Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.20.0.tar.gz (262.5 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.20.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.20.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.20.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.20.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.20.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.20.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.20.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.20.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.20.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.20.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.20.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.20.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.20.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.20.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.20.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.20.0-cp311-none-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.20.0-cp311-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.20.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.20.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.20.0-cp311-cp311-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.20.0-cp311-cp311-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.20.0-cp311-cp311-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.20.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.20.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.20.0-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.20.0-cp311-cp311-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.20.0-cp310-none-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.20.0-cp310-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.20.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.20.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.20.0-cp310-cp310-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.20.0-cp310-cp310-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.20.0-cp310-cp310-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.20.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.20.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.20.0-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.20.0-cp310-cp310-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.20.0-cp39-none-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.20.0-cp39-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.20.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.20.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.20.0-cp39-cp39-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.20.0-cp39-cp39-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.20.0-cp39-cp39-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.20.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.20.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.20.0-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.20.0-cp39-cp39-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.20.0-cp38-none-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.20.0-cp38-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.20.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.20.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.20.0-cp38-cp38-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.20.0-cp38-cp38-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.20.0-cp38-cp38-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.20.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.20.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.20.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.20.0-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.20.0-cp38-cp38-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.20.0-cp37-none-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.20.0-cp37-none-win32.whl (1.1 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.20.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.20.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.20.0-cp37-cp37m-manylinux_2_24_s390x.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.20.0-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.20.0-cp37-cp37m-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.20.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.20.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.20.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.20.0-cp37-cp37m-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.20.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.20.0.tar.gz.

File metadata

  • Download URL: pydantic_core-0.20.0.tar.gz
  • Upload date:
  • Size: 262.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for pydantic_core-0.20.0.tar.gz
Algorithm Hash digest
SHA256 7c922a9a3353cc672266584060cc3aa53540c846822beae1186a204471280d2f
MD5 5f474771f18fe2cd7a593783e1edb30e
BLAKE2b-256 404d9f53fa74c2e1dfae6ef09bfaa0169aa15677aad43473f6011565d9cce6d8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a378584cf746987c5e97f288abf3662170c1cf7a5326aadc2f20c752f6740fdf
MD5 07d983be4d180c329229e239c3f169e4
BLAKE2b-256 d12de4fbe85f31ebfffcfdef5b71fd31ffd462853087f5097aa17ab145ee2419

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 54adba7eb9605226b94545d3cfc745111ebe0b48610a49977a0b27130db7f798
MD5 92b32e5f556fd0fdd0d98988f0459a90
BLAKE2b-256 35e8d715069e34f79e96e9ab2a0938a65c3c2ed7f208aaeecffd8e2e372ce5d2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a2668662488e5d2f01833f01b0ed91810c86de0a822e558b58ea18d62a98124
MD5 b13bcabb13693d11278e9be231967921
BLAKE2b-256 d8af489135d526e916a8b44a1a8e85765f7847383b7a1c7e4e2a9c6793645bad

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e6656c8930764bec66651f987ebc61609b16247322adc8131d5ca12823e1c0b5
MD5 3b077e7d87ad317c0cab476559a817d4
BLAKE2b-256 9d784db149fa5474a665eadba5ecdfcdf3bb4a220ef010b21b5537f4cadd3273

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e46950a9bd4ddd6c0fc8ceca92ab17b82db0c6ed5674de2e1e4dbecc09f87f30
MD5 8ce0e3014024f23ccff1525e92c3c945
BLAKE2b-256 f4d5879a9153005cdc25a7949843e081fd5c7e09749e160d63fdf6662ee6566d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 af39376911cf3973c7823c9b23df9d44e64e6b05012a264a57053de3b0f32422
MD5 23b24143348a0058426b393030f390e9
BLAKE2b-256 55a4f75fc6d12642b97b069869365d224e8312bd822dc9b3ac5edaf81a548c11

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 da3a0f9983c4db1a22e8deef091bc8e2f77fa65cb29b57b575278c0ca181cc24
MD5 80ce7a3a5e748bcba6e291859a963756
BLAKE2b-256 8642a837c627c4874d2e26921391a7c9fde270d399477b8593c287d3062d34f0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1ec3096b7d80391531564a4a2a1b3bf247dc229737a3bd1ee99e102174c5fa19
MD5 2ed792a2b3a07d74deedde0d20de5870
BLAKE2b-256 13175a2a5325e1d410686a93429fe5a81e9edaf443c8bae9b15c45eb174802d7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2a2c50b18ce85f9a9ba12f2c25d0ef067671cf36d068ec68ae16877c4bcf8fd8
MD5 ddb3b0e259057c1a4b9faa7958a46b6a
BLAKE2b-256 43ad84fbc9ca60ffe0a00ee2685ca862f4ef47c462b43be69a88a4c250b4d022

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 98ce8bb7e77432be1c71098731143915334d29da5be3301961c485b56519cb93
MD5 edd4d09ee2e6920e311cc4ffc600f616
BLAKE2b-256 6d48e6b14577ce267c33ed01ee3903dc1eaa830df4a8dd9a6a0d3341df0a0321

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9ec77129b7ca4a97ecb0386b69e0bc2edbc35aa6efe3fcbb748cebe8ecf69c0d
MD5 b60713e6b470cc0bb78f8fc574800cf1
BLAKE2b-256 f1a1516117f02dfc00a50626a8efa3617cc9d7f56bded3113af3ba4e1aed986b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8025f1761cb1f620a5644cd222990156f618c8eab4853f637cdc6996f7837d0c
MD5 92d6b21064b727c1194cfe2f867c68f5
BLAKE2b-256 f6d3b90b5c18a76065d0bf8404d940e3c6065c8fec07363fcb22fc92ad22bec2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 38b75029e375a5334eadb43038e015034c5bf10e10877283eb057501086e4ffc
MD5 3ceacb83349783b4c3fe800508ec8536
BLAKE2b-256 916baf181cf68b2ce8ae846d20e52e56c1767a8c280913430081d3c3d28aa258

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f554d3eb80cc911e36d7ec5c367c267c85f743efa3b4262dc0010fd8c76afe2a
MD5 20518a9d8496199b5546b00c8b81a0f1
BLAKE2b-256 8e9162d27c18f2e4352085bd74abf578d748db1a6de229b92f14a7ac90d12eec

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89c0776be146a973e0c9da7844417436a9041a9f2bea95453926096a9823bb47
MD5 f4e2fd33514475c803623b6ffbe950ab
BLAKE2b-256 a80dd5651c03917b145682d64c94ba1062ebe34cd6bac4cfde930d5ce7a7dbe3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 86d4aa99bf529f9b856e995453dfe2906910c1d867427641ce01152618d3a2da
MD5 8971a8085fc82e61595d26b321929619
BLAKE2b-256 25020c5584a0004f7ea835c43a6a4c4cc2122fb4c947f1b911dafa46c1e192a2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f85352376a4a7e3c00f2eb1db27e4dfe50acbd2e114255a04c021cfcf4c183bb
MD5 2b9b31c9502988a6736871068c7f9941
BLAKE2b-256 0e0036b4ecec6a4f6105a283472950ccd4757a34311f4aebc945827c9ee2363b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 bc9644456a064f6645476cdf614512f5d7900983604ccafbdc28036736e89304
MD5 f7913c1106c517757acb3c47d7a04733
BLAKE2b-256 1eff30d24528d4025c4f2493791c7798dc9055256d8dba1ca9651bcd509acfdd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 397216c636eb9be2b262b46cca5599814bcfcb488a5eedf9b6da1386cd44a972
MD5 3dba30c7293bc7a5e66a20fd786269b1
BLAKE2b-256 c9234287d612407892348176cf28ae8cd273ccaa0b7079d27b672383f610317d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 43fe8376d61e505bf02f7ec511610c10f7614de90fddaf30666fcb891f83ba52
MD5 62f86579f5de039eb2e9231644ab2c70
BLAKE2b-256 3f438c3476d95d2c1434e8cd70a8482798b177ea67ae802c1343daa2a71a9169

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f2596e38bee01f767e9179034f5b0efd80a82c88396c64cdd08760616ba193cb
MD5 9c835f8dd1770cfb4b78cfb9ff12f8c0
BLAKE2b-256 a0c6ebc42b048e86b9a50f33906431be3fc1df094272c2dd8994b1a94e634c68

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 498952b4d730bf42353992015adfe931c2ff99a81c2e3f200a9e82d3ebc14912
MD5 2b578f4f3160f7dcc5aca38a1497664f
BLAKE2b-256 143ccb990b24d5f0aafcd33ebc6eced643d217b015cc3ae12eed7d610e92f9df

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 593f87878e01ea28ad07ac0804c0d09da55bc6c56bea577ed085619ef39fdb61
MD5 61e291cdcbb8e83cc8d786c440b76fc9
BLAKE2b-256 28cb53acb2c2fc8c10a065c1753e670322395dc908a99eaaa795a95e31748d34

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 7e40fc41fc582f251c9f9e277f12c4bf6d1c3ab4a92e086de87d3581da809b6f
MD5 d598e128d199c300911d9478a26cb5b4
BLAKE2b-256 d2f32ee05c8c6c48b8afbb971aa82e375b65593ed2d67dc8bd50621c401c3662

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 6a02acadf3cab7efaf81a9d13561369c23ca6a64c5a4619d87979f3c62bb31ef
MD5 f3ca52da49caad5b192433a1d54cbf77
BLAKE2b-256 acbe8a153dc6444e4355ab733a05212b44bdb54d162d6499592352db7552525e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94d3bfb5928121003561cdadefbe099bef8e3dc81fcd59d89bec0382a2dd2d29
MD5 16bebddad00c0c868fd9df1bb857b3c6
BLAKE2b-256 7419189ca7689f33886ac20d79706e180b536fa04c3aa565d2a7d3a1e4a87cc0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 28cef0518f88e202bf7343bcc6bb55b337f296bd8ae73143109d7a4a16f74d1c
MD5 817edae8a51c17648200b5232a03e130
BLAKE2b-256 71ca5c81718ce771581354064bc86456b4df838357caf8c9f1a3619f9ecbaf04

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e4aa4376b24dd2e4e9435706c2f0d4fad3fbe552284fb03095bdb3e582d814b2
MD5 90df83d8e1e1e5b8c7da0ecc37493345
BLAKE2b-256 e308c11a2dc51b766e1cca0373283aa52b40847e5d0a1ecb268becc8a761c1aa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3bbf2094f5941b7a9626a391a23606b2ab51790e6c9defc38180121a02fd5d78
MD5 de4e457ea9bfeda42426091dd7ef274f
BLAKE2b-256 45258e15d6083d6bb90ac125f6a674a42ff1a4c2a91e9450416154f5d832217e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 bc17b21845f4fbe11c7e4c2a6512124782e599bb4ef0b95a8e8167687eb0e702
MD5 af34b83214c9fa1b4f4935736caf7831
BLAKE2b-256 4e34f74c039db0002781e33d5c010ca68861b0202fe72d7564ebc7a559c86223

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 482b0048dcd9e526be75902b66653e2fdbcc207a72e75948b374ecba46ba8979
MD5 539d8acc2d5e55334a2957d396389cb3
BLAKE2b-256 6ef94833cad3c953476dc97ea87a0ec10e4345e0131785f9d673a8c2886f63c9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 1bdd6a243c11f6c21952135c465e7b648740bb537a3ff58c058f9bc150efcbf5
MD5 ac4bdfe0373a23eb6da0eed8fd7c99cb
BLAKE2b-256 8364c5eba589b6356670ebb7e74767e1fcd9d6c31de5cc55f4116511d1ed93bf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2478575656b34e2bc2d3a6c87975599bfe9092bb215bed3a363edd0c24a8b511
MD5 f1b73ff1743aef751a3831dfa88fa56f
BLAKE2b-256 23aea92c8e538716b0a10a2a486a383a61d34d3d4c33cbda32edea27459bea72

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 fa5450b7fad4dc7d07b6168f74382867437b4ff314725d8d0040f6274554c047
MD5 0108fbc2efb6ead3d5339a78374e4fb8
BLAKE2b-256 d08b48ae993fd8383246a724c23c6b8a1ee9240b22e8427ff2833e36d76b30a1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 63d35153a8f8ce6e653cdbdd82d63513112c825c69595646c60b4f112274075e
MD5 0764702729f287e393d50e5fe40f0245
BLAKE2b-256 efde5cf4292515e4bcf356f3e2a5a4737a102d72de2903dd7ebeddad74cd1fee

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 4e7b2b02b2b591ea661a2b9b137c765697ffa50898459a6fe8d5e4194676dc72
MD5 45bd24e74d7b792b92e6213ae0099859
BLAKE2b-256 dc7b2586b92ba8f85f8256ae48a93abb8759ad41e99b5231043aef30c6824a98

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 e1c884602cf7e163efa6bb77aa152b4dbfc96e875201a9fcb266e89b1e797853
MD5 b74427a17f626d15ef4636395a6e6314
BLAKE2b-256 4a86dfba136706a4bd24bb0520307f5b735eff5fd45df27d32809f511c9421eb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd6e328c94ab6870a4124268d43f7d175f5dd9fecd752c67d939eb60587c6149
MD5 41c4f7cc5ca5389b3945acb64bc54c43
BLAKE2b-256 d905f70774b66bb863a9d2e81570986030562ddcc8378ab18a69a013c594e5bf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e30a0196965664c1b9ef6a7a363d6d4f5632ca0f930c124c92ed1a5e6eacd3a9
MD5 a46774730c0a43b58d441839b22ae224
BLAKE2b-256 21b14ce55f4af18a9ef9bcaa8af01147a62aa7c782759e64311f1f89e5450eed

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 dae116e8c720e568a6f2dce6aa67af94091f17cf76568cbdff122cd21a76479c
MD5 ce28185f5e3d9f18cc6c24724d8bea3e
BLAKE2b-256 82b9e8ac55b97b0b600adf3c231c84dfe9eb082074a8155d90d385669a5ce464

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 42b234500ab89a876aa584485f164bdef27bdc85fe08fba70927b0f7747a686d
MD5 5b575c4c3fcb5b05d52ad19bff1f1668
BLAKE2b-256 2515067fc8cc864640efaf22f1be04fdb16ea75524fb4cab5420426fd1bbeb17

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 5744dcc0fd38b26ca08fbf051814a9b0a5db27b84534fd0747a0cbbd25b20211
MD5 538514fece3ecfb1934a732b28ff29e9
BLAKE2b-256 386744b32a8391a81f23373a32998f97764173acdc7ab54932e680654f6a1346

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 85bf24cabb575497c21d5699995f330518ca51b9c1a1a82020e87b5c61306646
MD5 3b573fe06807e5eff81dcc1a002ab31f
BLAKE2b-256 23a63432a10a5deaf3413f992586684e97cc1dd84c526f8d5ee92c0d6d521638

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 7fd3283b682bc01d558fc3ce6808924ed44425cbee172500405b00c45a6ced54
MD5 9568c0a36a1aa5b229bc50472b395876
BLAKE2b-256 2bdcd3eb734577802bff422cae8eb41a0b2801032a43826f003d51ea006c9836

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8d1d53f40ac0f36d7f65dcd45637857ccc94dccc9c05e36bb11177edb1de63f2
MD5 a59b9b8bbd4d1b967ab031b4ab29503c
BLAKE2b-256 58f136856cce1b2b170a57989f65587665360ba30ee0b02520764f45a25f60c5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1168623f7b064dabbf63cc2a991bbf2a66c5cab9df9d2c693368fc2d30b80fa4
MD5 043c5b6f0b499cfc584faec3a0718c4f
BLAKE2b-256 3098ad9f38b61db3a431545f3cc640565c8db539b3e74b8551ec671abdc464f1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 b1749add7f4ba4c297743584f25481a345b88c7e77c728d03f136935a88bf391
MD5 8cb9225548fb560bd9a1a078cf107b92
BLAKE2b-256 d76d1ecfd59fcaa7bd02bf44ed1aa9fe296dc2b549c320d096ce0e1fe8c5ae2a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 8eb7afab0fd9233cee89a9245b872a396f51bc22f7cdc2f84c1cdac1d4021c93
MD5 c51b65934a171d2e130d3961e66d9e2b
BLAKE2b-256 178ceb83f948667ccab6634e5efc697dc76b30190d2802884e72f6a2f9fe0e78

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 3277cf91e0ed3306579c4ddd23aa8ef02a30214351e5c491a37c556aa1e2f270
MD5 c4b9e34d86da03313e873dfa62de4106
BLAKE2b-256 c35fb6e272ceb20b712b62d091a2fab9e1d4004cc2d5dacb5f48269222bb8067

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa1c5352ccf46480813d6b3ac942b80a9e5e470cd082106b48c2290b1eb5cff3
MD5 66630081b91ed44b57a8fe4e88949beb
BLAKE2b-256 3af4e446553074f52efe2c4a6d2e9387abf8a6e33c5b3db1b96eb357776f409d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 91614838777c35234770c0179c723e90cc9c906cddb921c10f1183768880409a
MD5 e4355e7cc97dc21e3f04f505290d37ad
BLAKE2b-256 6dbfc3b44d579e4c2f150cdf1944a07eec345b03521cc1c4f69260b5c599ee0c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 be7ff0c44a8a215ae21ae0ea16b709576e03f8ac9c035eafe7c54f227433b207
MD5 3edbe9e0e0f88980d54d04be72653232
BLAKE2b-256 771ad66843d822829f84a31011c0b6fc4e70bca8e04c6f53807c20fa43c4527d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 99a2d728ae6333da2ef089f46874997335cda966849fe7773a2a45b545560d9c
MD5 b3e562bb11f794c072b4b0c34ab93b87
BLAKE2b-256 f203b69a7d5f3dcbf646ca81fdfaed723acec65e0a1145531837c1cd2f676a83

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a0ce0cba63e46f3db83c8bc8e97b6c8eabaa81e62c0ccecc5d931fbb2fcd2814
MD5 0ff1c43b4cf82fdf72b3d4537c72d1b8
BLAKE2b-256 91b10b239f1d853a13dac3d7981c4e85aee0dd3ccf9117a61bbce74d1f2aa7b6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 bc45d4d3a60c8cfd8b45a55df526cfa1f6f4e84b8442e878013b2feb860232fc
MD5 e9910d5e0c1efbe29e298d3ad7d0793e
BLAKE2b-256 f94629e90b52183d5fde605298210bde56ebbf301ff66255ada603903c66e280

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 9280ca9cf859d9efc13e188b4efa6b7fd8353f6e111a053605aeab1c573ab11e
MD5 813e6cfd8e5dd06a30d9762e13bf3030
BLAKE2b-256 48dbce762d765ed41e17415659f9e90501a5dd6fa9fbf45fabc437741766eac4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 185b0ef886841d6866bf959524940e821e055c90dcbafa331d1cd420c9ddf5e0
MD5 f06d775af16103a74da7bac7b15a31b5
BLAKE2b-256 f082686450b5e796b298b1af8974b799edc414eff86d6b5db783155b49b145bd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d86bbcde6b54ec2c62c05b08b2fa708772721e6e4c6c38cdffedc1280c88c696
MD5 552ff756e8d66338cd42979963f9fff7
BLAKE2b-256 dd56b91fd396f953ab20b7319d6024c5eb1486c3b3f00b3852a19fcebab4e237

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 b2ae9ab4a2e9069d3ef9edbaadede5c958f457755dd57282581407bbb28dc6d6
MD5 96618b0fe7b2fd23d2f79badc4e7278a
BLAKE2b-256 7e9d7fb2ea86ab3554be71283572eb20a629f69c64974dbb957ca380410884ed

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 ce407d9c1bd97d316422d07acc793329103bddd2bc1e520dd19a28f180d47295
MD5 f3265fb85580c11c6a7398a5334a86e3
BLAKE2b-256 f8057f1364a00187d4f4fc7fcaf4da7fa5be0959dfcf65cccd37eeecd060b024

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 99ca7d1d10a450a71fd513010fd565340533c3deaefe45171a518a370008d170
MD5 17108a62d01441b720bead0667015fb1
BLAKE2b-256 354de1cf38445981495091a508485f14af4f54dc7d38dcc2a18f495e6a093f7f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a444dd2a5aaca8c7fe80c994a4e342545048e55150bf7551c99f8dd94a147a9
MD5 f2126b285151e48108024d5c97681aaf
BLAKE2b-256 e2d975a99791d2541f84eb428503d7c987edc7306fe34beb45c799244e637bd2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 226a2d16e4c15fca5ed209f5587a35300e01b64048eb0aa09ecf1ec83ddd4c6c
MD5 8c6659245fecbd72163d28721ef77497
BLAKE2b-256 0159c75bad4a4667fa1db80ff881c7f3abae69006181e0442457d241ca60e1bf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 098ca64127d5406cd15f868cf93757d73f77496fddafc308bd67cd3a030e96a5
MD5 d5a43ba371079ad64952b169826f873b
BLAKE2b-256 001b6e63f1a49cb0e554cfcdf3b56eaa37e6423f76a2606e811f7324e94aff65

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 554b7cecc52e205080c92f72d89463d6304e5e7b469813f5b977ccc392e9e74f
MD5 ed174cccb2b4c442338d4ec982a7459f
BLAKE2b-256 fe33da2bc93fc9cc37428d0235324862691b3a9e50fb5e630abfcaf42e79cbaf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6321d16446ac34e986d7a9aceeb42dd46066e7022e3d774c90cd15c0244326b9
MD5 f6ff3d43a2994939e8b7abc735d83472
BLAKE2b-256 9e67d3367828ca63e2fd101f4838c08821ae6f97844f9407b53b055454ac9722

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 20dccda66b96a378049ffebee3e82169b044165273a8386b615a2a6f816103e4
MD5 a8f24c2da711b0ab8e378296b7ea0e0f
BLAKE2b-256 fad65a74d38c80249b38ef55b486ee6e03e8a00a03a4e6eab9dc93d2e696a9a1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 72f5d0904f87d53f7a19578520d0696b1ed7c1a73429afbd6f2515c64729e27f
MD5 7932eed97f8d71033712602318da1008
BLAKE2b-256 818f592ed9a4b95a85e31df546b8295ea9afbfba170c76c08b70290f152eed92

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 298402e50f4a8c5a7e1dcdd4555afac2d6234b1e6c756d4266cdb7afde500028
MD5 1a943fa4acc1a41f3c72d0d833b2d45a
BLAKE2b-256 a9f7c86e8211d22fd20a605afe87e16800fa6bba98900c6c0e9b82bf7ec097c2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e79480afbacf5c60ce79866330e62143520a173fa69e5bcaf2f391b129534c32
MD5 c194a159f83db2cbab5f1c17b3aae4cc
BLAKE2b-256 b123b90af92363cacb724be824dddbc91d24d9ca5ab4208bb3eb10f22ecdca38

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 292f7c50745ab52db22af2ed543f3e3a2e07ba5fca8e7fbc93c834f5ca359476
MD5 77f6891f2d06ebbfb76aec17413e6536
BLAKE2b-256 6897b5e46d59d962950953ebee2f6350e995ea67f37178162fe12223376233a1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 5172e52443c086fcb55a067ae0a491d3579b3c1181123a791a5442f74e1f652a
MD5 a68535567af8b43671a0f552aa16380e
BLAKE2b-256 2e2201c6351f9747e64754396ec18e7f48f4a7c523442dbc85f331de266754fe

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 9b940058abf8fe66f76b9903a7d805d733e4900bde44f5e101d129c85638f44b
MD5 cf411799e69a60b44f2b353329df5867
BLAKE2b-256 70755772205edbb78bc48f7fabd3f1ff91d1640a943fdd3d97a4952d596f63d1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e0e0cf878c00e83114252487dcf5e59953295f446ccc32eb97b439bf968f2bb
MD5 6e7fa358fc79a58f324d4a474beb2811
BLAKE2b-256 5603621856edc5b971e361a93839ca52b4de2f1b1da18ba767de05f090dc32bd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2cd18c37bd814d2c0ff8c7130bad145f3f1e12d51040cd5822cae81eb49be44b
MD5 f2460bf54811c6720f321c232cb2e7fb
BLAKE2b-256 071f02c27a4bf0f2fb78667fbb2063747fe54f555e7d373d3b061d43d66c1044

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 06ae9f54a49cf9fd2f0404fa4c56f6f845fbe1d8fddff9c5a8ecce720dd3cede
MD5 6821e62abdd630db4b9c70ba3876a1e4
BLAKE2b-256 749c3ec9390af0cfb954c349296af4cf07f2ac77a9c3663c973a871d689da7d1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 33f5725b555256ec7ef365024c1d9a2ce82ce8b4d9088f032402438963cdeac8
MD5 73e6eea219d7378026d1030a0dbe9dac
BLAKE2b-256 fbb55d845f17ef88574365abbdac3be9eec3581351afa4e894b5ff98f5cd9858

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.20.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.20.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6971393550fc39f5be2ac69cafbd61278983fb46dbe432cf3502160fba7e4de9
MD5 3748115fc14f006f6ba3b0414455ae70
BLAKE2b-256 4b08c08dae0dcba1319a6a8f23ec2330ea30e6ea4be17eacaebbfb5af7c16cdd

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page