Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError

v = SchemaValidator({
    'type': 'typed-dict',
    'fields': {
        'name': {
            'schema': {
                'type': 'str',
            },
        },
        'age': {
            'schema': {
                'type': 'int',
                'ge': 18,
            },
        },
        'is_developer': {
            'schema': {
                'type': 'default',
                'schema': {'type': 'bool'},
                'default': True,
            }
        },
    },
})

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.14.0.tar.gz (246.0 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.14.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.14.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.14.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.14.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.14.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.14.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.14.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.14.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.14.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.14.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.14.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.14.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.14.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.14.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.14.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.14.0-cp311-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.14.0-cp311-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.14.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.14.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.14.0-cp311-cp311-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.14.0-cp311-cp311-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.14.0-cp311-cp311-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.14.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.14.0-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.14.0-cp311-cp311-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.14.0-cp310-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.14.0-cp310-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.14.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.14.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.14.0-cp310-cp310-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.14.0-cp310-cp310-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.14.0-cp310-cp310-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.14.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.14.0-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.14.0-cp310-cp310-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.14.0-cp39-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.14.0-cp39-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.14.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.14.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.14.0-cp39-cp39-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.14.0-cp39-cp39-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.14.0-cp39-cp39-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.14.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.14.0-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.14.0-cp39-cp39-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.14.0-cp38-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.14.0-cp38-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.14.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.14.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.14.0-cp38-cp38-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.14.0-cp38-cp38-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.14.0-cp38-cp38-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.14.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.14.0-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.14.0-cp38-cp38-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.14.0-cp37-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.14.0-cp37-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.14.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.14.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.14.0-cp37-cp37m-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.14.0-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.14.0-cp37-cp37m-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.14.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.14.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.14.0-cp37-cp37m-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.14.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.14.0.tar.gz.

File metadata

  • Download URL: pydantic_core-0.14.0.tar.gz
  • Upload date:
  • Size: 246.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for pydantic_core-0.14.0.tar.gz
Algorithm Hash digest
SHA256 4e81a19a98d31cc320df4c0823849e6e9f1b6b9071cf3267796cdf23f819b054
MD5 104c34afa1ab07a0ecc481d450fc2505
BLAKE2b-256 c46e732b7cecc3887088b636d747e621b01dbb2f31b9a63436b4095d165ab80c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 37bd2b175f8ac6cc5e81fc91a12c5873f20b4e3eb81acf66d45c17c4814d2804
MD5 ee460ad34e53becad610e1d3e40027e8
BLAKE2b-256 f582f95bb69e13874d8c4f9eb0f76ea8e44cd82feea77843fe234bef0ed2ae3c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 046db48e93bc244515e6fd751d51d3ca49083ddaf99cc4a87f8e1563f1b2f18a
MD5 2e50610730e56e35f7db8f784bc82587
BLAKE2b-256 eaf94050cf302f1f2e7f903bc9091a1aa24bc79ff90d2508c4e239aecd3adb64

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bdef090acb2e57260adf29468d4806f586e9bffc6566c31746046b2ab1465190
MD5 08bc66685cd4a1b03f3ce68401850ded
BLAKE2b-256 d70cfe55c0a9fcede1fb400ebb5e5825830648bb6b9d9a22ff9bd790505cc775

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0a900346a6e7ed92b149bc447cb8d7c754220c02c0daa61e958354139156028f
MD5 d277889a199c069e669186f531df44c1
BLAKE2b-256 46a5185a4911c4c556207773e87b6aacca9e00993d51869d9b7bf588dc7d9b35

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 2f4138a8bd26920e24bb076fb4be62584bd42fa70a88b31c839edfe21e99a298
MD5 cf1f842899eeeab2d36b9c56ee3c401e
BLAKE2b-256 44e476f596c7bdad28a80a582593432bea18b4a23e076c1b38fb72f99760f6ad

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 81173a583219dfdf2ec3e9d9b2437018b943efa7b960aef96a4b63c801959b15
MD5 36fb0b350807846e9ec0fd689dbb1686
BLAKE2b-256 51c8a96e38a57edd619e3dbf2e6326f48df0e42f48df0cc89dd84309eca4854d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 eced009b0e0002b0df334358fbd0a3cf90d5a037475b5e97b1cbafb5e54fdb33
MD5 6ba3916ad4852a96db299d75a8ecdedf
BLAKE2b-256 f38e030bb04ef48a359ed3173be73bec05b3d36671fd88e4b70971838ccd3c06

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f6f13c5e88488f25843145dd81a5cb214c453751b1b4ce59e6cbf240736801b7
MD5 e8be7a508c1eed7ca0a90f2dd4e496e3
BLAKE2b-256 c699d4a55d699ee869f4d2743e277011c2ed38fb9a13d49c9d683f20696dc2fc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e4375a03d9de3f70667816da6ba5cf7c8a05989fb51a8d2ba968da246a672c24
MD5 16dd48d53d095e3ec01e537b0837acc4
BLAKE2b-256 6065a6f5ef007a0c624f1f5052c67135baa96d723c9c89668d473c0692f306b3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d7fad1aa1e350890c1923e45aee17783ffe8ac77a11bb9516db3fcd6e301207
MD5 89b5862cd4f8de45ff50a63088260a54
BLAKE2b-256 f0d1072f5e76aeacb4cfd0284fabe896dcdf8539b6c7213f859f6bb8da6774e4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b9e0c809ab96db260b30398e0cadc7f45b571c92e11e91c340d691ed8ce00417
MD5 841cd13f0c3c81c9702e81d27dd9c703
BLAKE2b-256 ad66f54427357f96071d4b1cb9181ff581eaa2c944f8bc1403c274f7c3440a12

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3955d1c371db1abd5feab21266cedc82eda8c1fa852a69f50beb4b62b785332c
MD5 c84529fd4d7f2ef9c730faf7149eda94
BLAKE2b-256 bca1bb42120705aaed6a4f7705249a7c07d3e706a9aa88295f303914626afeea

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e4289ba743d3f2854fc23d13719a6d78705797742d62c677a6e1a56a8aad2300
MD5 e9469ab014b31f53d12f163dd68d66a3
BLAKE2b-256 741bca1395dce8111ad598db9dd537e932130986cba3832d3309582febb6f339

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 40ee61e321eebf59670f2d2b3a65fc463a806176c0f805b6a6dc5851706a29c0
MD5 fe82818fa1d5962131f66d065793989f
BLAKE2b-256 97ee20f5bd42ccb0a6deee147007f39935183d9302698543e2da6829bd8cb860

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ed355b8c43495d4eb346e16a5f6c03a916717f53c75e9d10a8fd6c31819da31
MD5 3f9fd1ef33c0acd294acf20b5f611491
BLAKE2b-256 447cbf32a9a87880170beecec8f4eea7d5081b570ee4e916068fabf22056dfa1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fac1183e745f8a18acf439375b82c52cc8f565264ef8fdc47a41a0521f5fb0a9
MD5 5a366706dbac8da4ac694ad210a3f251
BLAKE2b-256 4b296bffb04e03499370e3defa8a8c16adf7cc5b5941bd5e089109040ff15c7e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e9b91c79d424af41c4c562169e4bf92194c5a8d71c3bf6c41889ed22f4d2b627
MD5 b6f75c069cd2e9febeaa9cc771b2e89b
BLAKE2b-256 b4d75f3b74da263b4e4c707417ec48fc53f6b8b31ff732e78dd245a5717f8f1d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ae034e4ea937c408335d8eadb9252fac7e2f96043a49ab0baefd079c1240eb8b
MD5 0932f258b1afe0f9203740616d8b9876
BLAKE2b-256 bd7c90bcc3e22c37c495b5ec520750da1248eb4e73f7479631be2a39ea725c14

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 64b81e7b238979c50cfff5d3b5e3173b864cf22e6916eb3e1c8d6767c5e09337
MD5 123f4790ea981f19d79a57c1a603285a
BLAKE2b-256 665177bf304c83370a9e8835288a693b83cd850e6709cbc8d4113c7afa752dbf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 86994f4b1bcd196941fe81dad7e3fbcbb3517d5c4da070a3453b4dfd0513e7bc
MD5 f48e678dd8adafc668ef7ad407b256d7
BLAKE2b-256 1fe4a6e08d57c50da9bba44db0987488e49b9c6be9e6e1b4b73a167915c42ebb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cb18851b7bda30ffdfdc97c21d45fb1e19a77b0acd17042f3bfd0dc4d7a38ff2
MD5 27dbdb6fd463b83f1f3824fd9e2c9856
BLAKE2b-256 43526ded2b12fbd8bacd2352560428d55878cef2c5d829789141be84d99997e1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3b89090f9406d6a24a8643923b568592b97e40d9993759df63bb59205f130256
MD5 6ef786ab3584b340d9b357b3bbb90524
BLAKE2b-256 261128a69e97e46c1181ffb4416bf3d64047386564ba2a40895ed33c3deb5ce7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 f1634606e438645e2a0c69c4c367306cc4c8ec55581007510826436f8028aeae
MD5 e96ea900d501640f3b416a0a1f56cb68
BLAKE2b-256 5e4d5eaa69e071136fbe3edb0e36c5a92c1bbc9186f787ecd4cdef00a584d719

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 9caf00cb0ef13e9a08e169cbf3d51009607002ccdad86af96c2c982290ceabb1
MD5 a5bbe55868e1661101d8f123ef53b5aa
BLAKE2b-256 cebdeb7bfe4023ad6b06641c0f358d417559fa045b8c3b12d0a49e0d02f7d248

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 c4a52d11fb2b8787ffda04fba592b77563cea074bc42a2b9c116ae724b7828e9
MD5 5d5035dd65ebafdef3f891205f8a6fdb
BLAKE2b-256 56e75e08a14e6f4c8fcf286ef69cd95584574e2275791fc52c40a8dbbb593280

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 392879d0adfc5617d6bbd3dc41a37fc0d2b0d1a79cc11db40e1855dd0a24617c
MD5 347d45be68e7ece8dc65c88ef54957d5
BLAKE2b-256 f7078d0edbda884b5b425f47967cad5f2995bab36f57edf6f7fbd680371fb8d0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ac6cb96363da515e30150504f11a3321448178fe7deba9241bc89c437cdead8c
MD5 b15e7595756a5703ea66493221d91281
BLAKE2b-256 18708477274b8ec2bdfb932272a2a8456150e51b4a6278d0d2742c56e06d06c9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c679c4b5de8e692e4f4d63bd626f377f4e94149f2dbebf88cdc4025bd3f4ee7f
MD5 2acaa62ed490ed19d4efc490707e133e
BLAKE2b-256 34fea47b892107539f8aac8f2cbbe2e91456ee1b05a365fa084d8d35f4f4b13e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6859309b2fd1fac560082d6adf1dd6768cd523497c2de8b2a32b296049ed40fc
MD5 30f613e4c0cdbd1985c3de78b7bfc7fd
BLAKE2b-256 a81ba0537358947faa018157c84fb184d057cb836ae2ffb59d71d0ef65787f84

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 c86b65bf9fbac64509d0a53d9f99dd009e4a48feba70cfe339b73334d610e417
MD5 27e37658d0c3dd0f84fbe6d817921058
BLAKE2b-256 bdb86517e8e8865dbb577ba56bfac95c5af39cfb45c2ebd3981b41dd1a9e6b9f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 c7725ce5d32ef85fbb05311b08109e78cd2120b6f63f98dffaffb8e0c60cc97c
MD5 4cb83dea22e58dfb78a79117049268ce
BLAKE2b-256 49824dd993cd61133406af3ffbcdcac97365c25ee7940af311ca45d259ece773

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 0d52b16b816fe9e4b1729305442d79eccb338c7f48abd439470a72f33ba4fa64
MD5 39bfcefe1615368fb0e16967ab849f33
BLAKE2b-256 cecbed32f41e4977558a6b04ddf94502234c436e9f89e489c448fb2527577a09

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e11f8fe990bec1efb32c846260104f252c3b16c981e34bf7751277cd120d1b0c
MD5 b05dadfc2360e38e912e2693b70801d9
BLAKE2b-256 b9104b06dfd131a0067d61a7fa2237d015e17c6bb67a05f188366c5fb191096f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 25d7fd1ea0bbc175477b6aab20dda35ba61b0de0b2e93e939ea323f2513793ed
MD5 e324c2eca8b54da330ce8077dd3930fe
BLAKE2b-256 fa54e19425b0d81bfc22ec400c14d38dc2effe9eecacf6c8bc0044739a04b934

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 6f9da5ff37f27126111b836f9939a3fa8f86cdbed61173fa5d3133900f966809
MD5 0f6f49e33fb547b407ae1ff9a093fc67
BLAKE2b-256 d711f64db447d673b2ee9e9bb655c98afeffaed3fd936393ce7e8cbd5318cc45

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 870414adcd875ec6939050d6f93cce3f0b1a3bd84dfd9efc334f1332968b0e3c
MD5 2b561e00bdc3f1b29da9d6ef08c3fa64
BLAKE2b-256 025e66fd9e17494d028066e6479e386d9dcbb72270336d31102fc8d889283bb2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 abce1943edc909ca56cdf8d9877ee6cef72f42ae41d13460a7ebfbc681f9a21c
MD5 ce2f36b3aaf122fd5b0480fdd69de86f
BLAKE2b-256 0e49e6ac820ce256d38ef06024b9916d5b2bbd428335c08aa3eaad92c36d70a0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b0fe4a159c554a3265bf667155a95a40241a7cf14d46db5dbc25b9061f80d20
MD5 153ed64c75b182f0b4aa31d6ba54dcc4
BLAKE2b-256 376d06c554cc8f72d4ac5da45a23db5639527ae8a35a8105c2f5a578d503fcec

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 701e46877b7ceb0b3d34acf81c4aaff30603b45ce8b7c91e9a568d6a9b6906c5
MD5 50fd810b1ce4ab59f0351cc3c1c82790
BLAKE2b-256 197d6910369b78f4be4ef496ededccfa72906d3372d4ace484008b6b9e0b0faa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 13f83a2f68a7d68a2baafca0186b4fefa7aff825854ec3c88a89a633384ca62b
MD5 3d39a3da3a88875b3eab55af49f70592
BLAKE2b-256 81368d7ed284ec9c5d3f80aa29d836383dc4ae91224963de128d6f86eca5f284

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fc03f020dbd944d58172b30416224fa5a509e40eb48d7a84b321fbbac90d8321
MD5 693259c1bcdb6801a5b13af8fb5431dd
BLAKE2b-256 fc994b63e487213b9b7f2d5bb8163be11b0484eb0100dc7c101375ba50a2eb60

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 daf8fb21784a6dbaab7c79eab56d520c5ee6f935739d3a8e7c3e76175e5cfcad
MD5 1f5da45c403336a030b3eea111b106dd
BLAKE2b-256 c4b8374a664f67a6da25e03cf58ed28d4961e32d3fb34bf41b5df67831017cd9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 a4f5b8d916732821300afa2277bc4d60b65fc6ed4364699fa050cbc75777671c
MD5 5007d191be5c4e8e2b014fc040bfb777
BLAKE2b-256 99b3362e92cbacde150b34848e164c11201d65a1d84b9c13a93e21c46aa5ac1d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 4391f974d38796be759d80c7a9db0b916201b14f255971711e152224c367ff38
MD5 91425ded2ec207b073027e9081eb0eb5
BLAKE2b-256 0e88529543eaae57a01bbceed7b43f5f3baaa45a8c622e2b00737868fd85e9bc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 09344b00a59a478ebf3438330f93c44df401565eea8e9194e83d716c5d8a8d5e
MD5 7abec5586070069d39d7329418d7550e
BLAKE2b-256 383e4b61cd55b5d743d37d561220c5a1634f975cbfe34c1cb508ab6f65838a56

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 88925dad0cf0f104e4fc5d91eda9569f8fa29c8b42e4ca225f731fffee521628
MD5 41f2ac0ce877f9914aba608fb67fccd1
BLAKE2b-256 9ed02223f42cd58e38de64c91c5e89c8463cc946c2b50f390e3d1699f11efbfa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 285d2e480fa11d37c9069994985acee94707cfcdbf1ee9c35f945ac163217e7c
MD5 ca1035e31aba590ebdcc88ce7e1ce813
BLAKE2b-256 24db4f4d3cfad1e520ac9727ed6e928e075419f9c7e2ce01a72063b153239cf3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 a6349ce41d86d6a315209d598bd451e3cd530bee62c3dbccab1fd0e11221c66a
MD5 bfc4a1233ca7082bc4391a62dcb07366
BLAKE2b-256 79da73c0679d81acc0f37aeb6aa78687925073508fcac4b376eeceba3c277210

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 ddd253bc994faf81b4f87f01e5229ce10608993ad19a45fe371c86fe71510894
MD5 29875fe1621173c9dfc186d462d9bc98
BLAKE2b-256 13bf6be364063855fb82908e404f53f4870be15ce4ad8d3ed65aa4d16b4f8d6d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 68f245d759165d1a17a930c97d2e78eaf7783c48207670a2f573bfaaea60b079
MD5 f76e0c51f4e7b0d2f455b9002ca21914
BLAKE2b-256 f1f50f143c3fc111938d380dd22d1a211688e41124127ec074c09c8f3b34372c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c935ca8cdeb5aad70ac50a600b640b2d0343244db04205278a539d334cf9cda2
MD5 13e7793055730bec0c42219755738944
BLAKE2b-256 1439451b03ba02fc88841a701f1742443defb09f01acadef647cbb8d75cfd179

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 86b56954d26c93ef919b07218a8afe0a8188297f4313177843af5a5eafc51d8b
MD5 8eb02eb679a2559e3ef8fe74a0228867
BLAKE2b-256 9cd674d93f0f239d25620593353d2457bf9a761f049cb03c5a05fe6826d2cae2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6906efa5cc1bf2a309a383c346506315bdd66fb777f8c9575358f2a96387c291
MD5 5d403902907f41dfbb66e4a24b6a6578
BLAKE2b-256 476d2ac04b963340749cdc8c5d3c46e693819a2271f49cbcec68db7cfe456102

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 cc6e2b74f1decaff24f5cfa0178f0d353f53e2bc53fac1357ea6e7548dd2fd59
MD5 eb92d567fad6e72538f781cada79a083
BLAKE2b-256 c8f3cfe43d67ea6d07d986d84ad578e5c6967b185c4a196250dedb3b4dbe4d3a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 ccef33b9358d32bb15bab233d879bc4d2131292a3a68b957347c638afc48dbf7
MD5 d15da9d58f1f89d75e1b7dd7c1cbb501
BLAKE2b-256 00f087db77931bb218716d252533c6490478dac416c1c70ac6ffc1ffc459e620

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 fc4a4218bb5e318b00abbc143c7294b0fdcaaacd61328e83287262cefcb32841
MD5 3d564773d513071ee7b2a7770b4d6366
BLAKE2b-256 69ef73a2ca14dc22ef2a7ab3fc7db5da44c2b1b17d4e99831a8f268529c2539e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b8dd5159f03f7d447164bc24b210af551b164a96f10fd8a54dd6d09208f6131f
MD5 435ea839bc1ef39384dd7a526ff57dc8
BLAKE2b-256 20e0d46cd5d96a98aa40d8eae030c78bfbe6620528ca78a60d5dfabbd1c8f612

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d3a180c05a0a51f002a23a35d56f4ccab1200441b845a41ce125a79216bb1011
MD5 2e3a305be288d2c694672ef644219320
BLAKE2b-256 8a41b1499a2ec45f7a0e0dcde085bfcc22a4a609ab898b1a65455084730656c7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 67f09451ec202188a3459f24c3912cbf8e5727e91f9517ca2bc60da6747a4d2f
MD5 0a5f5ff189cee0cd605106fff7261be3
BLAKE2b-256 647d0a13f0dd16b666c657a30285799341af54ad6da4ce1df52308a0c3d152fd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 14af6213a5e77cc254dae3d3256e07637c078b49bd9eac0d7160261c4125de0c
MD5 e4b62efa11123a12c3fbb1c9fbad84a4
BLAKE2b-256 06c5a1b3f82dc016ed78571ba98b521271282e77b39ad44f2f5ee13940d2bfde

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 a6da963e8f9fce6bcbbb6a0213efa2138e953cf77f3c1827d7a3a8a3c6cc9433
MD5 e6b3802fb15eba70da3f67cc87996ac1
BLAKE2b-256 ea6230039559ec61ab6e950252446bbfd0826d4eeb28d5620292ab1e37ad3450

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db6b00bc373b23c6ff9a8799752907681a8e11eddf03c5f519779f0a9cafbe46
MD5 f3ba91481639e6396de966d8b25b0520
BLAKE2b-256 ded915e1d2bc0c47e3479036d982bf32cb3543d4b06573dab1bc53b623bd4c0b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 33d91759be15414f9df9b59089fab858ff767283a95398d75a6eeb1d4d190bbe
MD5 d1e0b825d06d16939400fb179ef6a266
BLAKE2b-256 755bd9922176542f82319983b322531d1bf5440c9a61f41393e3ba61f7d49d95

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c28219ac723544903abcd53752b002e5f4d1bc8a56e7b6caff3463588b23d1bb
MD5 ed187f9216c46330786e49f6b65f6560
BLAKE2b-256 7e12a3682391597609f656fdda173141fa33e6b4404e7014164fdcc069fad697

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 23a7105fc3fd4eddf3e921d8b7b88435a7de9b0430a3b567f4900e90de9ed141
MD5 0adfe9fe037dc0c2d99319024941699a
BLAKE2b-256 529519befb103b8aaf4739625aa03153135c6c3f34c80481c4c1e8695f975ffd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 b1f6123023e41383eea34a06f674e120b3c50719efe894e0a2fcc34490ae681e
MD5 dbc6cd754325e713e8bd542e9f010363
BLAKE2b-256 b3cd998736c877321880b5d5c10549147b1185bf8ee19e78dd687efcc07e62ea

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 64bf7af30215e2bad6d4f6ff3e9a81eac7597c1df97aad066e8fa960e24973e8
MD5 edcde1d52b12c6ae3bcba466f9b158ae
BLAKE2b-256 3568788ac28d5a9b078aae94a5a6ab7c5bd8a96a69a881f3a3aba640f21223a8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 fdc7d78005acf8f893810ecde0dab24e2dd92bf577dbcf3cd89d46e876b634e3
MD5 9930a68bbdb409e3f27061f44f35ad7c
BLAKE2b-256 ac97fbf31e32d2a2a57565e000fd042c843b3d414d2930c54946de9699c199a5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ae121cb3601ef47c37512b111e7fe177337698adc42981960f04aa7910bb615e
MD5 6fe2abaeb1782d8e4443a3f319c2a015
BLAKE2b-256 6d19c51da3e74fdd24b8fa7e8e7660dd50d908321f377a56cd8033b70923537d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 50e31344521f19bbf52dce7822a2d4e1dd693908964215aa0a7e9f93fc964ece
MD5 330e2fd395a698d433c42c3e1fbb62e9
BLAKE2b-256 f5da54b8046a1f42e110200201b8c0a20b3ca7a7a0df4b536df3a5700d5b94d6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 20c3c9f6400cad062f97bd66d438c328caa1381b6a0e264bad16b4a535ab8df6
MD5 e467111ce6cf5da769f4c90c8b2ea3c3
BLAKE2b-256 461e7e4b08fa1d370a1feb59708c6fa14bc3f84dbab505818eee00617e43da24

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 62b4ac544b9a084f4fa704c81bc17e4e7dc9598c2e900c84d1a331305fc99dbf
MD5 c4a6d69dfad02e0038d9a7de57320420
BLAKE2b-256 cf411facde730a35230a678c61d37e996c036d2d3e5ceab765f069b74b785182

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 86548d71aff38f17ca19ce7a8221d7c0dea560ccf8a819bbff4f94ad539eabfe
MD5 9c6a11cf5eae17425d09b83a87c77bae
BLAKE2b-256 29ebb2f8332a093f2a46ee58ed7ccfe4ddbb720739f3142889761db32caeca0c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2896f8c8808c88aacc04eb833da4b7a3a467c16eeddeb83553482ef6f9fb2d73
MD5 2acf116146240a5652495926c0e91c37
BLAKE2b-256 f277d5b9c80dfcace127e5701850d29b9012c3f992b331db4ad95247258773c4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cc3c4614b4f720795d3ce04af37d0386f6852a57275b9841d3d8e88611e9b1f2
MD5 67a427ad43e8d39211e49c8bc8492753
BLAKE2b-256 01350b6608fb01fef36959ba23733b16a70ea5c58ece5a33803c63ed17cd8021

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 df8546db0beffd865a79d58aee66404b26fb06275372a587cfc0b277be1cc824
MD5 e02b6b97f840a072e8fd46c10a770290
BLAKE2b-256 0d32a8dbb77bafae953ec3ce92e2cb4d7395a8784152df57847d8fa51c197354

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3bade2b33a04eff89e8562d699f2ebc303c971eaac3153e11f03c3ee616b0556
MD5 10b1913128e4a6d37d67b54f87857364
BLAKE2b-256 f71ecf66db5e509b297177b165898c331ad5d26a3d7cc37143b42881f02a0c93

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f1e08d4b572a8128c5b98172893b417015934b9a4d041b184c4ce3c57f539e5a
MD5 cb9e5a310b32eec186fe2098483a0eaf
BLAKE2b-256 17540fd0b4631e51ccc84f9128b91b70de1667d74355515aad6214ce0a930ebf

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page