Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError

v = SchemaValidator({
    'type': 'typed-dict',
    'fields': {
        'name': {
            'schema': {
                'type': 'str',
            },
        },
        'age': {
            'schema': {
                'type': 'int',
                'ge': 18,
            },
        },
        'is_developer': {
            'schema': {
                'type': 'default',
                'schema': {'type': 'bool'},
                'default': True,
            }
        },
    },
})

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.15.0.tar.gz (247.6 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.15.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.15.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.15.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.15.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.15.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.15.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.15.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.15.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.15.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.15.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.15.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.15.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.15.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.15.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.15.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.15.0-cp311-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.15.0-cp311-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.15.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.15.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.15.0-cp311-cp311-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.15.0-cp311-cp311-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.15.0-cp311-cp311-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.15.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.15.0-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.15.0-cp311-cp311-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.15.0-cp310-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.15.0-cp310-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.15.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.15.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.15.0-cp310-cp310-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.15.0-cp310-cp310-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.15.0-cp310-cp310-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.15.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.15.0-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.15.0-cp310-cp310-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.15.0-cp39-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.15.0-cp39-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.15.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.15.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.15.0-cp39-cp39-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.15.0-cp39-cp39-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.15.0-cp39-cp39-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.15.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.15.0-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.15.0-cp39-cp39-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.15.0-cp38-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.15.0-cp38-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.15.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.15.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.15.0-cp38-cp38-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.15.0-cp38-cp38-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.15.0-cp38-cp38-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.15.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.15.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.15.0-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.15.0-cp38-cp38-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.15.0-cp37-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.15.0-cp37-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.15.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.15.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.15.0-cp37-cp37m-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.15.0-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.15.0-cp37-cp37m-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.15.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.15.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.15.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.15.0-cp37-cp37m-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.15.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.15.0.tar.gz.

File metadata

  • Download URL: pydantic_core-0.15.0.tar.gz
  • Upload date:
  • Size: 247.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for pydantic_core-0.15.0.tar.gz
Algorithm Hash digest
SHA256 00e76ef0d5b94282e50c77bcf32a85faee229f21eab1e56b7f8962a50624dfdb
MD5 7c5ec948e6a0639d5a7c295edb80bc7a
BLAKE2b-256 18f2784cce798102742fa782b1c294091e95ff3d68ac02e8dc9fdd3714a9a639

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1d9c967ede9da01b5027f18a3ec5111a1efe624a78ddcc187034b13b5891ba4f
MD5 d8726a8ed3fd728bddc2f763c8672936
BLAKE2b-256 f3d07013c2ff4feba2c3a5239356b35491fb938797159b462df44f2921fd171c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 24b58cc8987fa6459f917f8b3ed8e010d6197e49b2dce2560c978a703d654397
MD5 8799228408fc7780158ba203e166de8e
BLAKE2b-256 44f4a285a5933e0b84ea66f3fb8c9ce97fc515d2b582d67343785bcc3e91fcd2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a1853e8de9f221a7120a88fe40d99167a7466b750f5bf39a142494fd2df4735
MD5 db1fc710cd841f16ab7aa0ed2f866c73
BLAKE2b-256 27e440540a00dc13d6a3868074ad7e59eff177028490d443279f73ba0f4c98c1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aa3642d1198a5e5f15a2e2dcbee40f31229b89aa1b152b27dfe4c4668375598a
MD5 f090e58ef63e7cb22beb308561a261d3
BLAKE2b-256 17cc2fbafae67c5d17b2b8f351f451f604c418f24c70fdfcf9c14e4ed89518cb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f2d1097e664d137ce421ce39e38fa696941660b7549d46cf30f98b2c658d8d41
MD5 c5be45e66b2cb3934ff6d47548640f73
BLAKE2b-256 d4715b1d1aa59291aa4d5e9cb5afe5a5a88610a46213d2ec5b64271f0f76118e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 34a13f4a9febeb8817dd5cfb890232ab7498300a29ea537d38ec08932c39e6be
MD5 56f9368d12de530ed0d11565c5b9a731
BLAKE2b-256 1f35a4f57306b34082634f07653e7941f1b4d10029388d2333dae4373a3fe35c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 05d0bdc9fd8bc44029b80076f7333edf6c28e845a9d65b0018fa0c9a77fc8873
MD5 6c49c37b0137f14b5ad3918656a2da81
BLAKE2b-256 768298587e39b77c23975c62ed51446424d0736f773ef3ed6dc4bb238e8d9b9c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 53abd9f48e578378e844dea3e25eec8d83d492c6d216b49f477ca43d3b04b584
MD5 fa62db3be1b76ab9b14e80d5b38596cd
BLAKE2b-256 1022c020098bd73a69967741d71c2617a67861bd97578b3a54a1a9fc8d3e21c1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b8ac6632c6d2a9f0fdb43c17f41ff7ea5e6d2c90bc00fb115218466e12d55356
MD5 f589242bea7d0bb7e5f4460fd0c19937
BLAKE2b-256 6c0b388ee91bd9d91a2c3e861b7638e412ca8282a66c4356b1a7b7d0da7ba1cd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 349853d417471c127242be1ea39c6f6929ae39f0a532d3a21fee395f7120b85b
MD5 737fd91449a5fe459c97633b90f919e2
BLAKE2b-256 781b65881afe039db3b8566f14f473644e449c98e93f6ff0dd6e25d822b71dca

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 6e70294aeee12a7767e191c943edfbd3ba2f1777462d1f15d01847e9be8326a9
MD5 7be21bde28f0ff429a01e2bd9a0c8284
BLAKE2b-256 3a7e5ce549d93f6bf2a9ea8df29cba94abfb2b7c222a5a8adccee0a3dc38e738

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 525b4e685e9df2457d1c24beae5f0b7a7b8a22d0a1a8f592f5eb43ac6e53751f
MD5 9064953aea45620f81913e0b8e81b754
BLAKE2b-256 6e7c9c855a050b83f72991bfbb0a2b25e1e4520447b032bc3aa5dd83f8c20d63

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0de52785cf71e5d23cff31f62dba4baa4002f6524132c3881f635877d96453e4
MD5 393f3fc393dbe8c95dfa0bf87cf60c41
BLAKE2b-256 7b1d83c5ce19ca2b06210ba5e63f18db666e7560a104a2ff35c08aa5f09debc8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2d645eacc29debe19ee4449312bc2d871d52e91874368ed29a531293218dfe42
MD5 4120f3d8d07883f1f7fb7588b2a012c1
BLAKE2b-256 ef4a7e2eef8ba0cb657a0dce9a191186be0fee4b388e8e37215760c8e1ce544b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cd999d33346a2b2e2022df9d8dfd02598a17a1ee7737d0d5d5f492c1a2c02d1c
MD5 ab2c7c28c6493e2a93ca340fe6c3b068
BLAKE2b-256 1063f5ac831e04630d3d0f81796eee05a8636dcb6bf99811297f4b127aac673c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5e0b68c828dcbdbd64e45ee37614d410cadb9e0a5ef6aadded846b4a2ee79129
MD5 6cc8291971bce7abd43aae0338d97446
BLAKE2b-256 f496ac77ec04cb6f04eddec87f3b3652def3ccff48ce30d73a9e17a8bbc46c8c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 863890825c30f2b7f7c6b2b55e800b69f02e68e3a65ba4ec6d919afe076adf36
MD5 1b7e5db9b3f928b67bb40b3be789d70e
BLAKE2b-256 a12e66a48aa37acb6c43eab3482d7b125e721e0a5989f3eddfc843e3aca11ea2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 1ee0e45f4ff0d3c825368c1e8f3e254302db29f87073b61c85afba71c3d20727
MD5 adf92c3b52fc5603914e279827a87ca4
BLAKE2b-256 af07cba35c7e6aa16ec57a4ee58e78e13c670934e1063ef3075e52428cfb9356

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 c42bc0556c2d453942ace5e02bf45a723765ee236dc91e710cd2bf42bf4e8fc9
MD5 962b9b382782be0fd2f152058c5a1f98
BLAKE2b-256 b073435f5a27b9850b0895a2353fd148ad97481fac2e94121d99b3e11603c8d4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 93e1d542d32b29049da7d58dab9e1d28cdaead6efe3496fc507d8381f810df4e
MD5 8444a7a03e2d1d02d4bab0655f420b89
BLAKE2b-256 d192810ec30abfb2fd99571d2b39a71c0a0c60587e706c6ca621cb45d7de0391

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 596ba5a315fdfc533409ace139e4ab6e0f53478dcb696fb40d83df0e48d2ca29
MD5 d043292e3e36ca51c8fc828ee61b1740
BLAKE2b-256 8e052965ab6c5b6003a02d897544d08e60806f2f0a0984e6151e8865c5028916

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 37581619a422f247f587df37b51b7733da198f0960e6f586a4942156400963ec
MD5 7282fa9068282ccbcd6553d9c7036022
BLAKE2b-256 fd433765ec381e3f73f7150659008092247533f034ec7ce099e6b457845bbcda

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 9de43abac7220bf57e4aa4af141d356bad4a0f59af1b4cdb1da3f720700d4c9f
MD5 ef99c58d106228e20043442eb2a90830
BLAKE2b-256 4c4fb0664012d81da851babd72023b92364bd66ff8bc327cbf8f01025f47c138

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 ec5ab9123d4bf7d90a9c6601d7466afcd37439441ef0bdcaa1723a3f07e5419b
MD5 41de920c302a6eb6b72fa21c6eea737d
BLAKE2b-256 565d3dcd12c0388bb3d7880a1c82b1f7a181198e392d9274a7abd043abe3426e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 556062d3dff9fbf484d1e812d46bd5e745b69e0d5309af2eefc786c87adee537
MD5 9822fb377ef082ad4dc793fafabdbf2b
BLAKE2b-256 d39ed0c3c8e1496e224dd07c8fc466834273fdcce1ce65c0b6c2469d28be307c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b4c287f4ed77491df596831d70a8c43b0035a41fb284a760b151670924a44a92
MD5 2b52b7e171b9025dabfeb5240fd2cfe1
BLAKE2b-256 15374d48b3dadeaa506519d414087363c757c65e0d476505ae435e8bfc2ab810

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0b1e8515b4c5176dd1dfecde90cf842f72cb69ccbdfbe45e0ec317a8658ef2e5
MD5 3a2d57ff7efee903605a65edef77dcaf
BLAKE2b-256 931b759964285a732a6d3ba553d29c7c865dd8105ad2169a6a8fb90549b6ca65

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 869fdf779a3874b174d1219282b6bb4d6915cc32805fba9e2f150e73391af717
MD5 93fb77dc62b12e581682a26a8b2e3d53
BLAKE2b-256 aa1e0cabe3b8628fdc0951cc6e0b1ad63776e852e790581531bb35613a1ffd15

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ddfd15fe0719379dd5f969494657c8aded9bccb7f1ce7e39052f9ef2f63d3642
MD5 f99ed9e5d45857e2ea83760a39af6542
BLAKE2b-256 b9d38bd8d1691130dcd5c299c4be15b4fb605d4b036d206b6ba40b2f21530973

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 abf3133f05b086fec4af3c0092d265686d4c9e2a88c2c655469a71d88cb33cf2
MD5 0223a3c8bd0fc8bef695fb30c69a7506
BLAKE2b-256 0fc8c28a0e293247a53b627d0596b9db1c6cc1b64bca38edab6d5333c432d9f5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 05f7397cb8355ac747e4b4704bd06becd1b68df2e35fb33856866c761b9ce79d
MD5 6db1147b832e62429c2798f7f4106fe8
BLAKE2b-256 c39610635e7172f0158dec439213c697e52bbbc498c35a69c9626e82702f21df

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 4f59bf1616b8ea03e4436fcb6327879a6392134c7eefacb8fc391aa64940e57f
MD5 38dd479ad036ec34e8f4dc414b235bfc
BLAKE2b-256 a51d6ce5e6ef7b3c3623bee7c6f2d6c8232dd2b0f726bd2b085134048c73d87a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7ea82d446dcb2366d795e7cc2d068b618a315477f96f22e17eaa43864e08a212
MD5 eca7ff38c236bb27ad42ca3f69c3cf4c
BLAKE2b-256 7eda8b173f3fc4755df6b00656e2b3619b84b846e26ea945944d814d9a81636b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2995cb91cd745be24375bce8ab2b07f27d4f51160d63943de7f2f50b950b0da9
MD5 2bfa61c692f14ebe236bcebfb7e7430a
BLAKE2b-256 86a8a42be53442a2c6db0944c7efc7d98d27d12f2de58b2da85acdbe172cf568

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 5cd8932dfbfa9b54190b9120d2e38bb57a6bc3c0303da50f1012fad639af5104
MD5 6c83c5ccc66b40afa8c382223f0ddc0d
BLAKE2b-256 5fe617352ca10ab2e0cebab73d5852b02ca57ac5260ac6d2f7735230e5d7588a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 7d608ceca25d41b61fd68e2eb057512759ef20f7fb84b2fb897a0460738f8b06
MD5 b63040dd107ea24030aa75adf778212a
BLAKE2b-256 b368a916429f81f2ab6cfac538d50ff9a5634f2700a2b5756d4924ddf5603f6b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 b7fc3be3e96228b4308aa73931362e6f3654de09b820745025028d6b93854ed8
MD5 082e45183cdd52d9356090bf608e13b7
BLAKE2b-256 401529a972fe2477cdf1780b87974e0dfc6ff2bde1fb741e47139e2edf1a5279

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0a88ce3822062137ff57497896d9f8fd83c4e435051d2310e643250788131b77
MD5 36ad23403997da8515e31533e456d5b5
BLAKE2b-256 0e62f1c2d7e18f0fa5a2a58be1209f94e13887e1ac41cb560bac754f9d7f07f7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0fe81f966859dcbba742a7f7f2d3173b0c90ce7cc5311c758ad3d8e02e291168
MD5 786fe38de41c4be1653e8663a9caad9a
BLAKE2b-256 278dbb48df5a9fdb520b59bc83ee8b026fc56c34f8f3019757f6d3a9360dac9b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 3e03867adb87db03afd9be143d3e4cca3fdcbef4e1bf92ba65cc4ec2656eafa3
MD5 9c7fd1c7eb1745dc7eded40afd838e8c
BLAKE2b-256 b9e6f37b1c2137e337f863779e51d7e3b289b0b7a24acd59c9ca6393378b16f7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 92c602083548b9b306f27f42d0345685623316f5f1f682343c3b13ab226e062c
MD5 1150648cb2b73e9ecdd82435a328786e
BLAKE2b-256 9808e4014092ee1ce1738f02b218cca4f3b9e13a7c167ad100379f02f6edf812

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 311ead0c622282de19becbc398b1f521d2fa2029a6e588dcfdbd202401affc17
MD5 6c24964abecc36979256df8fd132a790
BLAKE2b-256 adafd6f40bb44423cd00699a80eb295509565441ed571fe80c4d9bff09bfdad0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 63a59e3f8f683cf3b1053f4d8113d2f4fab6db7c4fe9612f1252ccf4f7cf805b
MD5 994431b988df6930026d4188fa594698
BLAKE2b-256 2f254fdb972c6bec6041bce1f5ad1bbfa18639bab03a7aac7c81710c086f881e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 c392882cc0abe0fd0def484aaf49739d032c7a689df4537e7cddd83ea3c8246d
MD5 896131e45c8220d008a35118679b0c87
BLAKE2b-256 4e9bbe5673be6838d196c5bfc1347c94658932976616d0d1346486b797c157b0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 eef30194bec710c600f3c23b1dd4e933b92d34ebe0ed94402190e8547649713b
MD5 7643357ab07f4ab71308fe7542d6c1b3
BLAKE2b-256 da6ab37ed5639e8f84efa645a2aeb8e0cb9dbb83784154bd9894ee4ca6e1e883

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 26489baf598c44d964fc8059c8810c02733070f045c4cb2fe9e6965d55c88b50
MD5 5c707647ca767ccaa5618127cf0e6df8
BLAKE2b-256 2579c68b7731c8def7ceeff90c5b1229a4375498b39343cd032258776f25f3ca

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 2aa41f9be81c9ea4bddd4c72c9b21ec000b37e689a35139d807b65a4637db42c
MD5 35a6544690a662ae328d5d0925d683b5
BLAKE2b-256 c5be99a13502f58264ef231e77412fdd837d8a1b18b72fd873c21a9f2e7349f1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 955ad64e9de7c922f0d64e100f295046eaa0cdd191aca9194ba55b4a6c8d9a7e
MD5 981da437dfa73b818385c38ac835bb01
BLAKE2b-256 77eb4cdfdaa9f182599e72dea38b393474819dd325fae61d0661f7403782ef98

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 09532b37de39e3316c14948b2f8c9df935e4dfa7fe4e4979ee11155636e35920
MD5 c09ca13dcb9d0f1710b1e36a95dddfa2
BLAKE2b-256 d2324c125d5f45a42825eacc208d5f7d122b53264a3476601643f08205154d32

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 37d90e3b064dba94de5000dfaae215f64ead81f48ef63083cc993bddcb1cbb37
MD5 f1f9f2fc92538441df9a0ad5752394e8
BLAKE2b-256 68193eea9d6545d958b4c7574adf0668cc98e09b007a624478d1d6814b3be2ec

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1bd095848fc9a9d1aa1b99fea319c5225958dc46eb09813ddc6c22c6570ec131
MD5 c04ca79dd19432a6034863c7071181de
BLAKE2b-256 24e1cb3989436c58932845e8d952955fff2e8acc75f0d611d39f46b2023f21be

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4644df93fb9dca53801bb61e0668a27d0106084966947a19278723a92d712356
MD5 134118d9d9855d66c96dfd7f2bb92c91
BLAKE2b-256 5455a79953f473bfa05ddf8e779960bff7eae1d69370d4b848aed3b872b21c4d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 67edd6e80932d32f0f895b6c2bdc102061964d63ec307cff71815ab4adbd2ae5
MD5 b9580d9c1ce1394865e5d44d5d05c484
BLAKE2b-256 ea96b5ed8f29b675a5edfeb944be34ce81e83c7f4abbadd4640ba7ae0bdb1a02

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 cbaa66d832739f26243303cbe360213eec196fb811b4beecc82d63db3908a136
MD5 95d25d0116e99b4c06a9b5a49a7f2aa9
BLAKE2b-256 2c83909b3f5c12f353fdfc11362ba3fa159a9b5c2f25ccc91b46f684d3e21396

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 555dd08b64c461bee6479659322a40e3e30478efa452dd53496e73a2e9840405
MD5 3e26df426e272fedb893df499ee88a15
BLAKE2b-256 a787d49a3284f7e2f64653f7fbb511b890d90f9db830a45ff561a62251c87d7b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 082b08934f98714b8e65d9dbab1ed6c359505187914fea6961a37736f580ad12
MD5 042fde067d5ce6747e157593e00a392d
BLAKE2b-256 af1ae6255aac00ad30998b46982b54c98ef2863889d02990c08a43347db955ed

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 beba37636e9afd76e6f9e2bbb57ae5187e1bb789cecb701bbd9a8ed2bb137c3a
MD5 676a80a0988f695152bedc2cfe496fc5
BLAKE2b-256 135a1343a6fd4952f66c067c5676e696d4b71267ccc12d0ab36d04a1573139dc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e815ffb3d629fa42f37330a9853540040538e93ca6c4eab01181c5952089b89b
MD5 ab67b11fa51e1f6f865966d250220552
BLAKE2b-256 d533e877cb60ed72703f006b553ab1d21c9b8f9eff8d6f87323e0099a69e9a37

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 4857668ab3c0efc1d8eb1c7f42e1b5688b05074dba37c67d765e1a70a6d683d4
MD5 6c2dcda8a38e83a659c17f46cd0af1bd
BLAKE2b-256 8cb381f60ade919818f1e7465c70f711116fbba28d6a2a4a1b04c25194c35afd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 1336c63114e642916cf8686cd44f746dee4c0a9cafb7edda14a77c723a3c73a3
MD5 b73d1837c52ada873ce9d6df9a282949
BLAKE2b-256 8e1ec3ce82b6b361d1b552187c61776eb050c1e9b6e3ea97761cbf2a10fd282b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 e0bf337fc2d1e7c076716e50163433b07c905d4db1cc0dce18c4386ca89ff041
MD5 4053d90a814073850c8fd4612dcb3838
BLAKE2b-256 dd09d72ee311426573686d97ce5ad47e6fd54d6da860632deaf87ac050030d08

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa68148947393ec43ec1efc1275c717db513d61285e4189061266d8523f0d44a
MD5 78280d889dd49234f03edf3cbf0b4e5c
BLAKE2b-256 914d6b30e2e6db7fac85d3f10c5fef1eb85edaf80d8aee92e3f78b822276ed7d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 292828bfe342cd4dba502acd4e765a33dfef34be9dc4716a430116a548f41d3a
MD5 ea18444859137f3ee990a794460543ae
BLAKE2b-256 c0d9b869dd138ab7a7a222aa6a69b17f687f8fd3f6c62256c3ec968b64a729b1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 fcde89db87ca4ef304f142ad7c58764e2faf9a4444b1c4a60b55fd5f4ca538f9
MD5 e08e4089d0ef125bcc22870226762c21
BLAKE2b-256 5339fd96abb92f0f3f52104cea4519afed9f588935a9ecf97dde6d02f276e52e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7abd9a167991d039c91dae19fb72fb23c5fb891ba162dc504fc491e4b3f53f38
MD5 eb13014553d0ef6d96f10615a52dade2
BLAKE2b-256 7548d3edb264f5b4c92fabc993d6c34920cdd5b66b629d193b54c3f4dadf2c67

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 7beaae38d3d337a7025f21916d89a63597d571522bfe48c37ecd5ec86aff8926
MD5 fe35f8286fd9e9793b6c0cdd094eeef1
BLAKE2b-256 85ee1a0b215d6cb1992aecfe9fc8ceab840e46c5cff68ac737783c6363f33379

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 f3071f8e0619dcad00273b27f918147bb6933b5a623a9d219559f66d15413401
MD5 a9ab63bade7733c98da79231c4d99ea5
BLAKE2b-256 0ab419199d6fb329a5ac031885d41446a9bb97b2675147adaa2b95cfcc562e67

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 d33b9f5ae2610edb24a96503432fc38477a44eb07c2cc77f27149c21e884e502
MD5 95eb2a2b36f90d4d2544af46e0fba913
BLAKE2b-256 a1b434f0f2089e1d5785b4fdd13e31b4bb15b1b6d6acbf6048d5c470b0d1e70a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3fa7de754930a020cc9ce2b4916a49d87bda83dbb7035e599b66c5e1ee251be3
MD5 7958be236ce6b5f317b2bb0bc094b24c
BLAKE2b-256 ea08ae834999d21b3dcfe462c1f170b51d13ecf768721255ec8d0a8975508559

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 36c0894f89f5051db40508a88b3d0de48ae75d4bd7f396742b4285044e0ee0cc
MD5 7bbb8bb6a50bcb1a25e54ce77e7819fb
BLAKE2b-256 799bed2e12a03ecb19d69f22a0928183f4b494fb384de181cdc5e9e05f443529

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 b13da2b059f3662cfc555eb3a85193ecf930bbdcae712cf1e178ba07d7e6bc56
MD5 a02c0a28b4ed288e8004158ac2d35fae
BLAKE2b-256 e0a3c0e235eef47be8580d5b44177f4102ed5845e0abb95197ad6fb71296f765

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 f9ae8b37f0e41ab1107ed97b10a3dfe5fcfadb03b13670b43dcf90b55cbb2727
MD5 899039d712fe55ea838deafc143547a9
BLAKE2b-256 e75d1c80ef8313d938e417dcb3ea92fdbf03c8aa753dd824ca13853444e90015

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 d1d06b6b1d00f96cbebe197d72cfdfc1c6cfd11dea0f444eb69e6aeabca8bc1c
MD5 e3903c39d5f09a8c4c492dcb2ecb9f53
BLAKE2b-256 6effad5fb42cdcad5b37aa0454b99a996d05a6dcceadcf5b00635a46acb1e9c6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 123ca138ef9e413b8b5ab71b294d3ff3f0c725b6eda040b76b26ce2dbee07a94
MD5 680e436ef42c6707c286d9f46631d5a9
BLAKE2b-256 cce70f231b731358a1dfd203b801d60d8707f8b6424ada4a146d090e60145c5a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cd919a44c087f2a667eef20d0f1ef9fcc56b49295d9361f09d9cfd76699558df
MD5 d1176769c6b1e257c903d3d7ef05f808
BLAKE2b-256 f3001c8d548fe6915051192e0fac9422171384b41842352b47a4ffd21b073238

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 18b7937b510974c4756e0bc8b672b9cad4265f6d61ddabcdb2ddcba5eb861263
MD5 2792165a582bc0d0d4354250a279dbb5
BLAKE2b-256 c1275fa400e754ab6668e7207da47bfa1dd87590e0f02a1aee91be6a01373172

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ea977a10b74d11458178422c0f9f67854616b87fd858179a10fbf5bc3f3704be
MD5 9d327ef6c25d2e506ec1c7f35471bf8e
BLAKE2b-256 897115dd0c8f413ff8043971f91c62666efc6a83036bd759f8cbfabae2a12566

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 4b9911659fc214d57b4a260141c5ae328b0b73337984f3304fd1b089918bf631
MD5 9c1a6b7a7af340d76b0a49755314cfa5
BLAKE2b-256 10c531d39c0f789243ff2f1fa78035c46f3a786637744b33945d3cf7dd255987

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page