Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.17.1.tar.gz (253.9 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.17.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.17.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.17.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.17.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.17.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.17.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.17.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.17.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.17.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.17.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.17.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.17.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.17.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.17.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.17.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.17.1-cp311-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.17.1-cp311-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.17.1-cp311-cp311-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.17.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.17.1-cp311-cp311-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.17.1-cp311-cp311-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.17.1-cp311-cp311-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.17.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.17.1-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.17.1-cp311-cp311-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.17.1-cp310-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.17.1-cp310-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.17.1-cp310-cp310-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.17.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.17.1-cp310-cp310-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.17.1-cp310-cp310-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.17.1-cp310-cp310-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.17.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.17.1-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.17.1-cp310-cp310-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.17.1-cp39-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.17.1-cp39-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.17.1-cp39-cp39-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.17.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.17.1-cp39-cp39-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.17.1-cp39-cp39-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.17.1-cp39-cp39-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.17.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.17.1-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.17.1-cp39-cp39-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.17.1-cp38-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.17.1-cp38-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.17.1-cp38-cp38-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.17.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.17.1-cp38-cp38-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.17.1-cp38-cp38-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.17.1-cp38-cp38-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.17.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.17.1-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.17.1-cp38-cp38-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.17.1-cp37-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.17.1-cp37-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.17.1-cp37-cp37m-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.17.1-cp37-cp37m-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.17.1-cp37-cp37m-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.17.1-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.17.1-cp37-cp37m-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.17.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.17.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.17.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.17.1-cp37-cp37m-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.17.1-cp37-cp37m-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.17.1.tar.gz.

File metadata

  • Download URL: pydantic_core-0.17.1.tar.gz
  • Upload date:
  • Size: 253.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for pydantic_core-0.17.1.tar.gz
Algorithm Hash digest
SHA256 d7f4289d0a514b42e364c5ceaab7d16d08d78128a8b7372486931275512deeef
MD5 95c7a67b8ade6aa12de40b1ccf506ed3
BLAKE2b-256 c3d6ef72953d26d836f33353ef738643c8c860faa56900950cbd8ab1a2689cd2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1893ef067af143e3066b046ff9189260cd1ae9dc737069545026fbfa6cbba0d1
MD5 505901209c409f8aa472819e688e9248
BLAKE2b-256 e8d4274bdcbd8c4dd382592156fc44573f602a239473d857bb367cc1fbd92883

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 cc8c12db5a23ab8cd7fbe6cf893f79b432c1c9790df773f6801676b023387d6b
MD5 d74f6d8c9d0d82238c7de37805dc76ef
BLAKE2b-256 19d3331efbd19fe954e4723e751ec591451a1603767f20be5c9b3560305f4f9e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 203ef6f4b8921f83adfa7072dd5c9a4c99a273249f8090e2e0c59d34e916fbe8
MD5 26750492752371cc6965c63230c0a4ed
BLAKE2b-256 6e26f24ff550bc431e544b30d6b74edce16a1deb9f9d47617dbec366a5062f85

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 18a546a87ea09d8ec10a242fbe9e0b42aaf424d213983c322e0b45cd07bc89be
MD5 33a0c540e403098f09895832a372dc8b
BLAKE2b-256 7329a18944996e4c3b3fa56964fef160a9559b2b62f2113bca4ba2d7cc975e6a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 dfc013ab6073e4e72212f5e7818aea3f35e6fd95b2c6cd694ddb55f073eda10e
MD5 a5ccdd7e53eec9b46f1f544fd83ef7f0
BLAKE2b-256 e90652f996921bc833c19e0ac452391c426da934114c48ae2b48dd6f01297db8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f0affbfe4a61d35bbdd1c72fb3458e30d0a8c229f1de4bda3133045913eeece2
MD5 3d85a07c7b76c5b3e2c4cc24a96a07c7
BLAKE2b-256 d2e06f660e235780113bc4fb77af68555f0d8aceeae12f184354658ff4dd8602

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1ce7f381435e74ec4014db07bdb1818bce458e651d16cee003264723392e49f4
MD5 e11f99aef7fd766fb537ce739cd98610
BLAKE2b-256 9699791572a86c8ac07510cd402697666e4811289e70e7f6c8dd02ec43bcdd80

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7443264919e3fb2c4e6433f0c8440326af5f94fa952df3a3c38d4a5005700327
MD5 a050c8327fa5feaf348f907f82a2f056
BLAKE2b-256 651d77b9ec64da4ee8ec2ca241cdb6ece825266250aeb0eba0da7ad3460461ca

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 915511e5e70b634a8417e4543ce204814b3b0170d13b7a9b908e9ab449157c24
MD5 c3f0b0cc550ae3c9a146f3fdfa24cefa
BLAKE2b-256 f05f3ea9609e04c84a97a60a02c3e9fa26ebbd9f6ed61f51cf1cc2eb96084ef0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2326231220ea2a80abaca35f05b5d1baaff36d6af6e94cef9b79002bde704d00
MD5 db12fef7ac28457fedab2cf8a755af69
BLAKE2b-256 b4120d085decf0de6cbfe063d5c3351d9c1bd8e82f9166c77dc467698473740f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f625765f63be0bdbdfab7588cb17522c5e4055c73208b5828e234aff5afceab4
MD5 b4dd4c8d135fb34f8ce74c65cd3d4d23
BLAKE2b-256 959cb5ff8127f93feafbac589861ceaa9a1a9ce62f4d71a425ce53ad05cbc5e1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 2c0146387d2d0fa041aa296c4f5575bc70e82c5d4fb7e93196a8f4432475a8f1
MD5 039ce7f018111430f1fc7c98daeb199d
BLAKE2b-256 d0bf7193eb87eb8ef74597d9810fb68cc10272dde8be8ecc261f7b5a902b80b3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 223b9cb23d479ca0607bae76cbfbd815f6b5858d9ccc36acd6052da83ea41dc9
MD5 6259747be64d1a9f2fb01f38b1e6e08b
BLAKE2b-256 9b2f12123a191a737c613798ca4f448c086a886a0baaa0e5afab31baeca7689d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 50c89d6e4e50d08027c8cadd40cb133914621071dcce0db0d0414090f6ca4d98
MD5 a9928bb1abb928353a0aaebe6276d9b1
BLAKE2b-256 f3d4e77cf0c9071b8c361111ae17d47c806c2b1cfbaa444872f54527584f742c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cc9d11a3feda2534ef4b098c43bca4ee3836159976d134c87338825bb317e0ed
MD5 a8b7ab574450954a21a9c86134f52715
BLAKE2b-256 3d1c8554b03826bb603b17ac949e5e59352d35fe3809f6a8f03b9d004d16b9c9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5dc9de7974db03b90c7d7d9dcf13d95efdf6d443282b695ab4e6a61c6241d2ec
MD5 49ea0eb700fb8e676fa5f798832c1b43
BLAKE2b-256 d9d59afa5b9afbcef7d1d5de52a752d730847fd1b82bdf9cad7486bfe45fc0cf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 1e4c2c17d00a050c914f9afe32127187530f8ad1583ad5ce246abd04f124206b
MD5 92ba9b292e981c885a8da113c3c50be7
BLAKE2b-256 f483e6f9199303c9be87c59d17193fd61086d7b5c80dace5ce7fe28140e467cc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 210ad9cd7b6d4efafffc1d67e2a69b27d8a4d196f194ade59718175ba8dfda86
MD5 67030c156f6aa9d50df806e376d86ee4
BLAKE2b-256 a4b2493705af101f2da0393c44c4198ecc6976eca08ed759ce5eeee0fb799941

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 0086630e91a99dfb197855b3b3190176a6da28f3b06a0ccc078e1ab340041034
MD5 26109cb8b902a6d4c4c244b9c7831f0b
BLAKE2b-256 9b250a598bba9b94d0735cf4f3c28beb1222375ee920a45d46851523d3d9d970

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 321d8fdc25a40bd08392940647b1c0aa5b0533a6d169a9f296458ff3e0b8acb3
MD5 64fc56c235caa2a25b524aa2f1515776
BLAKE2b-256 ebb5678761ef9c3cc7e56465e1a7331003c37ac63ae3188dba4250e07c0bc161

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1e11f7d886f85cb08dd0c46126283fd2dd00f3ad949943072d099645dc74b10d
MD5 62b946b6785c777e8267c9a41cf3b22d
BLAKE2b-256 6fa52618c3a60b07b1447934c1d72dbff3bce61be97b5a64e6e03b764d2c3571

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 26e60dceb8befb59f9beffe11b746e6af595fb0756b844b1cf4bc15c66261de1
MD5 43ca7e937703de85ee8fa373035b7420
BLAKE2b-256 e884d01f5f43ab9e4c1946d2fd4352e2873b9047a7025df127916993efdb011d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 e6d4465ac9f53aaa95b37d5cba15fa6598827874beb3a86d3725fb47d2238c7a
MD5 fa34da8e8c987fdf3535b205d4870bae
BLAKE2b-256 21b6419188937e1a3be1321a0013c46e9049464bec9250095fa98784e89f219f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 fffd36b512dcc6ca88a4306bfe5b857145a3c933fdf8e850d65ab08e175a44ff
MD5 2c1e234a27dd7d67f733092e44359d12
BLAKE2b-256 d51c511ee2838df778b1c79116e4eb7135f71e65efdc85d65f47059184eb1564

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 f05a0b9ae5262615c114bee5eb1a5580d2109e8a696df8cd0dc32ee518484097
MD5 f77a6dc57969e2a542025a2ac781c511
BLAKE2b-256 dfb2cb9ae1b144ae6ec3e300b279c00f2386761133b6dde0ae78b4a486ffd449

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 252a237c85b4f934a4e01d2dc7c2f3f3f7ad0c040eeab033e50eec42cdefd69f
MD5 bdad3c288046aadc8f5e1950e4907b6b
BLAKE2b-256 b2dba9fda313afe28df24b6036514ea5de338e2885178322ab402c6749e372f3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b0577e284bba67de8f4cc4547cc8e25815eb5ed5cce6adffbee20049edf2babe
MD5 a9df976f1456e5e89b1570c9ae9f26cc
BLAKE2b-256 1de716b3a89750d7ab7d9a97c00d027e6da76d3e40de8b417b597ce75ee73cc5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c3ac762d943492ba2fd47e8bcb150eaa7016ccbcd9dcf3dd94f80eb71e2a97a3
MD5 bde6fa3c356980b0ae7b227c8834141a
BLAKE2b-256 83ff00527433e7e135d9b483bfc5175d2683b4cd5d9b14cc943b3c57de88cace

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a13fcb4f616e7dcfb48f9780cb75c5f6abdef51b55f2e9e83cba9a7c0dd5a55d
MD5 c7ba6935e4c708b69e1b1abb8c7f189d
BLAKE2b-256 24e42a0185b767d164db75b6b38f3c15a21a0d55ce1554cd9ac5f14ceb55bc90

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 38e3a1a5854b13214d647a425a5c851db8c70e70ff11b57855d5b2aebe583401
MD5 fd2fe60d4dc203e4119f120b250b8294
BLAKE2b-256 b528d4ce6979342db9dbeaad9c36bdd3fd7c93bc79051a06bc061d8f9b5d3bf4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 8aeb32307d39bd9697a08be66c4944159c812bd8c6c3aaf1b2156b37a680ac59
MD5 5c5463083cbf8f040f9a59c2ab16df27
BLAKE2b-256 eed246c69dec0f67023b675d93f50ac84ea9e26ef0a65b05c8bfc4c4e3fd3a64

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 34b8202f54f8b1d641a8bb5bbdd9949cc6b21de08f1fec499a3910c830002101
MD5 330b947cce2e0f4f9143cb1c87c1cd5a
BLAKE2b-256 06b4b699c43700b50d935724040074562d142cd81806ef165c9c9527a8b4793f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 aa84e506ffa12a216930f692b82b9c7eb6370851d85f2f1c559d536ccd111794
MD5 6f59ce9e0782be7c7197da101950ae6c
BLAKE2b-256 63c1429118d7f6078188b40f388c5c5239ef72136dfb38895ca2ed9471b55d13

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 edd6af0264294b9dcc857249a43a3a050fdda93f0d6a19c2d71046d388273127
MD5 f09da0a4df96b0fb625cbefb90844bbd
BLAKE2b-256 68cb001333f0cd35841c42a0a61716efda6dc7d3c6ad392f5a085e18cfafb3bd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 6e58f0836f4a3b7e78099c4704e740e5ff55b7c733abb5315e133043c8ed75c9
MD5 a8bc996501e68ee45d92a2e48c7b02eb
BLAKE2b-256 3d412ec439688e4c3c15bbe9e2bc4e26e04f2bdcc031ce82fa148772bae48213

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 3cd31032819a1bc72bd1d7d600310407c31062054c80ddadb501243e5011fa46
MD5 1bad796fde3b546140d5bf66f2f32385
BLAKE2b-256 a84c18158d06f48083dd686ad3303648a80a7279862175e61dde706248825686

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 820066e229bb5fcac7e30fbec42c3542023b3b600a32fee883a70a74b0e2b639
MD5 286c3c1415e05afda2731a769ec3f6b5
BLAKE2b-256 826cabc97dfc4dfbff170c67ba76eadd065e950bc82858bd20e1bd04ce7dd089

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f657e510c1e952b744d0a6eeb0155407cb8ba6295cc4b2642c24821dede2a116
MD5 c923dde7c200e96cb9bf27424790ea2d
BLAKE2b-256 deae946183c48de5e97c372c9fac342659ef73be13d2ad9db53689e09b772f95

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 da32741eb1d56f9239dbdaef30c5ded8c412b68d2bc5263416997deda288ef12
MD5 8545a883bc189988818801e3e1dd7caf
BLAKE2b-256 b058acd1a120af8af699458390362b17af30a8cdb5dd7fdaacc5741effc3bc89

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 349871ba30019d4f8bcaa592ee803b7ed9631c9c85babf411b62770eff35a770
MD5 813d9fe59cf85c6dbb64fa560876a9fa
BLAKE2b-256 b8b09f82cb2b4931ae3ba659393c3650932360c6b130f16f7e1d3027f9178336

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 913af34d295c6fa354185bb570caa2b8cd57b380c51b6eb6dac6c4f1ab1e5c16
MD5 8ebed22d79f889764b7c842b60b16751
BLAKE2b-256 01915c284a9a5d29a45075fd841e7da0823b722adf75e449811bcfe872891223

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 4d3defe1217d7443623660c9979aa27f79525d84f52f09c86b6d39938b64de2e
MD5 439c3053ea15d3d0a0d309f5a56c3c82
BLAKE2b-256 4232b80330d6ab8bf84059a24f18b1148bfd7e14378baa12889044e849c7ec42

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 02e007a12b320d169de2d3cc4569f5465d40c2b248be80e14263d3f09c8922cd
MD5 5d694265ff7210e49efdadf9db1422a5
BLAKE2b-256 146d81e95af5ced68cc50ba795a3da77e627dbc2417d953410214fcf6f99fdc4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 0e519c0086c5f02e7264df57782eadae52d0a8cbbcedb4a5ecebacc928c259ea
MD5 fc6c7e7d5988ca5e4a2c7f4a52cf95fd
BLAKE2b-256 397927e530fd4ebfcded74650ea3bc6fca3ee5c5632a1034662d3a816106fff3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c354a595fbcb41fdf4d01ba18ac4a80de3846b3b2591b677e5ce6b90cef6d880
MD5 9bf7d49913913593a30ce61fcf848148
BLAKE2b-256 f656e1634a04ea372414cdbcc10d4c54b1c974a8addc3e56c9f6dc95302feec1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bd0d7b2eedcde29d9718e3ee504a4465bd7104b4cbd993b3377848056e5f9862
MD5 e1a1d7809b4fda7b44f20ffa20716cab
BLAKE2b-256 8b518688495e53c752b958b8c2127faec2efae89771676309ab757bf53e0c9a1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 d60ff7707a6f8344e532d5c510e1fad35ff5fbd7488bf368bac580f5ae0c50ed
MD5 bc18dedd2e87a53aae6aaaf5bebdb6b9
BLAKE2b-256 4b8948400bc20c639eda10e765ed3063eb1291b7cc1368c0f46bb05e6e2ece9d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 7408ba5ed83667396aedbbdecd3a90c6ed8413cd3e623ca97576c09ffc996477
MD5 a7afbf99b887078f7532a6cd18b3814a
BLAKE2b-256 27460e45ace5d95fb48966800c7e09cd1b38eb1736e2f69333478ba8d715819d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 a402a1086845d73e5bea8d958acb428cc50764a1c0a08c806ac3b5230ef674fa
MD5 66ad10c21ea44e4253c15cd3fced17e5
BLAKE2b-256 102c243444bd496ae160dc160058bcd3eaa8ae99a91d164cd18033404811f4fe

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 236d9e67b7a96e5305030f956d4f5b322199578832dc141450f78e9326a5c448
MD5 535088b3d6ff9ee6a43f10aa3a0b376e
BLAKE2b-256 e7f9e79aac84e0aa6bee08c23d42aa11002746bb5d2eaae297c19d50fd93f927

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 650723231554bbab03ba7039b10118e960c68774f32c328c5bf454e377503b6a
MD5 3a8df332408c9b39a07083fc739e56f2
BLAKE2b-256 5faa8ae7fd6ff15f4a29c65b7d241ebe81c903d38debfc84a9d4c3e3e412e9b8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 fde9b0704eb25777960d86093bf380bf956ea0e4aa33c2c1148b7399ac412175
MD5 02cde100a7d68c36eb1b88ef7699f453
BLAKE2b-256 a2069f5585c193d311e30edd02b4b475568dcb071dab41be6a569ea8bb5ddf9a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 480f681ceab467c282895a99f9787f67aeeda8f65a8913e0513ee76eec684ec2
MD5 15c7f5fe9d74040e05c5d961857c2d50
BLAKE2b-256 94fc58a861042d1cee4b8b70a3027822031faedec166b38a9192394f1d41bb31

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8fd2d92e3d5e2b4fbca7576576b76e15d6aafb6d8d2ea9d78224fe363f6b444a
MD5 88bba11c390c176865105a92102eee3c
BLAKE2b-256 becd05197d32f4f483d4202239632f6b4ac7ddfa9ac151fc6fc398cea3370b8d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 4cbfd04c3b4fa089788fd3e7f431f9a04d97c0c2b0896fddfd721b26edba766e
MD5 e090a1634823c6f7ca45c1207ddeee20
BLAKE2b-256 d16d73b1d8d54f2cf542d87b7c29a95e10ff7c32a7c32194da9a63cea8c6a743

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 51ec33b0f79eee69b38fd8a4eeb26cb2faf89f3411f484d4141b2386e920b629
MD5 7af473034f48208435532838c2e55590
BLAKE2b-256 53cb0683dcb7a7532b468e7998ec83d6df77f9dd4afbb488b6f298a67e3a64b7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 319ba36cfabc40b2416ef2c02f0d1832c2b6e30ca65df3859ca4812e93b6ee85
MD5 0e49d27004ce51df99833c96501d82b1
BLAKE2b-256 ae2324bead3714e74574aa19379c0f2a4deab55d69776510a931e85f671854ec

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ad7afb17da88b545f6f6de2cf01d8af4eac717a1e15d95c3f0b5c510fa30d949
MD5 e666c358c710de20f664d6a5b90304a3
BLAKE2b-256 218e3e79de4f5932947d943415765e82f5179e8f32e7a5812a43d1aad1c12aa5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 0504406ab568521b92cc09bd8313208e2a37697ffef6a0f0187ec9a79de653d0
MD5 c81e74f07e8e97c373f2ecacc28645a7
BLAKE2b-256 101b79055b461e56cf4f0e0446d53213a2f86af9c6cb1e81df9804d9a4d538c3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 a0135a7dc8a6ce6676a64b06d9ea4d9b03a7cce2af4c9cb99d39929ce61e6498
MD5 286cd0665b11dc6bb703863aaa5dc522
BLAKE2b-256 a2c5b3d3a0718040d5b80613575480b2554205e5c9a7f8bdf386e0cd4d13888b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 d96f2eea4df383766168d47818c76f44c91a0a78458a4d293a612f5f52ac9307
MD5 8df36dc7d84ec9b94d0bcdb6c569ae4b
BLAKE2b-256 e623983ea617b9127a28a664bc9ab2a5fade2e01d809a77a670bc5d438c28ead

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e367dcd21f0ca9d86e0f72782a02e39ccd7e1ad02e3c7a71122ca8f2cdb836c
MD5 b68839799f3e9fdb3d69eaa48402fef6
BLAKE2b-256 6e9f5bc7815068600bf0f0fc8fa017ef461f59708d4526c306374ac86dc54887

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a69fd4bd8afbe214b626e60870f4eaf025a6ed11dd6641724afe212dea576cf4
MD5 82a69891b1b89dd6d36f62e5eb38f317
BLAKE2b-256 d53579861fbda5f17d5abfe477462e06d7b833bb2dac057a826198e8cea36e57

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 a0cef5beaa62709852185331d5ebdb53ac2af710eae7133bfb7ffbe37b88ef31
MD5 de4b23ffc17451ef2700b29f7eb89ff9
BLAKE2b-256 374f8f262c45a211ab0fecbbf683f6c981d68f3886d93273aa72dbc5795d0b34

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3d45b0ee2840b7e1710865a1fbedeca9bfeb5f4c6354fbfbe873aa7c2f940705
MD5 fd31e0b615251be5f9d4923eff8fac32
BLAKE2b-256 c61ddf930680ba5a0ff059a56a30f0aac9a8c7a9ad019490e8becb9ef14d2163

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 0493c5d31b80efe72ce08815bfaa4b39b5c6fe54d034081e58763a9902a0ad7b
MD5 5727528b8455881670e62053d7e410c0
BLAKE2b-256 dc9c5d781c0d1a44a2341666e8991b6725e7e97c1446badb1bb75cab479469f9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 39b3838e667253c1944b239a9ffde6b24924ca9ff10bb984597abd86dc34a6e6
MD5 aef11a51f8d0819a77bdde275a59c1fe
BLAKE2b-256 54db1b7379d3b1455858c34336d1a71d67ab3d5c39a54f0d9bccb029b5290392

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 a3c7b502f66b80c2d52d92398fedee27fb0b0c8d7742f5d9a0072614137c07ad
MD5 f82bd36b8ea4c4edcced44fb178becba
BLAKE2b-256 8080662238d46459f864d25806f8d48558a68e635afbae73351e6cf98bdaa97b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d2ea8e170586bf81c419dcf7d28cc8d5771cab6d3b9ecc9bc3ecfef50ff067b7
MD5 177c5f86de7d75d1ec6e74e751e7d845
BLAKE2b-256 9564e2a4961d9bdd843945b4f79845cae0d99b79bedde8b9c29e108d8f2b13cd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 97c23662022ac69ade602e5640e84fe587dce697009ea369d9e44ecbf10f56bf
MD5 43fe70ba764d8ee23c954fced11b3528
BLAKE2b-256 cdbe42e8e4f1b3132bdf0d28d012b357e997c8e077454c1e6a2abb761b7c2167

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 61b21757c311f3e6638ed8cdda51b32c1a937ef4465b0fc5a4db117960f77ad6
MD5 b38bd949f840a5c471ea8a83175b254e
BLAKE2b-256 c4e5b126173f5546a93fb41512a5a9beeedba1ff26f13c94142b136cd3cf7ba6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 8636ffdf6babb544229ace632f72086637f461c6d6638ec1c55cbf421827be81
MD5 4aac005ff8067bf221ad97c18c5b8857
BLAKE2b-256 6b2a3e8557c92e63a05002de054a1038eddf6590b83fecc0ed28e1ea93b1f2ef

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 28e59477841223f7bbf70e0d2227ab3ff81ae6075872347912a8275d4d72377c
MD5 9d5ef427b9f5df4e3a307283e74f4cc3
BLAKE2b-256 e9773401a4e90cbd4f4b875161017d6e91edd4ac926b81ea650c4e5690d4eea1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b7bb6b111d2378a6b3653a572eeb64f11db932595616dd84c6c8eb007f367cf7
MD5 968b44b2c6bf67fb6dd72febb4bca25b
BLAKE2b-256 094c1dd3f684bdaa575b7fae1ecf63c10af7da7f3794b587a10058056aef202b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cba840bdc24265a608a620730d05a96e280fbd4b01b245a311ea9800e3907095
MD5 d20e03ac6d30066b0b41cb67051b2f69
BLAKE2b-256 7dac5927b8f15630a73ab7895ecfe42c5bf08d03b30cc60386ceb822e6421216

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 584f5c060e290c103a79bc3577cd3d1fc97c2e8c891a4f544711daa2d7b11ae0
MD5 896052e8571cdb6dc7d9190b3b80aad4
BLAKE2b-256 b167e417ed436ca9840d6276ae4cb09161f2b237958c7d8986e7010780a96079

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 54e5de3764fe45b46a1c3c8a1435141a18723fd8318481f2db5b44dba3f87cb4
MD5 40aa99ab00793f834fc023edd0f1cef8
BLAKE2b-256 790dfdc6e369e47f6bb908abac3558dd5d6fbb85fa4c40b26a9719bcfbdda152

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.17.1-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.17.1-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 71996fec191bafd57ec1589775c6b57c37ab359359393e6354ee167d87fc454e
MD5 5a5dbb0ca0e3b182152e4a7b420aa09e
BLAKE2b-256 bbb245e34aa11bf344b59f7878f8585a91416cc3a8ba58fc3e1d2a5ec79551d0

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page