Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError

v = SchemaValidator({
    'type': 'typed-dict',
    'fields': {
        'name': {
            'schema': {
                'type': 'str',
            },
        },
        'age': {
            'schema': {
                'type': 'int',
                'ge': 18,
            },
        },
        'is_developer': {
            'schema': {
                'type': 'default',
                'schema': {'type': 'bool'},
                'default': True,
            }
        },
    },
})

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.15.1.tar.gz (247.7 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.15.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.15.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.15.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.15.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.15.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.15.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.15.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.15.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.15.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.15.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.15.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.15.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.15.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.15.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.15.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.15.1-cp311-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.15.1-cp311-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.15.1-cp311-cp311-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.15.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.15.1-cp311-cp311-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.15.1-cp311-cp311-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.15.1-cp311-cp311-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.15.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.15.1-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.15.1-cp311-cp311-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.15.1-cp310-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.15.1-cp310-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.15.1-cp310-cp310-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.15.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.15.1-cp310-cp310-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.15.1-cp310-cp310-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.15.1-cp310-cp310-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.15.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.15.1-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.15.1-cp310-cp310-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.15.1-cp39-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.15.1-cp39-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.15.1-cp39-cp39-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.15.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.15.1-cp39-cp39-manylinux_2_24_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.15.1-cp39-cp39-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.15.1-cp39-cp39-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.15.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.15.1-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.15.1-cp39-cp39-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.15.1-cp38-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.15.1-cp38-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.15.1-cp38-cp38-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.15.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.15.1-cp38-cp38-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.15.1-cp38-cp38-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.15.1-cp38-cp38-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.15.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.15.1-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.15.1-cp38-cp38-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.15.1-cp37-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.15.1-cp37-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.15.1-cp37-cp37m-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.15.1-cp37-cp37m-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.15.1-cp37-cp37m-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.15.1-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.15.1-cp37-cp37m-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.15.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.15.1-cp37-cp37m-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.15.1-cp37-cp37m-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.15.1.tar.gz.

File metadata

  • Download URL: pydantic_core-0.15.1.tar.gz
  • Upload date:
  • Size: 247.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for pydantic_core-0.15.1.tar.gz
Algorithm Hash digest
SHA256 ab0f9608020ec4ee6329fc07f25c8a2a9cfae0188ea7ee728ded00aadc71f39f
MD5 7d9f599979735066b32cae49bca2d301
BLAKE2b-256 7e80dee647062ed38a4441e4588864d463875ed1d10ed618b5b0c46e1883e12f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2c81db43756276ebd1afc9aef24737f2a431d73c096cfd9edbc4276c0207deb3
MD5 c3dcb3c7639e6b7832ba796d532c52a3
BLAKE2b-256 b4c2390eb586b855ee34aae4b8683e4e1706e0ac7a02ce588b7bdcfe0190af1b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9d369be63b58369ceb3195360c237d8dff5198dc3245f3c330c2fb3dded7c261
MD5 2624192966dbba0671900cf441059e5e
BLAKE2b-256 47a2bbe4853d69733831f36ed2bbf1191cfd14ca6fe9580d1d32d7289ddea8c6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98531ce8187da01822be85dcc5dc721bb3eaccf2c467e762ed334a8e4b93c187
MD5 9f7b477e3383e38eed5ca6e81c212df6
BLAKE2b-256 daa15ca9ac356dbc5e71b55a2f5f9dff4da5a013cd13edaf4393a59aa9107feb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 76422d4efd46c4a26bdca64f1bf6e513d5ec53f6271cd881f3095802d3e32c0f
MD5 5f30cc02abd1ad4b773e045d0eda34c7
BLAKE2b-256 2fa9a7c5688744f5619e142f61fcdbf645b581af7881573976a78b39cfdc85d2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 8895aa0a7d048fa88604be37714d010316632544c9d44a1327e07d78511c45f2
MD5 85e40f3b880e2c352780e25ca06e2aa2
BLAKE2b-256 adc9e2726036fa536262b2d738d6e5d240646f9a24861a8b66b997c40433747e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 9f297e36daa38addff4d5a05dcdc9dc25fd4c65aa4282639397af351301e7947
MD5 2bffb828eab103edb0841bb8414c7a24
BLAKE2b-256 be15b01db2e8d139d1b85ae35b41fa2cad0d6e99242d260d3e99967f5840e35b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8f1ab449631a9177ff2c54aa9bed7d246cfd0ddc3464a46562b476aaf037f4b4
MD5 044fdc79ec3829cc7e2326e61ff19088
BLAKE2b-256 be6e080b38ec41d9a3415da28ba7467157e4705527961bb1d9b33ad4d1e294f4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4da77b2aa1569d5ce891f22ee292fcb7a35e5c481f571e8be4de42ad5569b4f9
MD5 abfc6f95107c0a12d49c6d533da92417
BLAKE2b-256 db55ed1b3e90f0595c19e7cbca1b1ca2faa1e10f550988032ca443d96940c703

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d7b233378dcd68f39a411eba61a377ce917461d2a6c9bccbf4d588e591c6f209
MD5 f6d8996e1ca1c61c604715b58e628a1c
BLAKE2b-256 c7848f1026b3eb1f76a9cbac4ba985f3479f5f95280044b6f333a7deb8c554c3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dade71d8ab2ed4034e0857492e6b009725b80daf2608be12e88fd0fa0b2910a3
MD5 d49a64c9e43019a1952499889ac7363c
BLAKE2b-256 e3b5863829a4ce6a18495aa42c0209a4c8f77dcac16d7db37e832c6afe80ba65

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9918fb3dd9e32a6e03617fda4c161d14c3e588b4093bba0e2aca2cbad3339403
MD5 98e774a2dec22d1e0f954aaca9203cd4
BLAKE2b-256 d1b7a229195b705b1a0b1f557e48ade88e91cc2c9a7006d09014f445adcbdbd3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 57a7539089f59bbab9670d9ebc4d8567fad1db1ff67431e0ec4c7e85428cd507
MD5 e93ff487f1fd300affff4583b0cb7cc0
BLAKE2b-256 24e64a61e4685db550a3500901bb805ecc73ee8242328055dd9e074a3f1c472f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 58d78de8186aae460b3e98177e45bca3cdd4978250fb7fe31724a462a2bc63fb
MD5 b3f4b5cde9b93627f35a8f7eb627e256
BLAKE2b-256 c34c63a917361a20b6ff141f80535d3a7ecde85f69c7493f94958fca0f489b21

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7b1b1993c013ea28b1ebce23082a78394dd1202393bc037848b75d6486671bcf
MD5 247ac9f7699499524c473fca47711b89
BLAKE2b-256 4271987fc79f9254062b839a21ed162ef5951ea2091909b898c4bc964c29e4bd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 34733a3f582b1b151cb472d0b4a83c801a8b8983d2d8e8e14dac1e4182ac1960
MD5 5551207b598b5fef711cadf7aff640e3
BLAKE2b-256 1a45246c588bf131720af71264eed47be79632bb0de6300a93c9d194bd7d3115

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 46bab188797c0f0f4cd703c142e2853995877f880a9f2106e7a93a0936794a24
MD5 833dba698914e3418fe4a40409f4a92f
BLAKE2b-256 6e070754fba8329ba7e54bf36a4d74324f08bb3ea02039da8859ad81f0cea952

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4e861c29ef3cd219bb957ca8fea9f85f25e9cee9e17c574821a250089eed5476
MD5 bf6f37a0d130ad696d6a375867205ac2
BLAKE2b-256 554decac1f1a1823238ada57cf68c20ccf7744f2c17ed2228fc1bf0ac9ef3a34

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 b7f48ba823bd367aa3d100736f659edc5281227b9b9ff5598e6fc84e1e4a9714
MD5 181291fbb68f1600c3a2e869cf9d80f4
BLAKE2b-256 daac9879ce41da73b6c2b1e2b9ec6d5cefad3c237ce39814b81118ab3c830b80

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 9b7f9c250c12d35264f03ad7843d547973b1b3a8c8273e9570e358eb4557452b
MD5 970c4e533fd095b074f1bc2d906b4387
BLAKE2b-256 086e2d40bdf655bc5891fdfe881e9df13db84386ba37ab89beceb13a5ad21283

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 90ceea731bd726cf1f4529fbfd8250a5ab054310f2f6c4994eddea60d10a3a59
MD5 cb97588908637182e4fa08cb9cf2f411
BLAKE2b-256 b823bd9d9ab3ff567cf9fd2a46567ee493a1236a910f9f293817019ccdcf1032

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 26e8cfb03631bf788ffc005d90c67469c5b33082fa41ca1a6c92076d1c07ee48
MD5 b3490dcd3cd7407cc2a70d0b18a13ec5
BLAKE2b-256 e577ff9891f8445fdb1dcb6fc5a8a32048861732a7efa1cda5a04e95ccd388c2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0f36dacc0999fb81b7e995a33c98b3f757c2f5ea2d436e0d9287d42c858fbd06
MD5 fe31e5b655004d40f576e270a4ae0ac7
BLAKE2b-256 86f7db741581f4030077534f0b29b6180c4f5021fbabffec23fee99f0684871a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 26e066909eeb93b90910570e5dbb520e691f28bc432f0641917eae41842b0fc7
MD5 9996938302b0f5564610ab91220e5ec6
BLAKE2b-256 2751a8d5f740b55a3931de1d5eb7e7e4ab00d057beea076645d13d41d13aaabb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 f881100620cf9196f4e42459bf66afc0c9087482f39f9ce78586582e41fed5ed
MD5 9faa569b1043055ff000b86f473cdedb
BLAKE2b-256 a26d1c445930b130c7d15b5e819a62ba673cae78152b7a477ed3d637a7814cc5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 144cab91948337eff3e0a1b6c57e290ec570280136aacb67842e8363e65fe742
MD5 0b80ffa4b15cf4f51e15c507a74f172e
BLAKE2b-256 6b233d294a81fda841d27df7add6b3bafb0dbe60a77d712b765383e3329cf94a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 29fad59af7d751a3103efb5e7b689ce9c424466052a4d44b7253143f8ef1f902
MD5 8673f45ff111cc39f47f57d40ab7bf5b
BLAKE2b-256 2ac070841f60f1d8796ef03f3f4214a66c380fc489a5b961bbf6233fe0d61dbc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4efd781e68c3b63f588569b1e557bb28c7c66587702964b8ec0ff16a58fcd904
MD5 acbfc83fde116a29f731bb597a6e5301
BLAKE2b-256 a5d1812974ddbbff0c62883dc0d127693f49c38ca7e23ce2fd50a0870216acd7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e0286bd8beb7bad67df828833404dbbc466915360e2e51dfa3edda7aa2fa852c
MD5 4ff16225f3f98b43301232b60cd01916
BLAKE2b-256 110f9e481cc2ff7bdce822ece0d9b95a48f8e5f78a6232431376e11d195c3137

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dc7193dfd01eee930edf339356630ee3035e2656f67a98e9ab33e822a6651b97
MD5 09b8ccf0a54ce7fa7ac8a22bcc3d52a5
BLAKE2b-256 d33d29d3e8beca4bcca8f2348feb182797dc921d402587636449fe40f2d459ed

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 adf0375488838a5233a989132dede772b631cb78151f9293f2ef8f3226b3dea1
MD5 fa4380b0884463b102ecdda0a1549ce9
BLAKE2b-256 864b964bffe5bcc0ba6c6ed3a39c2d3595d1db6d942f8413a129d6f27067ed19

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 2cdc2f064efd600c15214d574984c876e50e6b4712527550f08a626d1f85933e
MD5 3aa92adbda383d8e236563b897263a45
BLAKE2b-256 782f2cbd8853ce98ae667775ae6b164ad8126d73bcc83694c2f60a2db1d0a2a9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 491c535fb8c57c52830cb06058e17426d5acafce22157495dc8bc0366d2b4c42
MD5 4f80853cc5fba4be55f63f0048a0d06b
BLAKE2b-256 8a58b39119faaa7e63ee3da3907d08fe648118ba76ffbe9847bc0dd6cc04a682

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 42a6518d654f198a6897f9bb99259df499eb8d428ea59236e76bcd9661a4ee98
MD5 9392654383644b797f354509c0a1b3c8
BLAKE2b-256 4e6d51d0095e28f94adbdf104d08bf9b9ead6e9ba31c11d5aad9b5a5e8e60134

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9d129cfec94670e6e3df33f0086e6d6d887af80f1a47892759744743d3625cea
MD5 9725a842bd515a01e849b17a0083da8c
BLAKE2b-256 3546798f75b3aabdc51afb8758dc90f31df44e6cd40e686f76dcf400cf5c0bf0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 e8ed9fcecec144e8e2bc75bcda738b8b20c98db65f56b2025dbd74d596935142
MD5 94aca27da386bb8e13c727467a6fb2ba
BLAKE2b-256 cefdd49a6a6e89a40483846d2f5561fb010679839d86ae9c66524da3170652cf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 98701d58104897f17eb1a7487397e0d116585f5bbeffb2f8486be23325cf4a0f
MD5 b4cb10f6b06b44df623fd9d7d652dc5e
BLAKE2b-256 0f02d105ecc82a3e15e01e7e46b9499d320f617de86077a9c93fed628a231e29

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 26b33c773289bbfa4e613e0bebbdf9bc31f1b7ddd09c23716f33f92196674c82
MD5 c74cd9ca76bcb84b37232c8aff8f481c
BLAKE2b-256 0c53f3b95314a39cb153da670cf04ff06c1d25e87375847a3ae74b2f43fb4ab6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f78c5bbcbebeb9f986084fef21a810b1a5f4aa8f61e7e289b80663d38c953701
MD5 882cadef9a77fe63f272ab4d686af84e
BLAKE2b-256 685f5d112b9b1c2ce68ebae7d65ede5eabb68ceac1d463896e181b84250be795

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 73e9e1524bfa51d310e1e8b633c686153a259b59383a06cdf6fee8c7379102c2
MD5 26c26722f7e99e76c5f0aa65f1ce137a
BLAKE2b-256 f4a22ca3d7696ca08c69d6a177420c69e9c74afcdad3c560816d5c0d7e133eae

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 83a579b23f85b92ab47f340ff18833b6adf6bd08ffd3c02a3aa12088d825158b
MD5 cb96107b8bde5ec66ce805805790d046
BLAKE2b-256 848fcce484f5bf5ca56f1891c715eaaab09d6e25f29b07cd21cc44f3f6671c4b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9d18d4d22ab5b7b87ceb4ff07db662ff46b772d3ba8cd97ade302e8c2a150f64
MD5 7293b97fa7fff5e6b5924c64635fcc98
BLAKE2b-256 6c187b7ab265275590e83f287bb104574af1816a02deedb9878186e2ea15e214

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3fc25851c037f352e13c7410aa16af3d3675144d025d8a4fe9a8f918a1ff3db9
MD5 ecffc1d71d1982e64c16ecf85006edc7
BLAKE2b-256 286fba9ec80eef71a305a097deb1e4e6101105f3fc11668e7d647b1b6e816212

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 ef358ef1fa7425185a4e52e451db9de64844f2eca38ac1e2cf4ec6292316b9b3
MD5 c633afc94ae63333eacd30cef0227177
BLAKE2b-256 10f4de6d47b6a76d511ec9497048f7e02f9fec96e221541fee7ea98161c0fe4b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 bd579abc58f699158657b9d118fc61739be3ed40f611d64ddf6d6201882c1c27
MD5 7137142db1667621db9ac468795ebc2f
BLAKE2b-256 8df1c4f812f862090b984b3659b4d3adc7c41d3f6e6a1d9e4bbfb303db96f505

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 75798341884b065550863cc5b23ad723877bcf85920b43b907845f6eaf52d668
MD5 a19c6036ce6306015108f19db8ef33d6
BLAKE2b-256 b0a379d54c8e1b0439f2be337847aff38948ecb98adb812d01f2d402561db471

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b3ea2170ab3d7ba24f9cfd8fcba716bb8b71e1ba9e7fb0359468c72c5c3767ab
MD5 51648d2ccb95c04527407b68116cf69c
BLAKE2b-256 c38cc29e1af59202b6d0493cbea7976ef8dba338f9453b380374a5630a9ea091

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 3eef29965bf72dd1359d8d9131bc4e10de1822478bfba74a78df66788e98dfd3
MD5 ff77aaac373c8c9d43755c8a2a5091d6
BLAKE2b-256 fe17237250169c66c6d963d34b86fb0db86bf6c47b0fba64c296777163d6bab8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 859fb742b8de005ee05300b9806b131ac852a09f036a8fc219cf695df5556912
MD5 b318b2654f931352008a9899ed540495
BLAKE2b-256 500379da9af1ffc2ea5eb0a9c6c5b8becc14e1f42ec444b836809e284dd9afb8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 a5269f87357975255ad3bd1cd032ef34d18cfba9d784effd0174da868254a1ec
MD5 e6b798d0c2f883112b088ad493b66840
BLAKE2b-256 9ef58baa8c285a93652a23c9abebe3ba42bc0343a887a1162cf5f4d0f90bf5b5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e4d6f42afefa28204e63d4988d629dfb81ccfe91f444427cb77db586bb5263e8
MD5 99993d77cdc8f0a5e50e53fedfd69e65
BLAKE2b-256 205a251f9787d2b497b884f0dadbba7dd4136d5f6f686abec95a4540b32ee3d8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 96d0a641db7f14179fe66619394adc486a905d795cd13309590cb2bdf18e6be8
MD5 decfd95ef1b32cf6ce982f04b9bf2288
BLAKE2b-256 5859c43daa32f5097046a60fa4b0ac611de34621771228d8797079840738ac69

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e5524cd6a036c475fc61843aa95581111c69add3dab3e76602ad2929e67ae5c0
MD5 e41a6b76ce24472f82ba4940064c0675
BLAKE2b-256 5bec86b2e6b77073b6f11038582cc83b5c2e5b83c9efc6a0f576473d5d8841fe

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 08362b4bbfeb043c985f511d52984b8ed0118fca0b198124fc11dd9913fee68a
MD5 4ad402c375bf24b92566115876168841
BLAKE2b-256 434ada5af9277f6f82d86938b7dd81701e025257928c468cf5bfb883673589e0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 5ae32b2c82688bb4862c06146f652f17911012125a8fabbc3844b4bef0db48c2
MD5 41937b42e6c45e47e821fbe22b77a585
BLAKE2b-256 3c1761e2f9c38821ec40e70a8d3062c03e84f13c1fbc9e47d8758b6a91b87ad5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 ad0ecdb3812a4157f793536c02c846645e0ca64187c706a60a5f886e3a0c2787
MD5 2a819b14995000894bdcd3d26adeb065
BLAKE2b-256 e13cc00e7812c519e5ba716d9c54ec1878bc85ab7b4ac1d0a9a43118871319a5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 c64fe45869ced9964f37b66607754dac4568a03ce10aeac2853f7ebe1b93b698
MD5 4ce84da6b7fa342579e7b0f09f289720
BLAKE2b-256 d83bcd9c59ba75aa08a936ffd7c8667706d608192fba2318cf5d5013962e2989

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9eae6b91e7aefe8c0a4af3e1e64b6ee38a79422f79f97aaccf5e7db1d4848839
MD5 dd400b75f273838c92b7250bb7f3d0a1
BLAKE2b-256 5ab782b7f220ff2a9b06203b96eec8a21baf2ae2d2079ae8436f5d0fd5ba2c9f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 26ff2d8f972dc3247579d1a4cb9de00d20112bbc1c1b3a5c24d0eb6ada2be928
MD5 c278645c2dcb3c6ca29f0d2aa33256ff
BLAKE2b-256 a58fff80d535f831ac0c98867f658e11a26db950f44cf3d1ff4054be96796c81

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 e83aa86dd8a7c87865a46c922a522b770b051b2a3903eebdf2fcee48f0b63610
MD5 37873727f87f2603e90ef67452d051be
BLAKE2b-256 a77560c21b5d6b9e25ffaab7aef7ffd89d6c1aaaad3d77e4d275a737d62da116

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 2fbf8f885fc9ac9bb756751d0842753e61f091138b41bf95c08c9fcdd0011c1b
MD5 03a09bf5cce56bd1adf13bb2b2b09075
BLAKE2b-256 5e88cefa105d144f843328973c707f0009e61e7d6c2e27516b19230e4aad2782

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 606dd188fa1be977bd05c53deb0e6d82a4ade50022e96c338de0206a0c73a5fe
MD5 9f6948ec1dd297b75429a0a4bb8403a6
BLAKE2b-256 18e6af7efe1bbfd6176720a71c4d69cfd9d71ea49fd81fab0ac7f760b92223b3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 11f789c25cdea5d3d38b0b9aea134caca068e5571694152c24e09e86988931f5
MD5 5eded59bcc540a92c61cb1d4315aa042
BLAKE2b-256 599b65cc22233ca7a4e83c493b25ea581f559cddb09352c24f7953172129a5e5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 43c0e10d0476ad5b437cea838d9bd430a7c2ded8bec54fd81446ddcca7102fd3
MD5 bc8f9fb1477829a9fd90d1ffc9b4d353
BLAKE2b-256 229f310c717f0f3f3727611600a50c170fce7e77cc724e3427cda311b7b2fcc6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 85dd4fdc720e228eaf3f24bcee47a5ad5d942a34f473c48062430abc53e3c195
MD5 fcf633bff50c93722b192033be31929d
BLAKE2b-256 1751569674bef5ed4790fb2ac7869dd5950fbf06f1633a5aae6247026ba59d19

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 365ffe4523b2776a69f4890eb7478f8d4d633d9400aeb7df4294e50c65a35142
MD5 7b5616a1be2a142063684afea5434a05
BLAKE2b-256 8f9dc50bbebcea228d9646a8389148fe8c18641e2bce82483bb2c8a4db6b3663

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 661ea1bee7d2a1551f475946c101aac50dc21eb70166908257c1c57564d092c2
MD5 a480993c99a31c605b1e662c1b867935
BLAKE2b-256 2b1116a29147dfd40ac2c00669a67cdb3de7d34d6b3345e03c975c7d93e4b57b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 d45d55d536ffcf57ccbb6470e81b16f4bd17a99168e97bbcf39400fba8b01397
MD5 ebc2116a04fc700954cd182d7ad42926
BLAKE2b-256 937449a1a40c40c41fb5da6a0d9089261d8c5544cc50dec168e7f1aa21fb82ff

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 57595d6e5e31d5b4f5c49efcaae154bd27aa630bcb5ebd59c92add6189d72d77
MD5 77a6aa1426703acbc25721a10b68bf51
BLAKE2b-256 4367fdb4583ce7f34a06f8d67fc7d02b94d17e8986d55ffea239ebfca64d91fb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 881af04531be5fb35fea33a87b2498e4217a0cfacaaefb87b064a16b2ebdb94a
MD5 aa409c15636d432de334fe7e6bf2b62c
BLAKE2b-256 cad139b086864ab2c869081e585a69c4f626448eecc632597224fdc74c64bd3e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 658b4ff342d52fe05ccedaeb6e8c4ecdc6d7f78d3937f70e26085cc9cb690d83
MD5 0d25c78bc07c53eb9007d7f3a94c1266
BLAKE2b-256 d05dae498db0b1676eab63b4d35ec7916847c03b00b9d4007bbf4289c7ddcfad

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 707fa813e2763bd1e61cfa1e069d1fcf4f77460363944515ddd9a994d448fd00
MD5 b6a5118823bd6afb41fb6200e20e3a4c
BLAKE2b-256 55479028990e1cbe40844e7b4dca05da1f1271261393b6d9bc9a7f94bbee3c1d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 f935f0930b7a41e84c268639d8351fe9b2b57bd2c166eabf1038016d77f0b411
MD5 e7408f8ff13575346b8d8f471792ff15
BLAKE2b-256 db7d7c7b98ba4b86cb063371af0f03cb0e42084c8fbe077543332cb310690306

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 1b8bb962f126d5d19368d516092f89fb14db632f2cb10b337fa6d55e2137f9bb
MD5 542930e19618cf6f4a4c7bcd01d93c97
BLAKE2b-256 1abd92ee8abe21c0a243913505e7e45a47b98d1a693113458e03a93142610d60

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 24614a7c3c4288f8b5b26e3dba7d26c62e8af03401a97bb1374e6522309b9609
MD5 01d3ee20d4180804b39738d88914ae05
BLAKE2b-256 868d7d07a81439204929a5e95780e7b0abbac260babb762a1ebfd0ca6719ad38

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 480259a2dc9d1f6fcd65f85c50940c58fd0d73e54dc3ee3a5d889b237d95632d
MD5 28f0a26bf3be49245cf2f8658832da54
BLAKE2b-256 05c471a2fb36a0a0961f87850bcd804c39c61dae3877999ff26437092e1841b6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e0543bcfd27d698b2320f1a52587b7d876196c1f0a4f29576ac6438b2a40f40a
MD5 dff652342441f5ec82b28678c1213cf2
BLAKE2b-256 4dd1f76e01022b5a35d7b9d91f5a723ab3f9078713a3eec2aa44e30628308a68

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8faa812f69df0a8343caedcec1fa1fe9c7e5209e8ce6a1e86947707a25428d1d
MD5 f221a774d95973e32a76e35effaff9dd
BLAKE2b-256 a86c8a1939d4a5fa50973ef7d1f06375a7587ab3865de06eaed91de973666be0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.15.1-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.15.1-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ea40e4c84b6f3ebed1cdd4003a280605f62a3c6201428e34776bac3faac93d95
MD5 4be2e4695a72a6b179f403f277d24e88
BLAKE2b-256 60e8c456dd4b7103f4582738b0926b67e85f7d8d4ad70117acf124de077af0cd

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page