Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.25.0.tar.gz (277.2 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.25.0-pp39-pypy39_pp73-win_amd64.whl (1.4 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.25.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.25.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.25.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.25.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.25.0-pp38-pypy38_pp73-win_amd64.whl (1.4 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.25.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.25.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.25.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.25.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.25.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.25.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.25.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.25.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.25.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.25.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.25.0-cp311-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.25.0-cp311-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.25.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.25.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.25.0-cp311-cp311-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.25.0-cp311-cp311-manylinux_2_24_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.25.0-cp311-cp311-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.25.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.25.0-cp311-cp311-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.25.0-cp311-cp311-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.25.0-cp310-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.25.0-cp310-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.25.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.25.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.25.0-cp310-cp310-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.25.0-cp310-cp310-manylinux_2_24_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.25.0-cp310-cp310-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.25.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.25.0-cp310-cp310-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.25.0-cp310-cp310-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.25.0-cp39-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.25.0-cp39-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.25.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.25.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.25.0-cp39-cp39-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.25.0-cp39-cp39-manylinux_2_24_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.25.0-cp39-cp39-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.25.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.25.0-cp39-cp39-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.25.0-cp39-cp39-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.25.0-cp38-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.25.0-cp38-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.25.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.25.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.25.0-cp38-cp38-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.25.0-cp38-cp38-manylinux_2_24_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.25.0-cp38-cp38-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.25.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.25.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.25.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.25.0-cp38-cp38-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.25.0-cp38-cp38-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.25.0-cp37-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.25.0-cp37-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.25.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.25.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.25.0-cp37-cp37m-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.25.0-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.25.0-cp37-cp37m-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.25.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.25.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.25.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.25.0-cp37-cp37m-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.25.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.25.0.tar.gz.

File metadata

  • Download URL: pydantic_core-0.25.0.tar.gz
  • Upload date:
  • Size: 277.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for pydantic_core-0.25.0.tar.gz
Algorithm Hash digest
SHA256 6ed58ce669d13c076095adaea3331f48ab914485eb1ce6f462c08c982edf935e
MD5 046833c0f4ce8a680ffbf5facdfb5836
BLAKE2b-256 3c0564fd21f0151ad7387b3ef19e9ebbf313eb6ebb4d94c377419fbb252148fb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c81c8f78ccfe24de9a834e0c0ea1c78d9a61460b925402f4b8fd4e87ac7ba270
MD5 e8005f2fb902e8d3285c0f14da65db99
BLAKE2b-256 2d39e1c87220c57df06268ddbf0bbefd9711128c1870bb85b6255c4b80c3b4fc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 aec5b257f40f66a81df35fa9381e84dc4945ec20e1a99006a832d2bd7c730ab2
MD5 150e8abd8af16a0df9b38511e83215e9
BLAKE2b-256 56a1f7847a3cc96ca707748c7b49bd496479a347394dbf8d45f5c5abbb0e633e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3d76b5f7d01d2f58e34ff7460c30ee61f9a1db885a568b7904bd943c916bcd3b
MD5 ed435762ab816ce8a03fd0392240a79e
BLAKE2b-256 2bffa9b47c802058b973113d392ccaa158222942939c73c4d75044e8401d7921

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15f6633fe7259e5f65ef8fd44fefc0969ab2f68744b12522ebe97e0c1fd46517
MD5 609d08dd186a4d438275b1dd3662aef1
BLAKE2b-256 b07186611a4fd4aff2b91ef69c920e745228851a6ad961060cf01584ff4b11a8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4955568b102d57b099a3c8ec8e91f480986c55b761d3a46b69583f1381a157e6
MD5 d6f54ead54479304f5b789be2eb73ecd
BLAKE2b-256 81a2c2f17c1a73f78bb9ddae76e444bded68ac9535ffc8592cbb0bde70533bb7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7a548b1bdefd5d5a87dd064343e5b78e9bf7b66c64c4d2b26706f58e8f2594b6
MD5 27d6360cc484c865309fb92e325912c3
BLAKE2b-256 f235a7093c043f0264efb7c82c4bc00c7505c55500208340e09f8541a744eb20

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 73287ea35d999332e443dbbdf3b9eb963c516e113bacb7f609735562a16ecc84
MD5 c3935215690aadd898670e244cac905e
BLAKE2b-256 3dcf56523e659003e262ce9fba69fff3bbf5190de563f98222b7adbaa882e227

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a2a06dc032524cdad60d1a56d6a467ca649b633a6ad0315033b1d590377ade21
MD5 1d2b383372cac24ace3083d32daf00f4
BLAKE2b-256 8b2fe002b88bc3eefc50ba8b3061a8f8221aaf66b234c1853948d47fcb338319

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 26254d3012c823c7f26d81644027a096d83c914c6f5c0893e244a9333c7aa243
MD5 10b931e24e431381672ec1812bcb145c
BLAKE2b-256 1ee522de140f3acadb94b5b8746ba11942f094d36879dbd21b7687c429684c1d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bf0de2e8f2bb0a8178a9c861a7e4cf820ddf5cab93af4f78c962e0f1c8391b38
MD5 87a46659c3f6a1feff11167e2b8f28cb
BLAKE2b-256 7554f1714f123e432e47de0c796e797a2fd05a686b898ba10a1b03242520d4dd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc704bc051636ef8ef0d75d64a1e6094f96d188ca0cd772048ebbbf6863d8fc8
MD5 07d59c1ec4c33d2d5c538c00abdbc3bd
BLAKE2b-256 391a089391dba3607fc074828322803a59f38a3e8e17d865716c359dadccabf6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fc8441277e75ef2026f00584511be92a8824a0ae7304fa51c8b48962665ec3c4
MD5 9df29ea0342f423c0ea15c10cbbe1a18
BLAKE2b-256 3904baeac88b7026c963db7c5f7d400bd17b4d7120b450e4cf6ebb1723f20050

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 8e0150ca25eeb7836aeb37ca05dd22f167d74a25fad100d58f93c20ff063c934
MD5 20f516374679f806f92e068b54b0b75d
BLAKE2b-256 c9228e3ec0fbaf950b44109942d9e0066d07abca481398f4bc2249996c273eb4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 b8358f18c1090293d6e22ed14a1ad6940421d2a10f9f276c8a2119ef5697ea67
MD5 9062bc6fdb1eebc41aeb6414a0fedc48
BLAKE2b-256 f5b6a0dc73a784071c1a95771c5840a26713397b6568954796dd1f1d331ba185

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2fb90b6df8feafc95dcd708f0bf8fbca2413f686425c0ab41916872b26ee635a
MD5 2d884165ef04a63baa0085cdb13e3fc3
BLAKE2b-256 b9ba86d19de9581d896a4e2bea0e85a7f1ad24c917faea867a94b97fd6583149

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5d4e50a162d119389d7c4f0ba00021e00ec3a0b62069bf8e55cd296149a10442
MD5 2792d5ebc349163959d01c309de93493
BLAKE2b-256 230103948e8419cd724311e75c3752f901ecd9908b486467290e757c1428c6a6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4059c7c0e4ecf986bc864579820176e13f0896b3e0dd3b72c96298015cc1788
MD5 aa8ad7c4af5a44b111fb9c2d723bd43e
BLAKE2b-256 f901fadbfd578f1ca53a325bb0d6d316b6723a195654406209ea342fb5556870

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d52e17b211a304f6375ef529b21869c573b866ab2bd1bf5aeba46780e7b8359
MD5 0b730d74be86e12df2a5e30721c725c2
BLAKE2b-256 aeff3ed05384bcd75564a92625c5ccccdb2bf13548d3182bb51ffa23bf5ef013

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b4fa2fbc2e4273c863abf14a73d4182b17d8d85ec5ad795de8c31dd7921a9738
MD5 afb85aa4f25cfd0fb7041403e5139df8
BLAKE2b-256 75e0421707a0d71fb0518bf30f40c0153a7ee20943c3cd1a6e285e39be0e5fde

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ace2e31043892352fed279fd6c1495bc66043d74b6fb04c3868e6056d3d07642
MD5 1bd2ce775818349332498f2f27b33faa
BLAKE2b-256 eebd9c8bb2fef5a09651d6d9cfcab32bd8ff5cb7b1085317dabb6901b3ef0698

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 1a20d538c8538f8c75ea5341dc21f94ef1882db86f2f2fd4fc61ee2a4419813a
MD5 82c61e30e1580d782a474198925264be
BLAKE2b-256 5344569d78f165ce9a35b9e9bff785c4df81f759afbb32add3c20e6cb324a8bd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 64a4fef2ff3f8e63aedc24bd8b0f4dfdd117082ec90671ea4518d51d3a21df23
MD5 d54cadeb62ef89879b109381239ed2c4
BLAKE2b-256 f163464d481fe0919fff8ead3f5139c7a63066fc91a65509837b4fdae868dbda

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2fb489cd9e53efa4ea88f6c9b7cf8e4bba3cad42df3a9781bd30c072617ce1a0
MD5 f9dd8961ee589aefccd9838df0b4435c
BLAKE2b-256 3dc04fb2bac78dc964cbcfc6f49e127524084d9642a4ba5e3ce81a7010d4c817

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 78df29c6c8bbdb02c27443a7b9b6a32281138c92d675a0ff0891eca6657fda9f
MD5 e5e3959194d911ebd094951ebdf8ef2f
BLAKE2b-256 f965324a70b320d54bebf6f3d23caa774dcf9c01e2720560a6e6cd1fe4483732

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 149c60c812ace1262008d186193a6c856d980e1913e0f7263b46c26321009efb
MD5 b8050fe39322dfc6db1ed08165607450
BLAKE2b-256 b0aa29c2b3d3a6f45055916cc55f3d4da8b1a71fbaaa6fba83b1881e408da812

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 a78542cf83fa81760bc515242c7508bacca8378ebdf7f081674e0d7d07186157
MD5 5747925bbe88c01fc99610dbae344eec
BLAKE2b-256 9542212d8b25573ff40e55e2ca96e9a0cc08e96fc1ae421137326f8a29af3d74

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 01a0c73f018f6969e1e7393bfa0cac999c46d3ab80a8224ed15b0c641dfc96b2
MD5 fb78d443428e8b3e8bf023d625d36a81
BLAKE2b-256 e6e3ddd4187c33c556f325e5369489e314eca3be5c9d2717baca25e1fd99fd30

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 09a7997b8c44353d36e7a14f7eebf9c45595709198d6dd73d8b0b1f3423ec42b
MD5 b9cf8539f6e67cc69e3d33abbb24f1a5
BLAKE2b-256 ec709b2c97fe2307af94fcde68699f4d0b6d3d70d78f1bf5ecc7b0a8b6ec219a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4f88b38b223893c183d733572b815a6931adaeaaed5c986e480ea47d3f94ff67
MD5 09ba95bbd80265d5f20761ece0656390
BLAKE2b-256 269a983467cf3819b8f2cd00849c65879fa77066beafac61020ae9437cc7d0eb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9b5d094ad5728454e14115fed93766ae5ab89aacc218d4c641eb148bfdf0b555
MD5 9d8bb4871778ba428dcac77210d60192
BLAKE2b-256 faa946aca6b4c6b1ec13b9308a377019d12c53d243828255433f21e3059a22a2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 24fcfbcf31b998b4e382fb192ca6d929b32f380132dd607610290fad040e5656
MD5 c284f917f6354bd4ad6edf1eecbc233c
BLAKE2b-256 99b26daec4a932c379f218a15881fb1b82e4c6ca7ee20f9f53e2145a5b6e597a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 7e324e608e1650ccac731ae6077c7bf86f88a930a6e71b412dbe53106008e53d
MD5 5cffbdd34ee67ce6773725a8969e56af
BLAKE2b-256 2cca9922c6fe85850042977b0da9041477f26427af7e1ddfc0dedbc74fc72bb0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 03a152d69d5849a6820023806b8198b398b79f675ce6f72cc5a0a9ab2922a858
MD5 80dbedfa4512670de7bafa35f81a7858
BLAKE2b-256 6a3456143e6f6ed2cebd6e513a93b6a5c3b7a83c62768804850b8b7720c6e7f1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 43d5eb23050ba96d4f1d6f00198e8fa0d85341cfc61151d07b755f1877b4bea5
MD5 879b75a65dbcf15bd02d8ea021b490be
BLAKE2b-256 c6a881b13303cbde4eb0172f3a90b271f1e2a096a6b2030a0ffc16cb40dc1baa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 db6f00e16273f24342a5ed1c44aaf533c70e087d5daab01debc383015e75dde9
MD5 0972a083fb009c2fb7b22bf95606e232
BLAKE2b-256 45bb63db8cda9e5c8302047cb10653955d48e7a8f2ac3592be6d3fe18e124b2f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0c243c29bba9eb8132da3a9993a69dc295af6205f751a5d4458ff5dcdf80644c
MD5 e28959030666815c8f984479b50318e0
BLAKE2b-256 eb9ea98e9c3f9cda7d9fb5e28bfe8037994c7b7dac23c7dd646fd4eacc011694

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 8bb82dac1f0d34383b0a819544ba4c37e69a8f72c0d6e6dbbe29746147de28a3
MD5 d98f84d289c862d020636ee7a4ff45f5
BLAKE2b-256 88b4e819f54bf43975540579fe79c571cf4783d7702b774d8a147414fb6053b7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 6234592624e74ce3b397fba6f30688a74768fed107b30bad21d44f472b243bd4
MD5 52ab704613d6969e6214523f09c5931f
BLAKE2b-256 f289a9a2440104f790df755a0d5afe1ed9484bc2da2c257b05cc36f5d57804cd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 f875acdcd51c0c72bdb046be5e1f979731ec97ed5102c55049188cd2f20a76be
MD5 c369286d761c19cfaf22ca92e12bdb09
BLAKE2b-256 90582a2c12c8f5a425cec52881bf7b4071681cad7043d7a4ff478fff9ed6bc1a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4618813403b1fca7f417f1604b59c4bbe7a637275bcccff30d92b31eeffaec6e
MD5 94cd2a6ecbf046db2c5882b41c298d6d
BLAKE2b-256 10bae5f87d057985e9b29174efcc8139b984c29155ba5e928b732bd4dd5833b4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b381b02c5c70e56f9d39263ab872fe1c40d73f4609ec0d5b57c2a0489bb579d2
MD5 2ef482a252212d117df03f25796513cd
BLAKE2b-256 5dc58a1bb942b668a416b98f87439ad4adda6b1ea1d7e8157ad88b5562c3c604

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 00157f52a367d2763e05879d31d7369e22e53e6e1e196a66607452d3d229960a
MD5 745c9857725a255e4edff077a35f7c90
BLAKE2b-256 bcd8a6c12efaae608634ebea9237f0b0c79198a5b3b63fba53d72e24f80c2b4f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 239ae3b0cb209244cd8d3cd74ffef0e20602aaa4c7d2718a405c324d1c7af5f0
MD5 dc0c52ae1b6161b5c0d847e0d766794b
BLAKE2b-256 43003799494f75125471e0dbb7988600b65a6afda4d1ac5a884b7412a2b1d3c8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 97eb6422689eb714cc1f5af5d220cbbcbfbbb3778dc80f6edb578df42c94bef2
MD5 267b130fd4b885b5985fd8e02185d824
BLAKE2b-256 f1c504d389720d1899c6fddbc59e129fe34c39889f2ec71b3538133346908c4e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 b45581c01d6ee27c0390aa49eb2c19eaa47a6f0f0cab7fe282a9680402d1b014
MD5 73868f87e9944697b3957edf1a850f8c
BLAKE2b-256 ee157c8e759d895afd5048cfec398c67843bd8d68c8112628f023379c2d5e8eb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 56552d6a75d2a06e7fa1fb355d6b43404490f270c49db3cd251ef074762d8c5e
MD5 41a779a44d052d8db814cf630597934e
BLAKE2b-256 0ddc89ed657ffa2aaa100fefb711d6fc808e108ccadf4e052b5c3728cd4780d9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4363bbcf28a1230b71c2437cd98234e00402bb6fd48026a134230760ca69e715
MD5 beb6059082c6831b905ad9c9a248e9ee
BLAKE2b-256 d11127ea6086da0c064503a90a8ca706a5a8ff7cabee04e15a7c59d1df91a12a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1aad4545ebfa5984095970d88c2366d6b8de2d5716f3f416ef814048371b62d0
MD5 33b3340950b6500f8959b234e7c5c835
BLAKE2b-256 7e73d7e068cef5a575330c055b00b278d99deaef27161d3dc2eeb268f5c3cc06

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 f1f636d2c39f694cbe82645ade8d27250fadac48bd1d47648dd0f38a487f8c51
MD5 4115576a0dd4b48dfe5c8cae47694b57
BLAKE2b-256 37d437da79944c1147e9f16584402361113b23c96feb74d96928bf35f005d55d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 3fc30e7dcbc962edb649facd8d963df3c958ee762a66bc0e6bb43050497437e1
MD5 8508557f6875ebc08be8a971bfd1e2d0
BLAKE2b-256 53ee4637d33255080ad404953e4b5a79f881524ab54cc667da0ceada3f069e6b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 92a8b8542929f40718cb58638f46c99fcd2470c8b58d50c5fad5facac5b2fe00
MD5 1c267d749b30a1b8a5a1d128a2445285
BLAKE2b-256 88bb8401d73767d825033ea7120f0a731aa60e14e5de1e034c7fc329f18c9ed1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b756443ba2ec6295236da587fe91a0ba99bd9131416e6163a000ae58e4724ae0
MD5 9c98db779320871eef8b1c314bb4f904
BLAKE2b-256 604fd8d2d42474e1de0821413bd54b239db18129e0a7cf0508ce7d3387854cb3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b7a35610fe3c65334dc48ed6abeb459643a0becbd95a507ac3581da80d7f7a28
MD5 9dae8341ba92b4b07b55cd594b41a3c1
BLAKE2b-256 45797323e417883f8414ee6297b3e270c031f1e27aae5f8a67cb221f71c54b46

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b9ede8cf2dce74599f5e90850330ecf8c0ef67575d7bc6ccda682714910b6c69
MD5 5441d648054c1f93188329f9e65e4b93
BLAKE2b-256 c4bff67458f8800b445686afd5630969fe74b4895cb145b63ee40f0dcb171dce

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 82bcd983fc15064928d62ade5f0352058e4ee02e809d74847e9f6d0e24736add
MD5 cfaa67b196cb56917c374c760e77a067
BLAKE2b-256 ddb02e172f2cb4e75e44799a8f858c90de751a1026282fea3c9b7e934520c86e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d71a45a30286b93728c0de71733128589934008ee906b826dbcffe9fdb1d343c
MD5 dfe7dab3727a894f16c1b787e0b38bd2
BLAKE2b-256 1353be38dbae54240ac5166e3a54623b240c648b9cb8f76e1965ee247b4f868e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 5e4f28e67d338fb7ccc38ee39dcd35fe88ff72d2ab71336768b50077a19d4142
MD5 7066acee4b0545dd818da9696be38d5d
BLAKE2b-256 ec80299a9a68b9826b58aa6597a5a11ed5d48e3879910bda2a8d409d5d5166df

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 58b65440b8149439f541910a71c0ccf23c388553b9539c25ebebaa95759c4017
MD5 d03ad9b1b316a60b4b9b4a71409cea9f
BLAKE2b-256 feee2be26bb61d2409e6dafe4e13edf17d64489359e3deacc59ee41b8164e42f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a68366aae4fc15b7738aacd910b10f432296f03f5fc3b622b68f4bca901206b3
MD5 00f09658c55477ff6a2aa72eeae46e0c
BLAKE2b-256 8d971f3b0020e0640e20318693bba1d7e835df78e16c49737d9cc7adf81894ac

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 36fb117df24151ee0740e99f16f183054dfbfa7d2d0b74df195a929bb59d8259
MD5 3abe2f3152656a42d06517f15b394eca
BLAKE2b-256 c1f8c1bb794e1772e11f44d95e21e8b53905ee9aac3b12cee52d8971ed1d6768

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 bff3ac8f17065e463402597f8c71c2c09045e7391a6e22ef9b43ec1c7f14999b
MD5 9e4737882d2142c7179005c6ed40ea66
BLAKE2b-256 75a9661b6b496323266f4fd06eb5264905d0e1daf995ef59c5607fa328c01cb6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 35e0f3ad3817845e48b51369a602efe4cebff1127352de1551263bc5a8392399
MD5 eaa90e370128b5376271fa1ead1d1719
BLAKE2b-256 ed5d8b956f8a24451c39e1d5f92ebdf2fe3613f7ce249564100b4244412f442d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 93cd520418048e4ab012dba62e2cbd59f60199036a77b1e120d06f1e126232e3
MD5 743f8e34d69f2b270426291cc280e759
BLAKE2b-256 8b1569278f42cf3d2a8e09789668ffcf4b9237cbcd9a63b3b7ce6f4fb65ec003

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17da247e12503862fe2450812cf71739787b2d813408d301bd9ba1c111167b98
MD5 13df7d0cfa4ff9fb36131f5218d61f38
BLAKE2b-256 afcd820572c932f7aef5cea9247caf225e902f1c0a276d3cd1bc644e620f4489

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fc17c9256540b688cd67fd3deef77dcff04ee8afe609ba418b15b43124fbc482
MD5 33d36d7d7b954bd23912119ce3e02ad8
BLAKE2b-256 5573164705c21601a85769a841478328c6067f2727cb3356c740b5b71ad6800d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 914ad3974d07dc17c65f46df9c896a54ac51c8bc6c657c4ab415b5d59de894cc
MD5 5c8b80a09a9c0b06a792f697e7066c9e
BLAKE2b-256 2eb9a2f192b6cc3ac01dad56a667a51e87c274665dc8f516056f0b90b85a18c0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2c919d41c8e17b89d706825b7ad53a1d5834503b8222545c4751efff08cc3e8f
MD5 90136c2b97258b2a2e6042ef65f07a5c
BLAKE2b-256 8a2bf6d3cf776f026a32eddb44d3362bbf259b434e356fcafb64317720f7ffad

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 2ba13d173bdd8d5d3b8d8c865cb9164bab1e9da7fd1f1fe21d3e88f3f53bfca6
MD5 1dbe6aab1f144c8eee0ed88b999f94f0
BLAKE2b-256 f87a78ae1f1215e6e7a3713021b1f57850c145fa47f3071262fc7b5401e21810

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 a582fb6be0941db143944ec9f3e223d943c5410a963f969e1c813e0d941d5e30
MD5 e969b5720c00aa74a297de777c10f8b8
BLAKE2b-256 b5d50f3302ae767b288521b3c51c069d990266b712690b3a3b698220b1ef96b9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 52915248c47d414f75ccdbb496499ee83faff3a982b8886580c8dae58d411928
MD5 28758fa08bb902eda4b89cc8f37b6099
BLAKE2b-256 367e1900e564211baf565c632f11d4308dbbda4baec797edeab79ca24ab83b28

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ab006970f59350f538fc01dfd1ee4fd15689490471dfc02bd68503845cd4e474
MD5 8d5aa06b056afc5cbdeb0cd1e553beb9
BLAKE2b-256 6ee73e52d39a1ea6f5af04a48c98166a3c9d6d1b4ae6f168f7070971db33ce59

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 09d0446252d93e1a1d4e669fc2eb429b42e66b1dd251145ebb8d17623bfc6fcc
MD5 13c9c969d7d97d0b28869293d49e54f7
BLAKE2b-256 564023d14cec862b91bd79f4c8101816e73bc4ad243319eaa9662ee1d901d09d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 fa5af4d978744e493184ecc334f23b91f93c1bf700a88fd91a6883369ab8d276
MD5 389c8b37191ec084ebc481d9ccab550f
BLAKE2b-256 97b7beb45fdc8ee191d096c7750a89414d069fc2dd7e1152c082ef4aee8423cf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 0fcc69217de13a6f8a926a37946e0901aec0c9b66259dde260584cd911c97aa5
MD5 936658ef3ba22796a9aca2257d235956
BLAKE2b-256 a33300ef00e3a398e7704e5ccd359e946c3b03538dbf827731baec1c420a284f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 aa3786722b293be9e8dde8a8d72cc9ed3412589755970876de6ac4167d3c0a87
MD5 38be4998a817840f58391b96120182b1
BLAKE2b-256 1811eb090ac0b63fdceedb40c47d8904c60542acb651b357e158aba30b5c6db5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0254dce1639811384a806a77eedd24bd03554cbdafba094b03c95ba0325b5b74
MD5 b27b7a44c112e513bc916865192a17c4
BLAKE2b-256 077f576e0768b0ce0e6c03c687ed3597d912390144587238eea3e403f0d842b0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 28739b0cc481dde1189ded7d691a181d61d2a8c7e503be06694bdce3586e3ecd
MD5 86a37e026af956d30280012507505658
BLAKE2b-256 1cf8b511d19ded8ff22af5a8d29bb59c27e9f9e5e76970bf8ae420b84a6df891

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 bb7bb8ecb02180d62a9c751f44a5b1f126d582a866c02372f1b922a6a8e872b4
MD5 e2d3e170695d4dc549f25f3413053396
BLAKE2b-256 4234363940d0e2e32d07300b84f9346726f4ea092dfd9c81e07886d6c8ffacbc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ce0b300f5f50dfc70bf9c5eaf525600cd420c7611b0b0dc6ec62458717e955ee
MD5 b3ae1bfa1ec068c2aaaca3b63a2b5079
BLAKE2b-256 33e119c308e11e4b13fe51394249c4db23cfa6c30411d24638ede76af5bdcb10

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.25.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.25.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ded1aabeb5f358c5ae984137e123bdb547abfa96c8f673300f8498ce832c1b9c
MD5 29038ad121e0b821def3c54ada1434e4
BLAKE2b-256 f319e3ae447f6826d96a9b17768c6e6e02845ccb0bcf26d832f596250709924b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page