2b-256 d14a52854c5d4912c8ef17c4550fa3f84d0c4df2b876e7e95bcb4a98efc79637

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 4ae6c8d8a768a5356df77dda1571574fe2c353f3489a77f5ddd4480f7b0707fa
MD5 0d2f2529585db764dc568f2878e10a93
BLAKE2b-256 eaffa8373d1b448c9c993de13f41574741a2d85483f407d066250d73f8ffe363

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 12b12ea1ef1333cba13f5eb82758aa55f414f4c7f5dc10369b5e157a4f2b43c5
MD5 9b92b61b640e5c8c691e4dda42ce9ba2
BLAKE2b-256 9c1760ef5c11be1e79e264f925fa53d019f96ae3b49f52395a312294eb85e6d2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e4f1d079e8c07c4405ca9986f561c63d4a86461b8ebf2d6304eef8c4b2b52e55
MD5 69f8d58a43f4a7b4c0b2403fec3017cc
BLAKE2b-256 5776d23ccae43803543097d7f1eb0f4588f838481f4c044d26b24f5f22854365

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 fa77da28ff11d0dd44d2981231e7d340a854343956efcd592cf8f5f5d5d5c1cf
MD5 b8ce46958a6e60ab84db910374f77933
BLAKE2b-256 70c13bca999e79ee7e2c89075f8827e57060f040d4b9299b54d9f34df3f1bb34

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f3805a819a528b7fd70f2593bda64cf994a47e2619617940389c5c0a1f483cc6
MD5 13d4ce606d98439ba8f2cb262bf5753f
BLAKE2b-256 33a54e644d93299b116f322fa8ebde241bdd5a5a73046daf217be60e9c07585e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 c62d6bacfb7a58524240fa3685e440d069e7332131ebbc99d81c9f4abe8cc5fe
MD5 0752fa39d27c899e43953c816b2af34b
BLAKE2b-256 8c202b32b7733499e7dac24c31414087ed31559037b0ba3f8f6c8eedd87a2060

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 a9824e75e75dfa63b996ddf6683670d50c5bf8bafbfe49ad6273c501886b08e6
MD5 2b6cc13b70e6b2372dc31b3361f9b881
BLAKE2b-256 e65d5875c17974457e9e62b2adff5bdebae26dbe45627682209293d4c3ba76da

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 30dbf190c067672bafce72e4b49f2415e75c345c4bcf7da1bf5501ae3d61bf96
MD5 508539e95adb36715fedcaa214893521
BLAKE2b-256 c650d8b08925801c88f370355907e88b80d947a85cb5f6a27360efb979322570

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4426630cf98d24514291889a13580fcbdff1dcf26cad2a0d58f49df38a62953e
MD5 bfcccf7fc119a895c0250b2cd498b422
BLAKE2b-256 d0b9a7b7ed7e7d6abdef55433803b7a021acc7ee54242bb573d9ddafa3cbc83a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 40034dc048c289660115672f7adb6a069ffdcfaecaba3cc3c33c502454b8beda
MD5 ac861a66a88e8e0f8be7c659047bd7e6
BLAKE2b-256 32ae03bcdbdd5a97bbe149a1e54ed72eab642dfd3bd76e469b565d5e5d1ea813

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 26145416c6883b8ff3080159d77656e5e9924226dcbea9cca88bb88d9de0c156
MD5 fb38422ad1b816b2c8c811f35c761d3c
BLAKE2b-256 e317a609a8f344bbcbf0a2c86d2a380d26f6a578a8d2efdffc211d4756e29c84

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 1b73e801487ce347601ccec65d5583d7fd6a43de1a897cd935bf4d80418c5395
MD5 84cfd6ce941925d87b930190892a4f8d
BLAKE2b-256 7103504bb3f5ea45faaa48af3c45f029e8bbf2e6ad900270481ee6fde1b3fe29

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 36a922f67bf7f01afb1ac123065227f6b5f9ff3bc8eb06d7f488dbe62e45b408
MD5 14a118fbd4df939d5397e907968e1258
BLAKE2b-256 2385e10ad4ed4cddbb0ff25bc2d8e95429c631657b0ab6576fe0c28b1517c9e5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c65283e7aee760a6a9b3ea38254c3aee1a1bad9cc11027b8b216201d25be147d
MD5 51b54cf210fd0710a1fc572ff01a29a5
BLAKE2b-256 3129992f83ee2c853c59b0b632db6dccf9a6bb7752d7a374a25bff12e2e93511

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6842222ad37be3d698563ffaf03b05f219f6f15d142b82f340297beb3b3e79d5
MD5 1f63c28a98069f9475e0a1d63679df06
BLAKE2b-256 5b6b1c13a82803e27e18d58a3361dbd214c2d6de319fc2fe30f77c6d65970b33

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 45a1441bead068606f9c2af36f0eeca228ddcc86b96e099447f40fd3279d6e1a
MD5 256b804a36b82b402b801151bad2821e
BLAKE2b-256 b67734d9a99c567e5e41ae923f070c0588ecf9e0e0389d971e28dd5bf4bcfbc5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 666bbf3dfafb4062a7a21190fab6da1ea20694f8eaa9f26de05e5b25255d0bb6
MD5 3c8e71493be356ce47a541146bbbd86c
BLAKE2b-256 4b07c04309c15325a98c7908c633cecc244cf56077008e01a01d73e816197547

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3208cf07c24857eda2d40ec9093de747997f230948979d06f6edc44b6d04b51f
MD5 4762aa43832013818b28dfa31c8d750c
BLAKE2b-256 6ee975e6e9a1d8c01d453cede254cbe2c9ecb1822a9a6b7fc4397ab7e6e76e39

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 9659fded23ffd9109771b8e3c69b6d7336938e0b9cca6cf12eed37f993e4460d
MD5 cbba6197d0cdf79091954144b3aa6e0a
BLAKE2b-256 ba06fa06f7d5c255c524f61349bc14d2d2b68320e9ab3db2fdb445b783d4cb38

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 d5ca7c6e006a72508cf0e9b3426eb965edef39780e7757128529fd8b58184261
MD5 09d5fe32d03208dca9332fd034242f4f
BLAKE2b-256 fd6f2a34a1715920cb6c46ffa1481a5f87eecae2830c09558a54cfb60deaa207

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 58ea731988c2f3a418379f97f9bf99c3a2b2d1127d0775ad2a1b64ef188ba93e
MD5 ee07672d65e796a0f84ed14772085706
BLAKE2b-256 4f3a5927743021cf1e132684773221b69891b320c040200f924db0e2ee6b32c8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4c94590da1495bb4948e98872e95e17ce53a6ed8efbcf833a241fc657fd5e832
MD5 4935cb734b156cbe66d8fb02397f1b33
BLAKE2b-256 194ba8f33d7aa7a8b4f8718baf6c360074f0f3c4763b8b7f5b66d69fc7bf3f32

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 45decd36f2685cacf3022bc941ad77426445fe62761e37aef7873979fa577f61
MD5 def49132e47e39d3167aa4531a77f72a
BLAKE2b-256 587244fad84d34c23858df8b95eb0e6f5ba5f931e07e592f0b90b438bb3fb1f5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 7b90715dc32d96e7ae6c73517811e116e8c9f0442276de62f253318b9f96af73
MD5 09ee486b82eae7960d7e336540776bc8
BLAKE2b-256 07e58247a0e68498826e26e682bec2ea1b829ef6c572d0f507970ce482c084db

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 c2ede09c84f7e983bb07a2bd3acf0187857414e9b7077b072c759caa8d832a17
MD5 1ad841d235c8b83ef61a1a795c70ecab
BLAKE2b-256 e63c1c73a71781a82a31f5a0974645b3d43a9e264741b9cdf5343a7ca5f6276f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e10fb864957afac24d7fc3992da785a1e57cecf1fe75cf75e044e2e4142aedda
MD5 3aeedb5600cf3bed8a38ead6a66a9eb8
BLAKE2b-256 3651095263dbe1dca83bedb3ce73e348b3af16f5ed80e99e4550e976c1215523

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d41bf3933805e238b59da7f10e31585b917828a723cf8ed92569c0b875ed03be
MD5 208786c905bd622d7fec66f9f38245be
BLAKE2b-256 c74034b2442e57127d5419cd41bbb800479fbd17a7f6a5d44a0e4decab8bf971

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e31c62aea8f43d5b569597cde0dcd349b858dac6e87d644d8c2c8b8e9d037ddf
MD5 37ade3cc1ce3b97d4be92aa519ae08ac
BLAKE2b-256 2726212be03036003be69114d31e7c4243206b11e1e388217c72311749864dc3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 15b494115e9a544ddc914df8e0b64ce9be0aa03db17f84c9b860e8398640ac85
MD5 5b5bcc1891550ff54a2aeb774d5d077e
BLAKE2b-256 f3e90f1d3f9a212bb556de06378d5643a0382b438f73e5cafc9eed3e23d36f04

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 c9df4b8ab07e1064ae6d3f74246d98f722c71789b23e74c6897306858a43f5da
MD5 cc05dfd5ebb626d4728ab732617fbc81
BLAKE2b-256 032fc67830ddef55725e303aed98d50d69b9028e1b64f72442d5f777e5f2db55

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 7063e9baac35016b2fe2fa58d6e757b65e5360b069e74f1e7d699699485b93ed
MD5 cedb8e6bcfe27bbebbf1b49fb7a711e5
BLAKE2b-256 e893158ba0cf5e2f62057df0acda2c3bf95e1d417128ed954821bbd3fe6b2874

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 fe9cde9b3c6f3a057775ad0849f5f0062dbcf0c3cad221fef5223f5f8fd794b0
MD5 63fd8ef0f1ae16a52187bf83ba1caa69
BLAKE2b-256 82b245aa9bb7658f417b40a4ab738f9aa5f97ea5482d53e15cb0921d6a7fddfd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 32d4e70f57c510c2c8388c7163b8d4f7abc948d338b7eee94d37ec9f35ef7b84
MD5 33bedd937e5fddf7b7b54c5cf7fde734
BLAKE2b-256 d3855fe603063f48d7e532b9a8266a1590d0d15417d76dfeacd5878af772a954

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4019be0002eec10320f936c7ba1a0c3ec814cb2c39a20451424b0e70d56b4ece
MD5 61da21e94edd5226bfe041d0d9a5f24d
BLAKE2b-256 d46e1160f6312884581e180746b93281990abadccdce3fe03aa0821f4f28c358

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 beeed795e028ac9af5c90ba947d415c9a5cf20e4b30e9356c516cae25de3a7c6
MD5 2f0d9446aec1b7858f648aeaf9e37ae3
BLAKE2b-256 e9b807ae045113476d0d4bdfd2b022f4302b5c4071f09712e6c3a92a41520d66

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 f0f36576821db4fc94f2e72ef233ee6072d28e1c76253096411c127cb7791e24
MD5 6cef60e19ab940dcc294fc6ee13b93ce
BLAKE2b-256 036c7b401f84f87df6af43385dd2a6bd2d2a5dee35c4f00448e69e993339ac13

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 e1c846363f5eec5d598dfd3fd59aec11defeec28c77d7b0f9a0534b72985b3cd
MD5 3d4b844094c0d5112a05aed49604841a
BLAKE2b-256 dfccc70e0ad412d2291bb0fe16e9000733ea1c7c979c0698c387cd0c12429e58

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 51e71815b53f71eb57b23f8f41182006f3d10708ea1abd8a187bb18b9c69f6c7
MD5 aecbeaa5f8c1810a9e562a137148abd0
BLAKE2b-256 83d3307080f63076bd621318063e090c85163ddf9449762b6557e2410bad44a3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a0efc1ec71b7d35523c5ad17bdb5a5b1d37f2757ba7b2f1067236182062abe5c
MD5 200237e212819267bb98fe446541b30d
BLAKE2b-256 79934116ec9247fb9e03bb2ddcb0d149103cc96223569bacdbe6e1fa54185a96

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f27ad27c4a3f23759dc0d4d486443792307127c825adeaa3efaccbda82967531
MD5 314ce25ee1ef8d0322819a17b867ff7d
BLAKE2b-256 cc53971e00f352dd0cfba78b5a39f54307542a46986230646ac45b8e96d8b321

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1bf6b49ff3fbc4419c48ce19b752243d6bbf82091d3774a41acc8295e2786cd3
MD5 c85f711a7f2383bfcfe8e7f22acfdcfb
BLAKE2b-256 e966eb7279af78e1da0b0c9cbe85133fad67a4a800c84640c37470f27f9f8060

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 eeb5d75b8a43c4795b47c2b311fb2af58bddafd9e4cab92758cc52d1aeb5f43b
MD5 b109a53ef755b52f2c507e0732eee21c
BLAKE2b-256 2b2f3ed15b3c40de7d5d40f7abac7b7048542789a3a747030704483ff270d2d3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 437c1bcf74514cfd9ab586bc2fb8cee201da67303f78101e0f3ec6ffb6b8516e
MD5 e6613260be609e17abeda5203bf45c1a
BLAKE2b-256 799f9662045019af126bb3832d0a0afae8fc38a740fdfbf1f47368f2b3f019b8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 a853a98857dd662493ade7a5ef1042ed801d6ea22dc840bc904305ae0b8561bf
MD5 64d13a3c9ae4a77ec7186c4fa890cf89
BLAKE2b-256 a34633eb13634d523063b787013e9e4621d5370f2f405ef44a899e47aa84fdaa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f614b8fe97dd7d61246f75d0fd266481c83ab17fc699ae5834ba6a6af1474a5f
MD5 9c0f6439f2ae3202fb547dbe499f1c76
BLAKE2b-256 0f6b28d8a1c4bb16665ae46bec4877b24d4e0afdadc2173d2e1b3e2f5b59f1ae

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 91eb20510740cf9a32d0b9ac2900846c73dea0f75597a831a0abc04c90bfeabc
MD5 3f3af7f7255cc454cd7380984eeb950d
BLAKE2b-256 fa403b57b48c0463c00f19ecd37a21238aba0af460955f6602cdea0e9bf8b6e3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 e1bcaab62a8daacc3683f10ece5530ae5f6ecbcaaa6b8b965add6e146ce4de51
MD5 7e7651579d51a54ef3749cbe59039902
BLAKE2b-256 199f4354f7e22c42baee61676d05a0032dd395aa441554a96c80da276e4c5e82

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 47712092dfde0be28c0f207ada65c81cf1693716d039122e3e692ae33792b58f
MD5 7c97ce29e1cbfddf8bdfea521c1452e5
BLAKE2b-256 84a14321e7d199f30dc5577bc4cd7fd9fb196d95f9750e04db1783de344dbbfc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 f99c549f70dc589f7d39aaf3bf356a5b523180aae30b804036b1f47a80b365e1
MD5 e904322fb32a6d954e2de357e649abe6
BLAKE2b-256 3886123df788d4058ea52c1dbab92e440cbc99688d2b0c29cb55cee01a6b3a68

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 44b40c0383fcd377a0ff0f2e4b0bfd944894bf931d5dfb1c4bad392d91a0953f
MD5 4079fa09f415b09715e5e537539e556b
BLAKE2b-256 f4297c646a6381e09ea9477820ba9f17686a231964e68bd1cbe495670a3d84f8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9b8ec9fb925c135fb9ee690f89666172b1c1818c57fb95cdbf5db59a8c758515
MD5 34b1107ac5d9018edfaa26b90eb7d76c
BLAKE2b-256 69a2d06c9c4e68c7ab2c5776d08150e1de4828c8425f14c1f1586d537219f07a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 02a5126913307578f81838be5e97582542dfef3af02d391a11a173acdc39359d
MD5 c01099f473d521216e45816c4c2be9d6
BLAKE2b-256 ae88d3f182a52f33e83375e615353a5fe68a9b1bc4d8f923d645e5cad3810605

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 98331f5bfcd39177b8795df9695601b5e146e3b6b75d359303444111edde2754
MD5 6f78616664b6e0af4903c9e6fb7c858d
BLAKE2b-256 1837cdf24aaa33137d410e9d569980f5d9999cc3920563a96206de58433f2773

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.12.1-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.12.1-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 b30b0e7480ea547ce94a27a8154fe189faa6740aa924e32b4d344c51b0cf66a6
MD5 ee5b21cc66be01850f6bbe61c2f630ef
BLAKE2b-256 270c37b1c379ca5bff0486aa5ae22ffe08b5f84cca9d534c0d485f85ee818cb2

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page