Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.27.0.tar.gz (278.3 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.27.0-pp39-pypy39_pp73-win_amd64.whl (1.4 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.27.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.27.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.27.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.27.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.27.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.27.0-pp38-pypy38_pp73-win_amd64.whl (1.4 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.27.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.27.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.27.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.27.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.27.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.27.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.27.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.27.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.27.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.27.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.27.0-cp311-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.27.0-cp311-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.27.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.27.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.27.0-cp311-cp311-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.27.0-cp311-cp311-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.27.0-cp311-cp311-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.27.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.27.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.27.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.27.0-cp311-cp311-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.27.0-cp311-cp311-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.27.0-cp310-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.27.0-cp310-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.27.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.27.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.27.0-cp310-cp310-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.27.0-cp310-cp310-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.27.0-cp310-cp310-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.27.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.27.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.27.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.27.0-cp310-cp310-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.27.0-cp310-cp310-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.27.0-cp39-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.27.0-cp39-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.27.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.27.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.27.0-cp39-cp39-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.27.0-cp39-cp39-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.27.0-cp39-cp39-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.27.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.27.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.27.0-cp39-cp39-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.27.0-cp39-cp39-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.27.0-cp38-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.27.0-cp38-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.27.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.27.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.27.0-cp38-cp38-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.27.0-cp38-cp38-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.27.0-cp38-cp38-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.27.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.27.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.27.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.27.0-cp38-cp38-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.27.0-cp38-cp38-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.27.0-cp37-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.27.0-cp37-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.27.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.27.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.27.0-cp37-cp37m-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.27.0-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.27.0-cp37-cp37m-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.27.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.27.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.27.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.27.0-cp37-cp37m-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.27.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.27.0.tar.gz.

File metadata

  • Download URL: pydantic_core-0.27.0.tar.gz
  • Upload date:
  • Size: 278.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for pydantic_core-0.27.0.tar.gz
Algorithm Hash digest
SHA256 ed00d9db16c7868071c7e36ab5382bf5e5610397149f60288f08cf429e7964b8
MD5 ef234140ce6b12f89d21057ebd658543
BLAKE2b-256 6c0fe37ca6c5f383e357f0452a5ce47aaae1b345f46774919668ba33034546b7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a2e63fbe1e754e1ed0ff7d349760411c47cc92e2be132caa0a7ef862469134ab
MD5 a4253377b63cfa68453af89c0809b2ee
BLAKE2b-256 61fcf333a8b28ae41b09bb87ec81438c68fa576b213b2970cbf2b749dda5a5ee

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 61140d463cd97d9f09c4ad1c213e6cf363926d1dc729b7b16606685a71d545e8
MD5 b61e1a12ac721a65d5900cc9cc7275bb
BLAKE2b-256 65d720cc0e8b2cb7d0ef224dd94e36d111a04d37ece26d318efb9bfa335985ef

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0b95e25d92ee25c8c13155d3cfa49e573cc223192ccae0504a1dbc6e5c7b23e9
MD5 b4537c5ed1c8a57e54db61e581eace8e
BLAKE2b-256 c87143dffc19d51cb3299b8502090c8da35e1975b606630eeb1be33364d1ab86

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 336b891c19611a7416d70aee0a387ad8e5cf10a06558092ce94a924be748b296
MD5 767fc9995b3d3d500707a181a134eafd
BLAKE2b-256 b596adab315f1b63e5fc7e79a2099e1e0d7d88c29d242f15284158eec63c7dc5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 54afbf0cf4b8f95eae1dfc09ea2e17d20bc9888930f6ddc1d00faea726bc2341
MD5 e308b727c1e6b75514198bb703e9e777
BLAKE2b-256 fe7cb30d4c1d1c0965b2465cbe37b5e8da0be0362ddbd87a429172639bc9df32

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 2c4a48dca253c28f49dd69ce94d804bdb99720ec3db2694ff29376c472a829ee
MD5 2d6caec198a0a4af1ec39501744f9ba0
BLAKE2b-256 ce664d315d32463eda580d328c8f11493572673615d5eb9784cc53411670390e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6e4c95f585a9bd992678c69671dac39112edddb7c9c7eb42ca990955ed7c2bc0
MD5 cd472b4e9d7f9f98ea928fabc03ea777
BLAKE2b-256 d4eb05f881e27912a5889522d9701ae03cd503314976b40195979dd17c693e1d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0754d9b86e66d146648b867dda34d3f1313db5bf2f1c79cda7b66264a55b87f1
MD5 c27bb523731a7af39c9e7255c8a89f69
BLAKE2b-256 ed85850026aa96c2cef06f57ebb1315f539b76ac43438e7545936ec7c9c76331

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3713c405b95541e315c669c7977a7c07e246b78adb25d0b1f45ada1883f85e49
MD5 71746e8281095e825d67ba681a383181
BLAKE2b-256 6dfdd7d2abe484d99f98547d8e03b194d8bd26ae30cdd86ff57654a56bd7c74c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e8f22a2c6018d84ef3d55c373102884797a21b78204f0bb73f746d88cff6b5ab
MD5 a538dfd9ddf1bdfcbd4a4b061d145c30
BLAKE2b-256 0ca4313cb00c598871cf510b8ac91cffcec4bd0f2befe2ddbf0f010410bcde2c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 601fa3ff4c88f689ad975ff35a018024c5997f38eb7f6b06987a20fc58f1b4b0
MD5 73c1bc681ad27af8cc516428580f9d9f
BLAKE2b-256 b05565a991de327bf5cbee2186d2c451ab328523b5ca58aec9681fa2311b5245

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 12fadfb79af0fbe0a25d89472f6544735544b8494134c60b0321dfefc1ff487a
MD5 67b3ded65cf0cb5654b8a82726d6af20
BLAKE2b-256 48a9e619e47dcda1dff0c18409ba15b996a9fc225f552e25280bfe7580f809b4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 773656228fc0527832c2e30bcc7bf6e73c55d8089847e888071719906c42214a
MD5 3aa2e5e4898f111806426a72beb91fe6
BLAKE2b-256 a5335a234e0a3b8da24ccdb18c06925e6e87546e2240cf56097baacf1b677e5e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 60691f1236b039d6d9f4c1c63f88315744466868cc8b7b899461e6c8e0f0f9b6
MD5 29a02553ec2e69f708db1f88a3277a72
BLAKE2b-256 569d743ddb1d25489123ab8c891f7c9203bf72e2bdd7e8b9251febe1ff6817e1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4425ea1c626b38c4f8e7c4b210b7d33b8308bf0d8a3f24529bcd0a42da6cd9cc
MD5 ee56aebb441bc9d4d8812151435e6a09
BLAKE2b-256 c4e7435b7fe670187c32567918a5ab5b4e0c47f46aae835b5c77e990881598c2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b3464e3361dfc555be4329a15baa63f056458b81afd5b8b1e9a439e3e95b7b44
MD5 b6990d9083540ab04e2add1784bc2b3f
BLAKE2b-256 0909db8281bfdf1f274da57dc9fe40a36dcb1c3bae33503cff9fd42965b74809

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2dbc1bf4560d0d881da655fc1495bc968be77fbe7178e16f48839308b2ab5a72
MD5 40e275c89305341cc8222952d08662e0
BLAKE2b-256 78a792c713d5c41c12f2db3a573313eeb94a7db1bcee7d2100661aef5b595ab4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 177aea169d11713b75da53fa2518db851900f8d5277cc72bae143e4217f8f237
MD5 8b93735ae22337479704f5b31949341a
BLAKE2b-256 c63e1dacf8fec5c1590531bdf00830844847a665b556b1f22c277456a8560ae0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 dc30854d719d21ef62d496d8f0ab191028b959dcebab658604b1709bc19ee018
MD5 13a6056d4e7013b3fc0b8472c7b49fb2
BLAKE2b-256 2fddf88e5058061240ac7b151ff84aa86431430d670826ee8153a43948a209b4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d3b60b02069c95095ed5207364f092fb70bd15a18c0c89ca6cec4a2efd1e3bb6
MD5 b546d554d6613b09f3d7fcea7fb60ac7
BLAKE2b-256 b6ee2af26225f5e8d700b5b2c1a7a3a37c8cf8b6e1fb36ce9d2d2316602d6865

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 82e7c65d38c5c53d9b8d580531665b464239174d6f474862d8cf096ce4749273
MD5 c3e8854953e6630ba9a60a1622eef4fe
BLAKE2b-256 b5a0ce77fbf4970e591c8e43d05a981d180ecc514e4ad5e71fe12dd47b2a9885

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 7ed214343a7eeee49f2c2d2127691d7bc1f035e6c2f062ffaff2d5ed657d6e67
MD5 a22abd01c7e1a6d70c8a77df40358a61
BLAKE2b-256 aabb83b17c33ea8cb3211bfa80e8718c2b01680be5f234f8f11791429026ea5d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2bafdd3314c2e59780997a698c78acdf2f219f695dc980e2dbfff0ec8b971c60
MD5 003d5015374fedd9a30d09799a4cb53b
BLAKE2b-256 e60d755e858722a0d79c1ffa5a71f39ae770bed0a2d8ea16f0b8a865112ecc2f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 58358857f281eabb49ffb0e14b6dc7f3a532a6fed15bc4a0c085d752e544e90b
MD5 3b3185ee42474b47a3935e068ff5e37a
BLAKE2b-256 266aee71b4e42a8fa5d2d48aada6937f311b0f142aa1e4cb013ae98a2607832f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 036a0fd8d3360289429c7e625316b7deff602a1572fa792210bd093a9daeb67e
MD5 29431795f5bc5424826d8f9cdb4c7160
BLAKE2b-256 3733c67e072942e5f80a029f318ba3992a1aeb730df201a9a4d77a243a6a73fa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 16d2f42deec818bdbc745dbd63cfad4bf036b36cf3680fd9f44a9f5cd8842708
MD5 7468d231c9e90d50d6497498ecb3de5d
BLAKE2b-256 3c9c9464fc9af651bc268b1fc4011cdc732c6cca738302da0496687dbf230ca1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 3fbec725387e5fd9a8dd7426fd781215cc06e4d9e6e353bf6cf4dd3b0e7d3b8d
MD5 5cd8b6828879b84efa235a63fc201104
BLAKE2b-256 09640a5c180552a9bdee1a4508a268db06631839cb01e0c0d7723772b6b039c4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2687c54a978bf0250f444ab70fdff0d4e9b0f9299e6915687bfbbbd0115d5b58
MD5 34bfd991c7d05fb7ce189e1edd570295
BLAKE2b-256 33b9c2791853bd21142b8553c68517c8f519a158ca1e54845958a946ed78a9a0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 829be6a36954b542dc8ac5a97a2772d259034d8dcb8f5d7f674727db1e29401b
MD5 4639f0f9ec50d6188f1c6d39cad16bff
BLAKE2b-256 24679debf871fed8f37ee69be03cbc9e38f0c3bac914a9313f9e809e0d19a90b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 cc8063613f1c7d3c1947e31ab00ff5c4f73702ca6b000ee98ea387a9b2c32b87
MD5 45b6a45b525a6483535d70bb975c38aa
BLAKE2b-256 da41354d7752512ac9f8a71c23e281998563ff7c67caa9c26fc9eca9a97c9013

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 13c943d856bf3e94d5f12fea3e3fd59cb8a5755c033ff377bbe4f263fcf734ed
MD5 fe169e59170e36739124e9d8bd81f10f
BLAKE2b-256 d9de88cda72abd0c3b02d4557137e8fffc81db25ffdf6b9bf34eefa30dbccf64

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 49aa2ebda075129b31404f60ef8810a49bc4455a9054e031570ca0140b15ba95
MD5 af1f4d18881b3c28403ef1a313218a4a
BLAKE2b-256 b467b41fdbab13394f075964cb5931ca2a78c3ff5164fd7ace36d0f3f5651e41

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 739daea0b1bf537bcb9a3a680b51d4695eb9e4e75260a4b7feda046b95376a8f
MD5 71a5035586d75efacb83b9f261b66b39
BLAKE2b-256 e9acc4621151a1d169d0e6597bc1f88e08070d3ce13e106d15f36e728a2b0b83

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 3094e4bac6e2f4b645d99826ba1b33f70f337cb3061286c132c1ac54632a91e6
MD5 6a3a10cc3bc07e620fe6ea7f37501f57
BLAKE2b-256 19de72260bb5a8fff185fad28d2563720667aeb5b7eff5e6dcb5b961ba5def52

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fababc566e41c21d7a963f5f742a430becbb8a1f3f2ead28ff733c16b471791c
MD5 8d7cace7a75c46640e77a3ca51fb9ba7
BLAKE2b-256 5702710cd02ecf8b31bd2880230bbe949ea32d45655aa1fca0aff8daa1fb9baa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4f92ac11d3290c4d365c57db04b3336793878062931ec03ad2d51e47c08736a3
MD5 8d5af210b36695982e937a9fd95f8b3a
BLAKE2b-256 37426675a246b920b023be6cd0847f9890956b7de2dfbb9148105c4b5cef5eae

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 e03a0c946be34c1c881203f1d71c49824f9402610c85d1d0714451bcf71a5fec
MD5 242b9778955fa6c3ff2b261c0657cd7b
BLAKE2b-256 f0cc1a083d0e130caa1c8a8a5cc86186c8e5b28c85b372b22bb1503d1a3da990

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 e95cf5b83cf38e30aed28467ef393f8f00953f28979c4cb4094aa791042d6149
MD5 8df91e56c45e92b3e83f12a777d686fc
BLAKE2b-256 c82fbfb0d2d94cacf9088bf2179d67d39df272fe243f917fed0a1ed15f916516

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 d7217a82a417a0a99a2d6af354a0b8c63d74f7a83899e5993520142971ba0fa6
MD5 b68a0c350e86adfe1768926117a4191f
BLAKE2b-256 671319bdd9e4946cc17bbe171d32bbc90782be2c2357292642c59f6a1f00f7e1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e6f2ef7ad5b3444b81285528809c2e50b7f9c2578a9f13baca015d544bc5f93c
MD5 c549a5373f153cd37aad701313d0e60a
BLAKE2b-256 9305245a2348d2405630a97408c3dd8fb0399001014108a4c29894da32d16481

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eb2a1605341887f10ccc6cba2d3d0d9d871b38a734b2820744c0bdbbe3489230
MD5 a4d7b2e89b7615771846a69237708a37
BLAKE2b-256 4ae45d88b56b8a5e6f230a7c363e7d78776840cc6560a9aff2e39d8dd11fee23

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 5661cafbe36b486e0b85b60cb16f916e11c218813fe3cc3e3da865eb68dcf3e7
MD5 03e0b4ab83c5a049b9fb8708cbbd8522
BLAKE2b-256 a578cf28f461f4650506f5028f736cf9f3849ffadc538d8fb9e133a74392eed6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f87bd3c80fbe661e61fa6a4090065579dbac989cc80f93493db565f3dc91f8f0
MD5 541393e976892035c24394eb16d003e1
BLAKE2b-256 f9c8c2a23d1ac1e0a25468e65f2fcdaf6946047a200af88da25add2b51287b9f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 24ac6d7c643d63ff057ef747e884ee862e48e3af3b9f0674a85a331b08be97b7
MD5 79a7a040b1a2d010153c65eb91c99bce
BLAKE2b-256 4f02c94bbd7b9a09fa4b4e256b3ac6300cc14323fe67ec4901bb530daf358bad

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 abf4e62eb67be46912f6197f40d39154fcf2bb9912a2f93c52211b1daeddfec9
MD5 3dcd0d297fdf5a3550750fc2aa66f410
BLAKE2b-256 488ab1d018248cf14709ca6f81f13fb7eaa213e99d5214e9ac26a6b26cda967c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 99bf6358385e525df959784901025cd1698aec0259b8efacc9fe0ea78340d82d
MD5 0efa2f90ccf1b98785d4fb14cb7ce36b
BLAKE2b-256 0a3edbc9b4e5c0a8862bad76d9f99d4d2b4f75817d47d050993df33294bf1aa1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 aa2673eb508058e1e9bcabf27e56a42baa6e814a5526b0604589f579a60dfca0
MD5 5a2b54ea9466ea0f5eb428d57e93daa6
BLAKE2b-256 744bf8bf6722e8f5c1c895929ed4f0b877321a0fd9c434fba1e2835f13477401

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f8838932528dd5f68f6f9a62b515c7aa1a2a6bdd044469065d7ca4a6010ed7f1
MD5 20fec3506582f0ae5d77d14e642d456c
BLAKE2b-256 0f4e99200f8dd334f88c521637e7541e6ed80d1af69723886aadb3a9a91f0f7b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 51a784f66ee0aa3cd73512bfb434238b79e71a8f791d684c4e4a6b7f12159d1e
MD5 69303569994bf87fcead7edd2a79ade9
BLAKE2b-256 5b64cc5c9e9b259eb23d72d7e25b9b4b3f28bd28b650a3192b94316b39b04120

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 546a710c036d236ba85efd6ee0d9d0df92960af15f1ba9ae7ef04708780fb975
MD5 43ccad012d8420f9d8f483a6530a7405
BLAKE2b-256 4579c7adff8d8e5aebfed88c0dd2e911a2e91d39e8453e5eb478e96197ff0a0c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 c184aa655c22518cab8528b6375cf06daf25c826a1de0a8e3938a4a5d05b4402
MD5 144a83be731d3d19e7c216e9ad0f38c5
BLAKE2b-256 f0a0f4339eaf0ab93ca8be7cffa3b909f3bc9fe49695e23c052eb8afd695395b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b682166bb8f1bd2eee5a92e539ccebe80f9a2ee35b829daa35579f2b50f48dbb
MD5 c9a6ac210e7140d74269245322b676f7
BLAKE2b-256 8de1c125132c543f7028d6ea99fb90feb96ac17f00b652c465ce6882f0fc61c5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2febe2e22e813c435ecbfe9fd175bd12030c1c584e4597bf0cd91c6aad28e3ba
MD5 b8050edb677f1c2f1bbee9d66837f796
BLAKE2b-256 74b147e9445f9c5332cf69b6b5477e7874eab159376b7f9218afef2acea8217c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 62a6a71f449a322bfa0856d1f3993987052caf9ec748168c557db75696671b05
MD5 a93b089040f1f6b7a362403b7431140a
BLAKE2b-256 0ad3dd4c33f45cd3d6e32993f3e6287adfd21057f9133abe8276df1b687da082

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f9460dc484bad2ac4ccc82d61862a31b6443d721a089261544252e9e7433e3f2
MD5 2480f8631d7f31bb9195920ce8c05baa
BLAKE2b-256 37cf1d105d7e0db6da83c1e116038900130d381001e4b9c299f72b97bd72dcd8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 519ea99b6ef25ab666a2a22c41084e0414d4fd356104c7ba604ddd980042a953
MD5 6fe95090e174c807d996b54e0beada15
BLAKE2b-256 e149971d692ed4d172e7982d05b9b962cd8c7640fefb756b3bc552aade80e1c8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 b4c2862a5c47b869a55ecc128eaa5ce9c3d3536cee946bdd7d9487d129c353e0
MD5 ea6da093dc1f56c7c5cd6c21cd171705
BLAKE2b-256 cc8f38a7d37a782abc3cb4ff5e39e8c18186f0935b983a47d8c8a6614859ff4e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 b4cdcf2430de27beddc74b3e7b0a09d52c033c0439a186e6ce7766a78ef3923b
MD5 87e36c59c160e318d4662ce6f90ff2cd
BLAKE2b-256 53155d4280e7ccbc63cbfd24367d7306fff411fd10b57b94a1a5269350e031f8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 769cfcc3fbfb730b63cbfc5c94ea43902ab435ebbbf0549ae49cd9b2329589be
MD5 2fe1e2d019089acec6de83f75067b1df
BLAKE2b-256 8167c235ad06f77c9bc20178a14f0ec0a452ebe2e7d9fce7ebe85382598b50c2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 55050b8c1d66263b7b4f13f2051c6de57f18fcc51aea7d1819a6438c07a07344
MD5 6986449169dc18a61200708b72dd666d
BLAKE2b-256 d108668b9801461dd4757fe3811d12463e529d0f8301fb729c5b18b3a7f8eec1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 10e96b9c2ad0b681e90a0adeb680cd05ad4a139c9ca0751be0dfadf54c578b8d
MD5 15c5ffc492090afda629043fb35e82eb
BLAKE2b-256 55ce137d8906cfeab75ed2b0e1aab59a256ddb2d83d23c31bbb82e840dcd2493

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 00794e220f18f51c3629ef4d0856ca4e58925c73c1b91b147e5c574e4cb81166
MD5 9b0cd7631861a1148b041b1351a45a23
BLAKE2b-256 f745cc319cf2d97ee6655e618bb14068a56691ded500c194922dd65913aa1b40

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 df37742a0b71ec9afb61a4cb1c6ef1a8bdb1c8113c20b41af592ff84d602cacc
MD5 17a3c0edfb3f6dcbaaf5737b6c34aa16
BLAKE2b-256 b0a0bcb3530030d9eca38cfb1412480792341b667520a004b4ea75ad84af51f6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c686be0f4aee34194f7c30645fb690dadea21e96c2718cf84b1ee3910cdb6103
MD5 60f526ea1fbf8c16f76dd9fe89db4869
BLAKE2b-256 186cb9958265ce3860e1865da6e423731cea23456930c046da4f65d2e0f84748

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 579359df719e5791c3f2a8c3a6751920540207dfe9dd9e0bed872ac3bd8cd6fc
MD5 cf636f5016ca39aae5d3701b9225f2ad
BLAKE2b-256 0f48e8c2be42bd0b260a12d9bc075c0af6d58622ca44d7f92b68652aec176d0b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 aae4fc9cb06a56030745903f6194b274fd485ad5107d81f1f106a97d1fc55628
MD5 d4a9851d7e15851ebc075ff4e2bc9333
BLAKE2b-256 b7ddb6eca917b26137a3b6a6da152b54d114fd1da65fb823417e5988919011ea

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 029d44511f189e0f5f64f9068e0d0adf7c382c3c50c2c2f5ef24635dff5e51db
MD5 44d8e00704a477393474ad13d311f617
BLAKE2b-256 6a2b81b7a3484a3e1dc5dde0d83139de7ee948971f0d2ecc21c19a7cdc31f74d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 62d8376ac1553b469be859096adfdd598cc25205b2c561b5698a0c63b8ac48fb
MD5 87824647031bcbb4ddaadb9d6a0ebdcd
BLAKE2b-256 0633ded2a14b7642fbbd61176acdf083b93b165314150dc9851c8a4b50f9d2ae

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 c9103653553574416fe8a03059fe94a3376131be95064b80c3ea24009a5ce67e
MD5 21ed3aa038469bba19c79ced7e1f807b
BLAKE2b-256 616215cc5ff03efa86d008930216501acf4b49d5ae0ceac537e5a330a1f6ddcf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 cd33ad97f839309cb23415a76287171eecbbf7f9d445bed12beb28bfe620c5d4
MD5 729a4346148d112e916877a814f7edbd
BLAKE2b-256 16bc26b7c79d9259fb77da51eeb8ed8c22a547905ba095cf048112495b0e815b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 609ac970834cf33fc95458f8ecb00fc0c5af85d494c10f711dc2fbd33d54030a
MD5 27c8661acc64c76c1006c6d146c3ff0d
BLAKE2b-256 6fd67a1d522fe6f1751c47eba2b04da63039ed6d4139d4b777043e470fa77fe6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4c899acc312d2fe8941422acc9b04d7bf195ef095dd9b3ae592fa21649cf6d4d
MD5 f45fab82ce0647833e3f63c116209acd
BLAKE2b-256 7dd0b0059f0d457b0b35c950c6a7ae18fa0ef2b907119644aa3cf9ed25e30a65

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 26f8364d4d0d3aeb380eca53665c1d00ba4f2e7204f08a4c652c4d5d9687c04e
MD5 ebf6616765b457cbbb56e932c4339974
BLAKE2b-256 9a423886bfb9f4201e5ba9b2fc74eafd2f90ba38895e78a6bd211920038731c6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 696a16213c49cf93efab5f9829b9dff903ffc4d3a805daf63f22846363fea96e
MD5 642a55220d2dbb9bb7e306f7eeacb109
BLAKE2b-256 3341c6aaf8627e58da1132c36993a4f3be44081e2e3e6ab0cb1c37ba7e829c4e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 f5d04a349742dec84efa0c250100db8e2ca8762917d4574117e85e63b5d15f18
MD5 e108d37b7352656cd112a110d58e0cfc
BLAKE2b-256 72adcbd6cd021495c1b669e57283913a911603ffc25472237738e1681a0bf332

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b763e0f32624d1d660fdd8ba1011981138af05e480825f948c5b68c7ccf728b7
MD5 cafcd48198dce82b8e1b0d537a250cd9
BLAKE2b-256 4f347dc632b5567dc02f0ddcd47a5afd04e96a7f3951807d083f7d43ca6a0bbb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7e5b561f1be253fa72d84e4b34fac325b7e499080ebfa2d91a9ca3f57e03d481
MD5 2d5acc22efaf5d37e09f84520f48d21f
BLAKE2b-256 a09350c0b0b4413eb34cc58d3b63a3005d4338e5a8a2fd04e5249d4a2723025a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 66e87ce78cc8a6db9cfaa8543339fe9af601bf30b3e1fd3bc5d5ff79e9f3bd99
MD5 3b053aaebb29dcb1f6b7b33a21615948
BLAKE2b-256 51a0fe72c0f9af3a4242c98e800edcbf68a13b0db6bf0c82241a8e5faed5fe86

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 371af911cadcb504dfa6d50b83652f1696d7f1499c84a2c0f938ef2bf1242d46
MD5 97150c890659abc0f4107281fedb78c1
BLAKE2b-256 976f3ad4d7919c7867fceb7803e3662f6ec8d5ca376101d26ca33153a6620b08

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.27.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.27.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 943ac7ac6945392a5b2dcca565612ef6b4d0578bc8ab751f8f6d7eea8af176ba
MD5 b9d842b3fde01ebf92307d062ca5592f
BLAKE2b-256 28681bcb73ac62f3b1cf9294e552e839f7d2d24855e45d14799015b62e328f9a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page