Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError

v = SchemaValidator({
    'type': 'typed-dict',
    'fields': {
        'name': {
            'schema': {
                'type': 'str',
            },
        },
        'age': {
            'schema': {
                'type': 'int',
                'ge': 18,
            },
        },
        'is_developer': {
            'schema': {
                'type': 'default',
                'schema': {'type': 'bool'},
                'default': True,
            }
        },
    },
})

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.14.1.tar.gz (246.4 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.14.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.14.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.14.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.14.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.14.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.14.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.14.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.14.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.14.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.14.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.14.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.14.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.14.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.14.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.14.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.14.1-cp311-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.14.1-cp311-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.14.1-cp311-cp311-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.14.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.14.1-cp311-cp311-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.14.1-cp311-cp311-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.14.1-cp311-cp311-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.14.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.14.1-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.14.1-cp311-cp311-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.14.1-cp310-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.14.1-cp310-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.14.1-cp310-cp310-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.14.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.14.1-cp310-cp310-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.14.1-cp310-cp310-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.14.1-cp310-cp310-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.14.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.14.1-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.14.1-cp310-cp310-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.14.1-cp39-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.14.1-cp39-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.14.1-cp39-cp39-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.14.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.14.1-cp39-cp39-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.14.1-cp39-cp39-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.14.1-cp39-cp39-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.14.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.14.1-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.14.1-cp39-cp39-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.14.1-cp38-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.14.1-cp38-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.14.1-cp38-cp38-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.14.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.14.1-cp38-cp38-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.14.1-cp38-cp38-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.14.1-cp38-cp38-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.14.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.14.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.14.1-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.14.1-cp38-cp38-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.14.1-cp37-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.14.1-cp37-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.14.1-cp37-cp37m-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.14.1-cp37-cp37m-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.14.1-cp37-cp37m-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.14.1-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.14.1-cp37-cp37m-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.14.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.14.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.14.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.14.1-cp37-cp37m-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.14.1-cp37-cp37m-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.14.1.tar.gz.

File metadata

  • Download URL: pydantic_core-0.14.1.tar.gz
  • Upload date:
  • Size: 246.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for pydantic_core-0.14.1.tar.gz
Algorithm Hash digest
SHA256 0d77b170875a8f0ab9ffd763cd17ac76ed192dbd726e4e897bdd09ed4454db06
MD5 1f1810ddd7823ab8d60f07bd2a31dae1
BLAKE2b-256 8d4abf4dd99308e8c30d12a03e5226e4bbfa097370397899aa9178b9912318f3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 00d20c4004b28c13f22d2502c07ff292442e61b331666787ec29c0cc66d59879
MD5 5a2b9b287b4e3b24766ed065ae098ca6
BLAKE2b-256 ea40b8459fae8c03dc743e6da064c57f441c341c2ee57ae378d64d35a82e6a7b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4b054435659b23de16a9cf7079fb6ccedef4112940062bdd8d1f83d359405e14
MD5 59a8cd48a553768162f4c34088f5951e
BLAKE2b-256 cc7e3d406ad8c94b1f75fc89f22819818d62b392cbf6bebfca32f0e4e0dcecab

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02330d488c3b84e85ab2dc860357a6a7fc32d47f03d4a51112e257c9927863c9
MD5 df9d18695d044b86c8047ee897a39317
BLAKE2b-256 57421b89befaa3e50d634c5b777327483a2bbdd9b041a0475bbd024e422477b9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eb4c89d53e6529278902a8b8f406a339c19d3e129541e9b9764d745d7fdfb222
MD5 ce848d044910361ee9a01052cbbba284
BLAKE2b-256 838c23767dc8538158ec9f2d65a5458516a7d7ba7e1a5fecd8776fedc67d82d6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c4e0c2de8e9861a2691f2842d0d737cd6dde792ab2b84831b0c11ef6eb56d26a
MD5 e99d64b668e0f5e3f59022684c496819
BLAKE2b-256 1d36679121bcbb2b2255d0c24755596df2d34284fe2476e9d576e36757a30ee6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3a33a7e823dcdbe24f15aab8b3273f0622aeedb9f66f429eae6f6c25d6a43eb3
MD5 66e7649cabf65297a1f98ed6c867215a
BLAKE2b-256 24ca19c2070e3ba342cb6b48d2a025b203bc00f00b590be92d4899b364f7dba0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2e9bf43b34213bb6ed061b307fe4ae11a7d6cd9ce0cafa41d49b955787193b47
MD5 99b4307fddea71f973796c134f36616b
BLAKE2b-256 d38299d5b7bb8fb1524aaea29461e090c381084541c01f881afd8daa8517ed87

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 26cbdc3eaa61774a02527f6fcd54ebc99f4e86e673aa574d2184cc5156fda402
MD5 b4a0efc22502272664ca000f11877605
BLAKE2b-256 9139967999d585c4ef88f70708eb84f8ade5787cd57464d74f26a66b090db4e2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8236ec61141129a964ee52446250588b1582221ef4d63b4038e49061bfc46e55
MD5 d50fbbd35b255159be4b8c719034c4d9
BLAKE2b-256 0bf4cfdd4e3ca84068fc279f009b5c35dfe5655939ce65ff17b9aabafbef6ed7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fc2f0381bf001050d3890589a437c646dd2305530d12bf1069c1086d3b8c4a93
MD5 33e0f2791e4b146128f6947e5322aca7
BLAKE2b-256 09662328cec6787c39d3d4106d3441b0b03e370c806176f77a6538f72a389fd6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7a12a9b6b145eefdc7d8ee5137d50fb6a108b7e4f899311446a5c8d6c8ccb73e
MD5 efabad8cdf0e247daaf8af557b84d607
BLAKE2b-256 59d4675925b4850177a93adbf433854d181c39b28b1b3772ee6ac451f5e6f759

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 315d581d859d139c0e505929a480eaf945cf8a5bfee8230069a699b7d8bf5e2d
MD5 71e7d40f5d9b2ac51a05412b8b66f8b6
BLAKE2b-256 91022e5e3b0c9f000d5b8c77fc817a416b06f64b714df119242a6a9882ddb923

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4f982326b60c3d666c1a0f4db351ef6537aae8f0da0ea5a0a28d9cfa2275f7df
MD5 3f3a5248054ceaba15689d85e2bf8d26
BLAKE2b-256 e89303f80c01e74b4c0f25fba4e94fbc1c67ed9379b76d52170d58f0ae964ffb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 afe4066ffc75663d6755153db3e6f9c1f0ecf152d07cd382d89567b67f8e178a
MD5 203ab73b5219d8457dc112a29eadb40a
BLAKE2b-256 2c421fe74fbdcbfb621644c5350ce85a1e7dced9885a688ff477751982f73c8f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 67fa9378372f2c28c8b8bf882060d18966651057e84bfb86c4956fb63e314461
MD5 9548e16175347046bb86b7683accb622
BLAKE2b-256 add1e0e97f8a1c51cf8f30909a525fa9eb03737c626c6b5347ff42b2a8fc87dc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bc38cc93cf70e648d57ae8e570d5e9151ecc0c9d93490b9cd11252013d846236
MD5 0d58195e32ada490fca75095fac0df16
BLAKE2b-256 1659ade634e0d85f922da14feb8e27e812fdfa05193604dad1d36765ac407878

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 50242c41b35432850b2bcea28df9022b25abdf94e7dd74504ae520679773cd4b
MD5 55e8c1d5c05ab3cf94994f556a8a1c11
BLAKE2b-256 611dbace5cd55ac273d7f2dda4e1d9b6d3f39f80f5947fe3d7f1abe42d56137d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 31718de7bfe5135a1a74da07d72bc34d90289b9a5bdf07950d09ed88bffe2812
MD5 148d266070bb6f75038c4bca5cec78ef
BLAKE2b-256 f9b76f79735be2f028f86edc82033ea03d7653541f0fff48982db419c091985f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 f820cde18018adc3881e961d7688bfa1111c4c6bcc7da16fc5cadb28d53efe9f
MD5 deb9137f0a3a63ff06305eb991c22ce5
BLAKE2b-256 cc99c6cf7c4fbec061ee167a93c48b010501e0955bc7bda9f0475df73219c853

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 438307a74fb5e6ae29e78aa70a65c71954807baa5e72f8ac32ce0f48a1454161
MD5 c911bafb914f87e31efc385c7b56891a
BLAKE2b-256 4d577be72c1370a2eaeaa601508fef70b091e351545715a7fc2e2ab01245e974

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7558341b3852bae955b122df008ffa73db0e757b7aa0567d2e9640b88f2f7db8
MD5 c5d8a0525fbffe16747dffff01f7bd29
BLAKE2b-256 0cd7dd675e0b7ba48f320e76a5a809be87eee1792183e404e9695b91ce06e9f3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 fc5c1868ac3c58217796085ab6fed67187ca20157c10531789c0a477f9c3aac4
MD5 bdc93953cdbf07569edd35c8161c8785
BLAKE2b-256 62130ebb396dd19b15ebe2d07fa93288c023d898cf93343fe12e8323e8061d32

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 1e7f39c0d20b4d7a1f03ca755e797490db859a116f55cc1ee1d67b9f7fd15789
MD5 fb9adaa20ace4b3d7d7e97db39c8b68f
BLAKE2b-256 3aab123e74819f803f3294867ba82601956baa6eb5dd6979dec682294a94b0af

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 a49e6ebf097087f207b1dfc2430c032b9775c5ce4bda5dc536c6c87fddb1bbde
MD5 e704bd08c41693357f96f1437c9aedf8
BLAKE2b-256 7194a2bc904d394d93e285d2a4b4255aa4f0c84ed29e3b5d8e6ff7bd449b384d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 97d93baeb6573a40858e2ce7af2bfd26e565f8578336ed8b4eeba6025bbebd03
MD5 3f51a4aec18aba091e6b5aa728ffce22
BLAKE2b-256 27aef193349e816919273f27ebca877e5a155a78f1b18decafbfae5f998b8689

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f4d0553d7b70557ebd0cd86d553f4665a26644412ba66bace9b6704f69fe0148
MD5 b7ab9f263a721f2da3e74d6aed05db95
BLAKE2b-256 021c7e9c01d1fa8a36fbc3bc5aa904618b6157115707e2d2605da4430c16cfff

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dbee6972d6b78667a9558d74895363d6850f817c214e0786ce54ea13dbdb4f58
MD5 60e1095b316edea148040672b3a707c8
BLAKE2b-256 430caf5f529dafe9824518ce33c48a068590112c338019d866f8923ff853582e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 6f9722ad51dc22ef2b0d6ba446ab6dba59c7aba33bb8dbdade536a9f9bc1a951
MD5 9ed76cd53c9257f2e0e496ad7d5280ff
BLAKE2b-256 b3b3fb84e442eeffaa6138df1a791e89bf954523502fd26f1bf59af199906c7d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 80fa201ab6c0677bbe2f16e8d4920300c50d6d64c0f1f74c616cefc0e365a019
MD5 1be8058e104a659145a890235142091e
BLAKE2b-256 a04030331b3d7daa150e5b6f681e6328dcedd0f22a5b09342b626e30b4a2a783

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 4486608405b3991293491ec1c8f16a1fd99970c26fe9bccaae6faf7d79b9bfbb
MD5 1d805c59c94f710115985064c85cde2f
BLAKE2b-256 1e5a18ed693c0a5922751c95de748df9e141e32fbfb63325769ac5f7406a0c9c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 8b8d267820968902beac1a7811ea7183195fc53559abf0845e71dbc1af7b8594
MD5 ec46cad9257abe6e0e1ccc68e00619bb
BLAKE2b-256 4bcf9962a0268069411d90040cb2bc8278c71bc4dd08c6975d911f15020dda70

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 593f46d29bd53b0117d02895183d9a6bb6333336cf958b64210c758526630069
MD5 4182a87ff59fc0f87d4f73394fd3a0e6
BLAKE2b-256 649f5c05d4596d035158ebe84d9bdd9a7f719e5bb3d137f9d7ab4a0c52dd9c0d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 763c7ba37d5a138a6a9141c3fd24b4733415acc257aa0c5cc13470992f1f2915
MD5 7150649a55f02e6a802c72ecaf2360a2
BLAKE2b-256 6dabc17521f08f284e8a079fd673248f4b4368e9e38701186a4eb5cc1d4ae333

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 33ba198eaf440fc4d6b88a804b80707ba8ef874802509c661873714c07768ac0
MD5 0a684359b6f0badb0ef8c25bf9222aa8
BLAKE2b-256 d4aab6794d85961fefa0fbf65486015808ff999e8fcc49a0e59b3687f0b0b317

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 6d961196148ec716ecbc5ee5abd198f11d8281e38146088c42dcc0a8e75cf019
MD5 b334224637310c36b226d317b3e7759a
BLAKE2b-256 d9b2cea48eb5273a6ca8d634c1d824b54f7696ed4f4d6d16da3180361e698ca3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 a983b9859aa8924994a4e962f803a3b0301aceb2a6ffe467850e61ebbf086370
MD5 2bf5ec82912f2e7866e74bb82d17cb30
BLAKE2b-256 1ad02e6e5bc42451c54c0982f99072ae58515a08636de62f660b41cdbc1ea007

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 53b8de900486ba22009efc7416e8876519bd400622c950927f5a3e3b52b65121
MD5 c057a3b6ad68c2805794386ac6154ab2
BLAKE2b-256 1e1d9ae310025889bd8d220139f055f7f81973378a1a5dfb4d526d23519c708a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 987457167ec5f58e5c6612f81036fb06ae38ce8b3daf5ff436764242484d2c69
MD5 4819fcf05c9e2a9514bd051ee833d0d0
BLAKE2b-256 921ce063789a170dbbdbf2dd30978149c1c1e7463e0ef4f1755efb6e5f0efe94

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3eaf9f6f26e780823e9aed1d66cc4306baf80403888391dfe1f2e2910566b3bb
MD5 c0e09a9e14cc6ddc59a85e4a0b6fda89
BLAKE2b-256 3323660cb1838bf16c2c4341c93a661fdb347b470d34ee235c671a750bb8e086

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 fd30a71ea1317f88c27419c6d13609c6cccbe161f5b1e90ee4ef3a69dc0f1ef1
MD5 e047637c3d31a9b3e86862cd44711842
BLAKE2b-256 8aaf0ad7ad238cdc65c8deb03318bad54fd44db83f4d99d6c1ff9a114b928c14

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fc4d998a057fbf658451183b89304929f0cf7e3d42faff905596af2973b10ce2
MD5 1959a42ae2e4c7feae7923ab29c167ba
BLAKE2b-256 3c8af4e0927fc13ec897c968ebb24586af5b13dbd272b0eee58cf43cf31eebdc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 96c55da57150b685b83e0c13248076684a5742e8e110d021b555c53a2308538e
MD5 38f5712a8e60c0a47b04ac05cf5c0332
BLAKE2b-256 00c5a4324b544591d76d40886682bc1b78ca22b3e931ebc06c5132dd172edc05

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 6ca18e453a01e957c9f8f36e059469a6c1ef4e7f0a718a650c150abc33e6424c
MD5 a2ceb4b44293c1ae2cc6061810fc1842
BLAKE2b-256 0df2c55b38f3752626ff7b0cbbdbf95ce1f983882cca74f8dd3f87386ee345bd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 dcd6c028aaf968927be530e9d4bfe1ecea42ff6847fd38c1ea2e60c7780f7382
MD5 2c7640e40d6f348fb34fd7a9e82409dc
BLAKE2b-256 93f1defe667802497d42a5bbc8fe009b2a2005d895fef45505ed8f72756c2a37

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d32bd58c84957dd6538451edf0702857b64707ed4db49e2179721c66523444e8
MD5 6537aad02212259d288855d8576f3429
BLAKE2b-256 6a13548c873e610f19d31704a710f882f90187da66cea8d4f89cd18253e13d2a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b1ef956610f36962503945c376ba22ebc06f65f72c26d673779438e63b8b9c00
MD5 cae6101d19c161d11c22a9a2740306b8
BLAKE2b-256 2c629929981a3a1ef49c833f1e2d83672d6e678e6423e3940a46855073378e6f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 f0f4c7287152fc09653f8f316c31e8fe7dcb566bb86a8d64d4162216cab7b60d
MD5 519cb88e284dc4a682931a0e5655317b
BLAKE2b-256 2e755277012ae646c076ac03e5096dc7d3036ace981618ca4e891d275a58adde

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 4cb6f22d0e0cd279f33f46f5c734ba87b6306588235fd01eadcb9576c9a421a8
MD5 8be418af48fa33881b056ec6c9a7f5e6
BLAKE2b-256 a65d0f022f744f5f04947bae0b1ec1a047081ad9f7a2c9a7ba8b0e59396a181e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 c5abe82497e57f01a77151a85742ca13cadf069800d6311e0d1d1e9833dd07c4
MD5 3ae88aee08b11c9f7bd96d725a6865d1
BLAKE2b-256 f3fd62ef1065b343c63a426808f14a9f582e12ad56abf1730fb8100fb888029f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e07c074447a68285a469a0bbf50dc50408e7dd737437b3045ec53b43af9c251
MD5 60fb4c18ce070949ec77e849fdc94497
BLAKE2b-256 253fbd5efa63cb864f486853731bdc62cd8ec7c30de902df71c327dc5520a1f7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 efa82b51071352c1479951f0d8ea27e1854a5499c9d6cdb415e9c9a755676418
MD5 a2ca61a3f05ff03adcbc3bf0fe4ab4c4
BLAKE2b-256 4033b511aba09d0f70fc2ba7103947292b57fa561efcd3ac63cb683df192385c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4d73c03cc0cb28f7969a6201de56541d2ebae0337861e19fca0ad5de1b442ef9
MD5 2b5c70b81718a57ea5d9ec48026cc0a0
BLAKE2b-256 7ad5c8bfcfa3cc1e735b7cf8785fa0e61ad47ad35352b23095bf8518e4aca0f0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 98f96b430d9b7146e32a94c2feeb03681db259cb5cc32939e719dc6aaa0f801a
MD5 801292e432b8290dd2011d1f634ddfca
BLAKE2b-256 3b216da8ed85add429840eacc786f85bb642b5da7fff1152013dacbbd2261cd7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 2beaf5b1a2f68452f604d4268737f5cb68a0b4dc98b1add300715dd8dd59a879
MD5 08621d9208d55d4e1e20608ad2a38fbc
BLAKE2b-256 721dfe25f809219ddc50fae1c6c28e16eef651eb1cd33a6a3b5d67a5d9534480

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 19da2a04822787553b9eee05811e238738f25782f7cf2ed2de652a94c30b6d9f
MD5 27c9e9716d1f9722f284b66c09b43b9d
BLAKE2b-256 164f9c2bf8933367cd934b9d6c4eba51e69c574b91be2a853c32e257d669ac59

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 6cc56c5dd391715c2c9e207222ccfc8a35fa72121a6eea528430ab6ad90bef03
MD5 1aa7e7bf7159f8337e2ba32c8738cd38
BLAKE2b-256 a1478a27f955e497a3f686d2dbda1331e7cf81954ac5283e63d7faa50b3fe2fc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1aef42672e1ec83e656f648189c4c433cc80f8631f8b457146a3b3b9074cd06d
MD5 a43ec96fb5638e5c168d5012bbc510b6
BLAKE2b-256 92047978a583b5c9225049cfe40850d143899b22c55121001cc859a15ba36467

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 29bd8e88acac10aa45a6b58647d7a5d72eed23c08c4379f65b20c133f307b0a5
MD5 4099779ff79cff61dce3387ed29a7eab
BLAKE2b-256 1097b4e11bdcbfc89732309aa74b60d3bee010df9103ea535220960532a7bced

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 d2db33ef20d53e3c97fac1404af1429c2fa933e8bf5635985613490249da4995
MD5 c6f9b431a80c86fbcb392792d768da8c
BLAKE2b-256 f0530d45692c6a81fbb4037328303ded3e6935cbac420351edc0ff3930e1e332

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 6fe6ce8e8ad550b04c6dbd4a7014c4312ef3ca42c2860b5e3fbf3498fb736319
MD5 040a702f01b8a1cae89ef263129253de
BLAKE2b-256 16de10e262c15ebe3a8a3a938c814117c71c0ff599c04f6c3c0e8b799b9ec9bf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 44edbd0f12d443a4c6fd2ab26b780b501f255326618f95712e99699106e8ce53
MD5 6609af012320da574bf0dc3c2bb62c9c
BLAKE2b-256 6daf153ff2a8fa1ca5e2cf2ee1adf0959d9e29712aef36f5f20886834f62107c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 32b927c4826952c29a014c0a292308efc214c3682fabd824e9da42979a8ac6c3
MD5 111fb17ca1768aaaddd481013164079b
BLAKE2b-256 df5437ab2583d3a5afb3abbf96d69e220ecd2b6cf96322845a0cb9c863561850

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eabde41a389ff51a2b29691683cfd15d2d36d4c2166ff6a481f680156ca6cdea
MD5 6b7ab337d1db74a862525ea8f170bfee
BLAKE2b-256 7441bbfc9e3b56db7b6b6af025f69fb0acdceed3de5ba29945fdc766410f3ec9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 dd6e31055d3d52a9c41d85385a5edb3b64018593a4a36cad574e9ea75a5d0991
MD5 e3103dc83376193edf064cc04c04e02a
BLAKE2b-256 60d2c0b703c50ade63bbeb98557966a498a900d7644f45fbaf2d6ec4e8380d1f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2bebe08cf4a35ff996164d38a6024a75c9c531a82f5e12b00be40b14a2b4ad28
MD5 621aa1bd45febcf9796df4964075d94f
BLAKE2b-256 80745519a10094e702713d1562a690808c47f1526cc49104e1bfa3edc31c215d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 0421d43ea0498550c6f67c17895c5def3221b2fe1243f1593f1eb66fbef0617c
MD5 3c8f7b58f2e086f07cc624807b411188
BLAKE2b-256 6d34d2e2d846d2233bfa34885a4b029d8fd32f6f76623b5d5e959e01db668d4e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 a4598bd82c46276deab93d864aae4a57662b453fed328a786d912034bd18eeb1
MD5 74285f8e2d1e336a343bc4b7e536762d
BLAKE2b-256 26a67fecffa163570d45c5dcaf45145bf87308def8f263c19a2a7332b10705ec

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 b15da03b528cebc2c741809e94217c95a56033bfd751f64412d81a0c2654434f
MD5 d3b7bb381b87201282717089721ed104
BLAKE2b-256 47d61cc220285f1eca34338b293627ebe84c4d1808679aea6a701587523dc902

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 eea58bc5b890e5d97fe7f4513ba8f5a6a1aa106da73e1987705cc030eed8a41e
MD5 af15ee1551a2092ac34fea67d8afd2a4
BLAKE2b-256 e8a6816955545f6f6863ddec6b4e72f0c0d01a11370bb55a88630604dc818525

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f073043d2735a1bafb6e61ceaaa4d76472086bfbcd0ceb489bc1d864d467e998
MD5 85c51cf0a687c0669966f4fcc66b7c86
BLAKE2b-256 684fae441d29a865ee2f5450fc4be35e3c7c91fb2227b352117c0a1ce9df7454

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 9dc4d3cebd0945909e07fd266d7672a6749c471fa7de975a49b0cc0d6fb2a44a
MD5 4e452f90fd00c3ca0a2007c8263047fb
BLAKE2b-256 dc72d1362f405f2894c5bd6dc10b0625f89e1b887729fd4f6c4e8687e8f4054b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 ebda304bfe71f62d9243cf37e5851ad3bda91c464b8e809ff3438e8d8fcf0fe0
MD5 f612a7741ab1a87efa627d5a3981512b
BLAKE2b-256 e2fc3c83af8156a29c309426e2a514c54687817ff74b8689a2dc73b5496fbf79

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 735dfdb39f9c2f3409f5b007679fcaaf05df3ae6c2fe35fc7cc964870b1f16ed
MD5 6bb378f5363f93883e6bb448c1ed094b
BLAKE2b-256 0fbf39e417efcb601f29cd255d4829f8a566e87f693ee55f16b90fd1554a1693

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 07dd1adaddca6317ea81487b6e9b666d0e8f27a675c6434fd3ddf6d8d99ae43c
MD5 899e4d9dba25e483de498e8a339ff8bb
BLAKE2b-256 2c4aa4c108d330b334984448e795392ba55afdd43657afb273906c029521a87a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be526045aa72008b838b71a086e5a51f3b52eda60e275b4e3b19c9231b1312e7
MD5 d37e3cef5a2cd234bf016ec4250ee781
BLAKE2b-256 bfc88170d8f12da619711b29a7b9a1bf2c625eb0cd7f379516f884b9a3bfd7a7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c5b8b1a612ec757767e6ad38737089b9f7b1f1097900ca88b79707dc8130b329
MD5 2b52f334b0246a96b76f19a85c9f0d8d
BLAKE2b-256 f49327c2bcaa3ba6a87cbc43b9cca629e160856e3ff5f05271c3e8f567808217

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eaf7fad85e5e41518b828b98d46af156e600eec8cae7cc456924cd621bc28bd6
MD5 e94f41fabefa549077cf053e822e5759
BLAKE2b-256 2ddb429351048a784d0539b468caf4e497759d28aca631fcf15ba2806bb4e8a8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.14.1-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.14.1-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8791376738923e69d40261d98d1722fb2c31e900109ad75bdc59c390d9a6dc45
MD5 763494b95bd976766bae7161b4d82fc6
BLAKE2b-256 f6bdc521ddf66b94145cb6862f096971d8195984bc3d674a8d09d5a9388d740b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page