Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.23.0.tar.gz (268.1 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.23.0-pp39-pypy39_pp73-win_amd64.whl (1.4 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.23.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.23.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.23.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.23.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.23.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.23.0-pp38-pypy38_pp73-win_amd64.whl (1.4 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.23.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.23.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.23.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.23.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.23.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.23.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.23.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.23.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.23.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.23.0-cp311-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.23.0-cp311-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.23.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.23.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.23.0-cp311-cp311-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.23.0-cp311-cp311-manylinux_2_24_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.23.0-cp311-cp311-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.23.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.23.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.23.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.23.0-cp311-cp311-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.23.0-cp311-cp311-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.23.0-cp310-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.23.0-cp310-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.23.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.23.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.23.0-cp310-cp310-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.23.0-cp310-cp310-manylinux_2_24_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.23.0-cp310-cp310-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.23.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.23.0-cp310-cp310-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.23.0-cp310-cp310-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.23.0-cp39-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.23.0-cp39-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.23.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.23.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.23.0-cp39-cp39-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.23.0-cp39-cp39-manylinux_2_24_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.23.0-cp39-cp39-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.23.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.23.0-cp39-cp39-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.23.0-cp39-cp39-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.23.0-cp38-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.23.0-cp38-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.23.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.23.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.23.0-cp38-cp38-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.23.0-cp38-cp38-manylinux_2_24_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.23.0-cp38-cp38-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.23.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.23.0-cp38-cp38-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.23.0-cp38-cp38-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.23.0-cp37-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.23.0-cp37-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.23.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.23.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.23.0-cp37-cp37m-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.23.0-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.23.0-cp37-cp37m-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.23.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.23.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.23.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.23.0-cp37-cp37m-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.23.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.23.0.tar.gz.

File metadata

  • Download URL: pydantic_core-0.23.0.tar.gz
  • Upload date:
  • Size: 268.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for pydantic_core-0.23.0.tar.gz
Algorithm Hash digest
SHA256 ab783880e13d8b856cc61d382f05cd11c01f2297b9c933bfd1a3e24593f150ff
MD5 9fb5d5bdc30f228bc72f7b51c2f0ec9a
BLAKE2b-256 b682189595e0ad418dbbcbfa57688577aafd9ec6aa276a8c4f889058d8c0c701

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 eb61dc94da3e601a08d30d32374f2f37c08167735b1c3c3480be21b668e7596f
MD5 c8df86e88acf4550ef79605cfc5eb00f
BLAKE2b-256 a9193e9b93e0e64d1c7bfb1ff329b75029ae9176e37c1b0c2c4a473800871208

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ae5b31a5cb7a4b32a5e01a2cd3be9826ca6eb432315fce28484292b495b46c16
MD5 d18de54e7f37797f0f734063e5622eff
BLAKE2b-256 6544992c18009a631c737970bfd50c4b255daf69fe528e7fff883c352300b9a2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7198713f02ccdfde911550d60e502de77285857e2e073edc9803aa88ca2c88c6
MD5 2408dc0b628ca216e712357a1bbbf59c
BLAKE2b-256 0143761d358dc85761b1e67b89a79e562cf38cb7734ad089a41206f5f455f7b1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99e769e84f9d69691c2a49305ee7b41dea71cfaf1a1617db1463cd476c779e95
MD5 2edf91020b4ca023ecd565f4e76d22ba
BLAKE2b-256 ce15bad2e8ddf5889bc4e16a73e1770bf88be73d80768a9c0b766a8425cc1eb6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8b0e0573f43fc0eb1672309a82e693fe5d119aa69c79ff918986711cebd52f23
MD5 29943ac38a2b230cb014ddfeca0bfeeb
BLAKE2b-256 0ece4eb18c68a5e70b616df8e22ff5111bae2ddc96e7d5c6ed7d63588547255b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 fab994ba407d10c20a228941db8cb59425e12c8d39559f688d946b2f73cfad9f
MD5 73fe15f32fe51478d2e5bc8e79fd61ac
BLAKE2b-256 2d3df015c04685548855b70341798fbc6b54202e6b60e07b0e5d1e2096df7fe3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ea4225b3e1179fe933e43a48530e80c983b200952dfadacf7b9edff4d23856af
MD5 5d1d9a9d3463031a777113a84a35bf35
BLAKE2b-256 0005da1aba490ff4318a2d507416c5037a3a16fb64b928b64aef7a88d51aabb7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 f06c2348bd9bd62570b32cba46d31497a09ef166f8821ec60fecc102fec34bf4
MD5 f3e989f413ded21cc03740d6d846d735
BLAKE2b-256 709a9e3c03ce729654206d2e9a99fc62d6849f05c139f5b710488a0d7220fc9c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 95197611d03d150045e4424573cd815503052736da639909ca273277687398e0
MD5 daf4f3b81f8e5b1490d09295e01021ab
BLAKE2b-256 8ff2099be1f9318797c38cf1e928b8f751bf222dccf009d125df4d5fc5f3e701

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f8e2ac30ae4e23866ae8c475b0aef245b46626b541831cfef6a79eb4279df2cd
MD5 3f791f3b75fc2a34b574f06c62864294
BLAKE2b-256 e7ebc7fca4eb1ce88e8d28781ea8fcc7442e09442d0eaaade30d39a80535a061

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0bb8ca197f05199bd3b2ccdd6b3e0661669fd274956b894059bed7d0eeef508d
MD5 2e1abd0a9e3c48787a2f172406bdce4b
BLAKE2b-256 3d15b3b2f00c6ae7ce357259e264e7d8501a7df01e836082384ebaf5c889ffd6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0adaaf3135eb9dff8f9f9ba315a24305f195010988571557100f6b38757becb9
MD5 3428b36f9c384e9d1beea47d8539e4df
BLAKE2b-256 83836a811bd4f60d4af7a418e8d0e8e394d5779cf75059d9fbe839f795e52235

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 952d270bbbaa76f7b3b2de3a5ef94da117a3d9bf24b1bb0828afa6000625007f
MD5 841e3c7fa9ec88b9cced0f9ad825f89f
BLAKE2b-256 2482b99f1a142b28b68a24c047329b0ae26e94bdf1bc971319354e39e63658ee

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 317259e400ef020a1f5cd60cd0a5fd30902b38c70c05dda6f6feafd67b326dc9
MD5 b4044dc6d1672beb366bb63d7f29ffee
BLAKE2b-256 9e3bd31ad71c9de87b0081bf7a9e4a84494f2fff59ec6a77a1c5d7296d13fa91

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9218bbea5670a1b3cc49dfdc824aa825dd12311204759e4a067e10428d183098
MD5 1137e8a6efb1a3ffcab3a60bf394db93
BLAKE2b-256 9fe3273955160d8fd35fba24bb12eace757e44cbd6f644d499c75d9de7bf789a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8de36a55b9c9c4047a0d0f8929e602feb6ea56e47cdcb5db2c5bde2294020d88
MD5 1657332117e94a27242b7ac33d8584e1
BLAKE2b-256 46bb715789331ade6dd4e93dc8e6d3d2d2c647ebff94ae8e5b71db5195db4a33

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f62b8a84bab71f02be715cc4c4cfc0727670a4bccc6540ed5e7d9b804d3ddbc
MD5 bd65d2f6cd6504b15093e93e442de512
BLAKE2b-256 a87dc641386fc981b97e30ce2be8c582498207ecf0ed927b1dbfa8f03ac0272a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 25027228a84850b7a7329d3b74558060634ca7c91fd7591af364fe943c656f8d
MD5 216d95333b5ea927871e5f723dcb41df
BLAKE2b-256 a9af39cbfb4c082e7ccd62fde7fe271b2ce34c6413fe32936935b4955dfb02fb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 09a8434a666549765c125ce4f9cbcc58c737ef6365175a8f6e80bf3ee9900831
MD5 fd23d822d2f60b7a70401566622acf23
BLAKE2b-256 08cb305b884f5cb5072dfacda369f6400126a2df013c13f0762af39ec736ffde

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e3d8b6c758925a949bba3aea46ebddca26854483eca76bb302f1411cfe3987b8
MD5 52364ef8f67f6d82ed4a3093415bdc60
BLAKE2b-256 41423ed7b89b3f115b4428a7ae4ed2b26334ad9e1f040a36691f354391e4861b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 282de194bd2aa24d812a32829c492dabf807e0615d3be32a97b691bf67ed94f3
MD5 33f24354054fc1cd242d3fa4814f33f6
BLAKE2b-256 0a927234eb4cde840636a167557325cf265430c0ab28cc6576130eb70b813eb4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 0a361ae4d7340da8118f6c48ecde910a630f60b0df32690139e9148742091542
MD5 7faf01583de5390b5cd3078c8360ba0a
BLAKE2b-256 6aea27767e379132883dde586be7b2c9fa9fe8ae0d74f5886711d481289cdf5e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3b96f6d67b13f6025353ae8dd53897c7a1c2079b21a6e6b5e34b030cdccf4685
MD5 af31b573efa1fb1c4a61acff71aa0660
BLAKE2b-256 adb694d2b1735a0534ed5bc53a2a35f37e4bb7353c238e04eddc9b3a0e899764

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ebb70c040c68eeb893f1d73dc1b1c95754d620a214eed7028c81b0aaae6f7b3a
MD5 9ffe245abb9f6fa11129116c8945cce2
BLAKE2b-256 f3f07d042352641c125814b7708686e9a9e1523655053cc818f80af966727cd9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 02ba2d6b66876bbe9c52d53a90bb772f971e7655cfa852f5e450138d250626ac
MD5 6435ea775423e09fe67e0237a06ea58a
BLAKE2b-256 8dae27dc211aa0eee7aa1c4e1b7e72877270e4fe70e6c2440168a9dca27b457f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 b0082293919da14e66b54032deda0935679bcc6fe25a7a56e39b9a932acbad48
MD5 bf8b955bdfe8c031037fe0365582fc57
BLAKE2b-256 8b11dda073fcae3a6d58d29892f31eada012f07c81f870de9a414c1b9154df63

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 5b89ed3aa619b7a8dbafb279ec4e3926749dacb036f2fa6c72eb55a3e152337d
MD5 5d142c2db635e70978f90275b907e552
BLAKE2b-256 e7b4b9ef9cf1b2319a9e43207cd198dd60549cb3564985aeb55779a2e99ac216

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb03f716199d535c401ff5237a178ed68afd0020d41b8b8942eb489307d5b1b7
MD5 afd2c24f1e608f74563ec7a34ea12507
BLAKE2b-256 7b225228c136d9c3f7e1234e5d2086ebb23529b86052f98cf9c1e47c8ab3b8cb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1b1ceee1687e1c234b588bb05bb36b5d78d77e997c204b141c6ad7afc4fe9e21
MD5 5b65419a79a2fb64d67b54f1d828c859
BLAKE2b-256 54b9fbd3be93144555532fc59a36d1298a783a5e61a54542f8b2b45a65bf3bca

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 3040515b1ea44a149fe6f1bb408299f1081365f06d80a8f531924d5c2a642c4b
MD5 1045f6b1e765c8190a7d852b944b7cd6
BLAKE2b-256 a9e205c2820464b1fbdd10b044a4446958b7625bb4efd8fab0365affafee713e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 355e153fc0485479ff54bfb636c787e4ffa43a8ee88bc01e17778f13b23445db
MD5 8fec4bfdddd83890830a56536615749f
BLAKE2b-256 9366ae4659e65db157877d042bb4fb4df12f00d1c35b1d4dc9249dd6ebf9ceac

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 96c78790ce89f53b99e910c856984f6ed7dafb47b4e5f0a3b84d98260855ee25
MD5 095060b814cf5058f43cc059ab189fae
BLAKE2b-256 b0d78b1f838f90603538a68e3fda40099ca058514231394d7e44a6ba49dd4c53

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 7987b49e881116d0c1ca8537ef8021fa7e8d4c8a22278954b276a43f3a67d411
MD5 1b91631e8d5bda640b0e48d6c30e07df
BLAKE2b-256 f9ff8760157d5687b4b1727d098526893c3707f3ea9f1e86b3cfe8821caea6f5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 b601e1d18ae6b9589e03a507e932406c0a10751e90f0d457942c2f2719b391d1
MD5 60073b957de839e60c4ffee8dd6f6b30
BLAKE2b-256 213711196491f9cee44401905286b42917cad608962400c1d193501bcc1137ea

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b2cf5e15871977553229a237eb5b0dd7a38857d7de936b63717db98b184265e0
MD5 ad0dc94c457a33565c9e7ec02e059092
BLAKE2b-256 ae3ff3242e4aced4c43eb0a90050230d09a52d17bfa754ea48f9e817b674bb4e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 edb4a4f0e5fb2bcf560074703c55cdc5a99a37dcafe8adec6d396e163f7415be
MD5 eb98abae08b9a5163a6602eea5c61c3b
BLAKE2b-256 a78d3757c2a80edb559f348049f256c3e764dfd1ef9e221e9eea2ff26e5bb723

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 16507ef05c255be9afd2a611caffa97e0cb63e1a7f16be5868f4a353fc664e91
MD5 9604dd306fe3eff1d18d0c61f2123181
BLAKE2b-256 0317de33bee9507a8d0a97096e9321400109e16567201ae41387466394f5d25b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 e7ff927880c4621d4e9d14f2e85c49425bbf7a930f1898e6bfb880dcf93dc957
MD5 08421980f9eceebf5a512c8cbb08dad2
BLAKE2b-256 e9d96c0db3d456a5e3cc926b219fed0b8924432d07d860d36d4d1afea00f1943

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 158cfb9f86032f2f8f9b9e21df7c396a124f3ff570702e5a71754f2da6057c45
MD5 f2b102701c9596ef61d6928b49310de1
BLAKE2b-256 25cc82a18075079b48e58b582c08b68e3cce7225882c17afd19d337fc009830b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8c7bf7c481da039cf5b16255385aa66bd2718c52288aa1f9eb8fa1f846e7134
MD5 b63cb13293e7dd411bc5111cd80b52a4
BLAKE2b-256 dd3a4741c902ec320060908a583fadfc9435f8ec73bbf9a5f0fd02fc76e49c2f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f5c21146cb8b10b410a9f93bc4a584330485fa992b569220b2ddd8791fd4f336
MD5 b6d6391ff51aa3caabcff0be5d24216d
BLAKE2b-256 1a3061dc04352cc0fdee489ed9b87f554e8e1b54d60ae1956ca2f81a212f6003

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 8df9511d7a733cef27d582d1dbac3de59759ed27b75d1fb3d5cf05ff9f79ae4d
MD5 f2dc7b9aba45e9667c6fba8c79f6c91a
BLAKE2b-256 dd900f5f7e36de9b2a1f9344b1d3b9dfce400e61b8b49d16ce39481967bede77

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69798da99330a62d122ea980409d80b67ad165ec2509b1b0fd41496a3b53337a
MD5 dd350f458fc7ce890675c7e6c754e980
BLAKE2b-256 7f603ffbf1cdbebe043ed5f04d4d3957d00c103ebdd52da7a2b98ddc9227bc13

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 9fa2248c8d8a908e597b8b53b5bda081a159f474f8fb74fb7a14afafbd634191
MD5 28062789e2390b68037f01d271064304
BLAKE2b-256 6b82d95d1d1335e26bae720c1b197467a47eafbeeb1300496909b29a4b6614d0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 243863b6faa584064b7f772f2b31e7e912567fdcd2ef18f8767359acf85f50f7
MD5 b04bb438f72736284b6b32108bf7b785
BLAKE2b-256 7ebd02fe4caeb4a717544287e2967d5a00f2f30c3fef65194cb7b461c4435108

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 e2f1dd5fe65b7ad83960d50933e9a8564230f00f99b20b9794d8f36a5797d870
MD5 2fb94c97fe582bf5cafe6da7f589b654
BLAKE2b-256 35a321e1ddb417fd3a92d12391163706270c771f3f67ff9e6cbd060411763797

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d0130e68d351d23b92d897502b7f089b8ade6d9e9ab0b21acf9e18ffded02394
MD5 d153ad40017edc43af27a46bd24ce7fe
BLAKE2b-256 aff136a41202c7bba7ed5a60682c4d39b67e8714a6e33e0de7d7e1f08097da82

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9dc09207b54692fb5e9897e7411e10caaaee9fcc51bcede8cf67b502cabe53ae
MD5 9edd318f8d4eb50ff5363e6fa31496dc
BLAKE2b-256 d4cd1aa4a1912064cfcd89eb6774b71c8a6230a576e54193516556537efbdb16

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 e4598fbd7638891f978fe99b4cfb49c7df85309adf4df17e89f6e5ab2e96c8bf
MD5 ef1087db44a77a5c9f95158e13b03fa8
BLAKE2b-256 7bd968d35e6e271030fcd315e2687bdaf7327897e551596bc899fc62829a897f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 64f17d2ecbc4ad9833e5664f8a825402702a618d0f06909b44890fc8ad015a33
MD5 0fc225b6d99693f53d6d3b0577f39265
BLAKE2b-256 7d5404b0246869bf8b5552a3faa78d123732635aaa2eb4a29c07e7fe7261d822

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 ae1ca5b8d04a579a40b7dcdc3cd9ce0f294d70c710febc88c61339a2b1d1b7b8
MD5 0db69d0b442ae0429720fd5e8ed6eddf
BLAKE2b-256 acf1de13ba150f54ecf23d40c2d57bba30f2f43c4c06582dc51443ffa28f0442

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e128f6a39faf8afa4aafa34c49f6d9987f41a25414b363d1b7e59f64b75841db
MD5 042d81a32ac983a57c29d033f79c9ff0
BLAKE2b-256 804b9a8c45ad817cf505d2b53e7b735844b7cd950d85cb349ad48c56b45a2319

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79fb39ac5158fa444d910fb0043f2f2351a91ea19da9835e94f80ffb8260e683
MD5 bd2b78dc55e27e688a3ab1d226e613d7
BLAKE2b-256 114a3e06f3b10e9be9fd28b1d45a15630a95388db0d9ad972019a5bb9c1a6a87

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 8c6a94acfa1a4fc6ad94e2ad9a2517b6b86f19f208c77f3f89b977d13cd8287b
MD5 0713fdef672747969ab51c87f2712413
BLAKE2b-256 d266b5dffd35445128eca39aeaff3b83bf0cc4ee6231d48ca678b8805794fa68

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4dfd148e3c7a4cf3895af5558f656e81f161bd7fe950433a7bbb633fd4c887f6
MD5 305033912119c486865b0b7b952bc3ce
BLAKE2b-256 f1cb797ffffe12895523e4b6560d3428e2c5f4997c26521fc34abf24932e0307

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 0c0f1122a01952b94c9c6ef5843f100a5091d063bf4b0bdbdae98c493ab894c2
MD5 e8fed6b845f1813d4d2d5737ebf51c92
BLAKE2b-256 741d58e79e778a5c23f1ea26f8b8df64cff94cd7c6aa5e7293d6a3e91839db31

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 3b39f35d6dc5a3903d77c52d39ddf8fe6464f3038a59174467c1af4c2250f7f8
MD5 0947f3c8204dcb5a2a54bbca607d3c5a
BLAKE2b-256 a5689f5c01ef2f9054fed95a556a89ca6036c27746ef4fd8b6672c1be4841cac

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 842eab5750e8da2777b00dabe82b5c1c4a950cca6b01171bf3d36d83ab1c27ba
MD5 7e66f7d34d7d7d46f7aa1d5b705747ce
BLAKE2b-256 6b8bed570950e6eafa7435641cd08e3b657aaa4587482c1fe74b6f2a815a11e7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 21fcd2052673d8f42009cd7f5e1a06ec58e3599ec1e0f0e5c5a8cd296536ae9f
MD5 b2d1f9dce7b776e4c8ea52fcc29cb298
BLAKE2b-256 f7ac2f879983270b51d0fc593b017ad926934fa8426655cbcf59923332fda4f2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2e09dd8eae3cc4d1e42da0a15fd9ba6b8adb88fc99760b4ccd84e4688c56247a
MD5 ebd1aaf9b4127ac0844a701715846876
BLAKE2b-256 2e08983616c1defcb8eea674cb9bac1f43cab36283df6adbe9cf6be86a5c2428

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 e0ce46ffac3d1c6294f636c7a1a0156ba4f7ee1bd4a97b625f30067047347697
MD5 cdbed4ebfdcfc126ab1ad1c22fb90813
BLAKE2b-256 916be4e662591ff6066521f5377d0cdfb4f6be6e7085fbe8f56406d846c13453

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 d922c4d66cd706f9e61783dacadd50064f90a50f9786f48a73a6259c3e10f585
MD5 124dd6f5262afe08acd7b09d4ca26774
BLAKE2b-256 475fe6f612c6076cca1f021a24e51b65f68ca1674fb35e6eb7e6773553fc3103

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 218138c3001d7b4c34ee6a1506152ce1c646ffb3f9202d234e044e8292472d76
MD5 65f01d9219f3a99a35495993e976c2f1
BLAKE2b-256 531dd4b793c9bbe8a6764e65fc4d73a5800cdc62cbeed120644958f435bf3b1c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ebd526b3263defaf719cc492124295104b727d3e95468aab3a5601e2e9241a9
MD5 f498b786c583acc017afe12ba11b64cf
BLAKE2b-256 8e58ff1bc78698bb591b755c36fe48489b2f4cafdb447d6c53456ab51c09d835

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 477b644218ee8eef15916b21f8ec0c1229473612716215542858345bc152b5e0
MD5 1d133d71caad13ba611f98da1b750595
BLAKE2b-256 08a712bd9657444058b49696f1eb00722004fbe50a2c0f39b54bd0f4952923ee

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 95ddef426b89a85304f30d83023b8673c36804bb53cdbc7a3fb2839d96b72b29
MD5 9e17772924c2beebfacbb5af9e7c7663
BLAKE2b-256 68891490e4ba618dc21aa741dd4b86a975510dad91fe48f219d0b68a60c83d64

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f5d8e709e331fc1bda1ebfbe75ecf9eae7ce2f9a26c5106e284a0bf5a345c729
MD5 928802c26ecfe4c0892bf827189a2c37
BLAKE2b-256 9f641c9ab38caaee0f5efbf20c3b0b8ce113fa621e2e022ecedaa37d1dfb02be

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a49215ea280a61e5498020184392dad36c098510c76628fff4560f892ab94577
MD5 5e98116262055eee1f4386b6c5ee6337
BLAKE2b-256 004c5b46400ef7df5941127a4a374550de589459fa81ab4411770a907cc2cdc7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 2c9cd312a2761cb32c03794404549925fbbfd89b6b6e893ba227e8026a7cf187
MD5 17a28ebe449d59a9d41086ca0a6cde1b
BLAKE2b-256 5ae74fac2d49fb39b85f3ea41324c61b75aac82c65837806e848f4534b0de260

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 5527338b82744ab4a83c1054dba335d17795ae2feb0e9aef31bb2987294a13c9
MD5 a19e59efc70bdce16b3ce86bdde465e4
BLAKE2b-256 d162a149541b2f3d5e2f235a48255f9d2ec3030c98422ff31ae3f07e43d544df

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 269c06cc3dda0b2c0b6a839a178a4da665060bf90db6db3c745df4d9176979ab
MD5 0d4f0041376adb16e2e0e21fab65ffae
BLAKE2b-256 5eac3f866ad198ee45a09b916838376d138bb60d99080694acb9fb47b678a59e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ee3b9aadfb55833d5f0480dfb6018101d3780da7de82ec422ff846b973567997
MD5 a76e61c18db63703489ca0ce67bca7d2
BLAKE2b-256 6f0203e8252277940ccfebf206a2ecb2a22ead82add8b897a122048266087a86

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 9d68455df8cfdad5c99d7e5654e472b74182bc0892271a90e50bc93ddab8f09d
MD5 53022032b60d2661324856fcd5504ec1
BLAKE2b-256 bb5bd1be9ec338eacdfa082d7ff2c8b95cc434a7f9caa0f4af7d4ba0a3e9fcd8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 10fa27a487e1c7cdcf9b5c0ad280bf6158998df7f54feff02699774d763871e6
MD5 ebf1fda9355f773821964b6798ca2ef9
BLAKE2b-256 a759a5f2fe0b810c99889df28105c0b041225317f855a0a37dc3d45d0bee75f4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 b35bccb048ad31397722f3ff462a99965b0c8a5e40a584d88e21195cb816e162
MD5 743e795b579ff886be30e6707c75a12b
BLAKE2b-256 e29d3f67d896c51cc6e60c38886a2c2e54ba17d3120de46c85634100d324bd2a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 48475fd20eaf9c8a97646700f40a67c6a742a39d16b5a5650d4ff5b9a02a9394
MD5 2b734b9373655a1421bb5c098599310a
BLAKE2b-256 8166ec4a5530889d8a4d65f0031a7289033482bd6bdb22e76e99046c67c66295

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d34fbee4aa1921c7d88ebf54493b17a388484fd5e36850cc3f524bac5c022c98
MD5 24ab0d80f92c9e41b8dfd97d9f2c937f
BLAKE2b-256 d61184ca98ce3d6ff7e16ac5914b68526502c72d217ccc0ca2cfe58d85a87681

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 999ec8fab4dd6916589d2b254d239d08408482a9645fa92eaa307a342ab0d0fc
MD5 2767df22211b3eadb7beb4cfe1026f0d
BLAKE2b-256 a7f485e040828f73b54d93286dbd6b791e12259fdab8817d688bfe4b0f53563f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 58a6faa07012949264412dcd9ae4d54b80f2deb98886c42792377b0c6512293b
MD5 5942e7e7156ff997def75cbe4a707da7
BLAKE2b-256 aa303f0e74a42236b6c70bc0503a8f840bda1f87ab83d0502043dc3539f6169f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.23.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.23.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 526df6068d264de84e2280e77bc2c4a9993d2025d80b324e5de7c2f0c77e677f
MD5 5bedfcec6b9900f70801a3d9b6d3902b
BLAKE2b-256 be176f57528ef1cc9cb267fb095feb5ad9d834cb6ee0ff3d8eebe18e7b1d23ce

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page