Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.28.1.tar.gz (287.6 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.28.1-pp39-pypy39_pp73-win_amd64.whl (1.4 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.28.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.28.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.28.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.28.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.28.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.28.1-pp38-pypy38_pp73-win_amd64.whl (1.4 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.28.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.28.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.28.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.28.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.28.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.28.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.28.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.28.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.28.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.28.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.28.1-cp311-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.28.1-cp311-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.28.1-cp311-cp311-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.28.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.28.1-cp311-cp311-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.28.1-cp311-cp311-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.28.1-cp311-cp311-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.28.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.28.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.28.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.28.1-cp311-cp311-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.28.1-cp311-cp311-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.28.1-cp310-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.28.1-cp310-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.28.1-cp310-cp310-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.28.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.28.1-cp310-cp310-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.28.1-cp310-cp310-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.28.1-cp310-cp310-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.28.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.28.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.28.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.28.1-cp310-cp310-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.28.1-cp310-cp310-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.28.1-cp39-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.28.1-cp39-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.28.1-cp39-cp39-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.28.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.28.1-cp39-cp39-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.28.1-cp39-cp39-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.28.1-cp39-cp39-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.28.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.28.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.28.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.28.1-cp39-cp39-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.28.1-cp39-cp39-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.28.1-cp38-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.28.1-cp38-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.28.1-cp38-cp38-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.28.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.28.1-cp38-cp38-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.28.1-cp38-cp38-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.28.1-cp38-cp38-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.28.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.28.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.28.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.28.1-cp38-cp38-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.28.1-cp38-cp38-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.28.1-cp37-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.28.1-cp37-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.28.1-cp37-cp37m-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.28.1-cp37-cp37m-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.28.1-cp37-cp37m-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.28.1-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.28.1-cp37-cp37m-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.28.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.28.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.28.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.28.1-cp37-cp37m-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.28.1-cp37-cp37m-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.28.1.tar.gz.

File metadata

  • Download URL: pydantic_core-0.28.1.tar.gz
  • Upload date:
  • Size: 287.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for pydantic_core-0.28.1.tar.gz
Algorithm Hash digest
SHA256 a4152814f8019530c3661cd5161e8b73e852d0983500967170480825adf39de9
MD5 dfd3b2bcbcb6d529b8e6979ed259f36b
BLAKE2b-256 c8880b8b3634bd99b5cc4d58ef0a29e0827ed6e5c6a2e7d7cceee36ca146195f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 ed50374fc4a80fe0d4b04b9d7c60b035b93769df11259347265615f6a906bba8
MD5 d5cfc87579f1a961dfc5bdcaa26f0c53
BLAKE2b-256 c5decc57b5d45922bc7735dd292b787c7188c0876bfd0e353e6419aad3493cc5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 885bad49dc78904bab913493e7973b74f9eb0249948b72faf01926192bb25832
MD5 780adadb05481f025b3f7bec933e47b0
BLAKE2b-256 1c3c51b09f62808094da15412671f007515e0afe9e905267dc3687178e5618ff

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b79de4c0f1f00de76c7b40b4340e68a71db14dbf666d9706b4693f5004bf305f
MD5 2a987fa29686f0bcda9e416891e61636
BLAKE2b-256 a0e3c58467798066e926ae9891fe8e31b7d9f63def5d7ee2cb4067c214d85e36

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 59fdd42e50ca69b02526489f5c8f4df23128bf0244a8b55fd3349690eae46d7f
MD5 676919f3ec5cfa2a185352d1f2111c80
BLAKE2b-256 bd4a1f3cd55debfabad3f1119a3d3a9a1e0321b3477cc3a4db119cb7d66ee3cf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ff5f00c375a3339a761c555ee21841c0cbced9e244d293dc23e76be957982c0e
MD5 25985c02efccae4155af63602d25c20f
BLAKE2b-256 4856122149c7a86b573264990f1cf1bf29cbf64da001021b1d2834a557b75c6f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 8377cd0f5a5317d18c3811b45e1e0fe5cf8c6ac1c882d7fbb554125f913cc281
MD5 1211072b24c4fc3571a15245539d0039
BLAKE2b-256 1b40f01da4d6eea54ffbc47c24c013078c0e5592f6007a21c281cad8a57db4d6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d30c63efee8fa9bbd360e3e84670cfd5698119ab07d47bfd24fb34436dbd2128
MD5 33f0cecc4002d0f17ddca1220d914076
BLAKE2b-256 32cd56e659a9f6b83b3c28ae977c5e4704a431c457f0ebd37d1f1d3619433fac

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d800854ee6e92671c6a79d992796baf32974e35060baff42e92dc42c926b0b36
MD5 6a4e2f5612000b1bbea7a0fd58be258f
BLAKE2b-256 f63acb42b628c17e7a103ad5e47788c25833a18d45db2388a967a898c1639510

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4f121294b51f6e519679ad599462da7a25a833f91385dbbacf5bec2e6e1f3fea
MD5 d88e963818a13d9ef1066f917f0deffb
BLAKE2b-256 6964806f86e7e4cb0709ccbe9317d6c243ecce65f3882ad069f169e4694e6399

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 07c6fafa2abf0a3b9023042eceaf74e54e17cd5c04a550be0c77c66f8361dc18
MD5 7407aa2278604059cb9a638eac85565b
BLAKE2b-256 0b633373b2b02fafc3ffe8a9eeebbdad92c71d4a638738164056e8c2eff91396

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 18677d8fb162767c67eff942027a1d6065506fb14c5ae667ff20a402df6dcb34
MD5 86160b0227385cdde99813f57fcdac1b
BLAKE2b-256 1f9f66aadaae4821a3209c29f6424131a484e42aee8714bf1ef97cabce22d5e5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b8a106dba15c757cf0fef1607ef8979fbbe4483dc4e97593a5ffffcdf366b6a2
MD5 a41e3cace892763d0669a3d139863679
BLAKE2b-256 b2b4dcea1c59fa04a971bcfcf6f5400e857d17620173ec3b26709509971df5f0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 808326062b29bee12bf53607deaefb3be5d48b5ed0f3d007535e62a814b541a4
MD5 82e83ea87f6913d45d564e5f970eb8e1
BLAKE2b-256 d6a7bf9bd170818e9e9009c6402aca26fba20f59096b668f9158bd3b1a767bc0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6a5abaf2eaf89031cb288073502f092fc564a6d625603009e0e228d47c7dc138
MD5 105c47b4a2d4874a4578b0717021e95a
BLAKE2b-256 ea5b3c5adf42b1816d7a5249af1699d9ea80302b9437679d91748f82fbdc9a89

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7b598a94d2f1916bdd491750f56b31d9aba5edb98af78b3b04baed87cdac5ab6
MD5 19bc78a26a56be97f4b4318d4bafaeba
BLAKE2b-256 23c4bef725dad4b9c903e95e8cce7c60e83ed4c2950ac616cd07177ffd6cf529

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d4cf15aae2e497ba58122371cd10ba70ea962b114e9e4819c9eb7b19daeac941
MD5 14774df0c19f49ff7bb263d2fe372573
BLAKE2b-256 2d208a967c0a98951d9a2b5192707376bdacec869c6c7705cf0acedb5c466e25

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 239f5429625e42b22cf7cc13930ef0ec3eb363ae3520c5c81b2180a8e89d6daa
MD5 6d1fbe8be0a967009bfcaa39d5b49de4
BLAKE2b-256 855ffa7b5bbaf696204f21d54cbc73ecbde953b0e65635bbd68970c7cb4bd0f3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9881ff538b04f0105a1e2863a8be76c59b8267e6ae0ee134e679937285145f54
MD5 529e02c00ef80ce19cf89239638ffbfd
BLAKE2b-256 4c66545c249d4356630029b3993db8e71cb36740af84f54f205779d21db0a279

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 39a543abe9f327313605349f23663de9c6a445275975495b1ce6568bc1924e85
MD5 cbcba4f6230474ee1d7ba2482816eda7
BLAKE2b-256 cab28e541b6d008b8518e09c9b46df61ef9088f06e0ce530aa4c3943fc126bdf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f9f66a32716fd4710b93a87593eeb448d0c0b0886eb152f4693e56d453997e2f
MD5 71c54d17cb303e1ac06e47388333e92a
BLAKE2b-256 9ae6b7bc58c699084927162ea99ef4f30083ae6b105161f6073343948331d11b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 d2c73a3d1f4b3a7981d326e3ecceb0856d8318dd1046bcfbea7c3d748d21c13e
MD5 7cab62e82c247fec54111ed948f63af0
BLAKE2b-256 988039d94df737f9b23ae60d3edced25bc41b3a0fe94f8fa61e252a0c359ba1e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 f9c0b3f668face588b7760298bedc97855607ecf9fb1e92f831265624dc71645
MD5 42e5f4e946aed6b809ac9ba1703c0f7e
BLAKE2b-256 7baa06566e258de270754c3ba0924f12e7accd1848b7519c7523202fca1827d4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c709dc91478f1ae5a5aaff888128421a0b3edc49e8e7599baddf808bae06ea39
MD5 d138c375fae88e93f6aeffd978f0e527
BLAKE2b-256 a2d5cc9df0473ee5c2aa4e4279999f8d6f329cc1d990dbba3d4778634a31dfaa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 dcc0718a29f1c3068e8d8eb8a07dd1f1319be3fd20c629bdb023101481b08c8b
MD5 2289f70f5c75f8c4458e142805d46126
BLAKE2b-256 beab4534ef61cdded278ba0b3eb9f6d742d81b29244c53aeb9bb57cc694389bd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 579416a0ce436ad9a99842e7720eaa0e2ba4f62bce7f50f5bf71513e5348afd4
MD5 534ed309adf7571e3f9dbaaeb9ac0758
BLAKE2b-256 3792ac059f7d6b3d256c9333ef81c6aec2e0cbd3ccce40f94fddc85a206c3aa4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 a794554c4f1ea09b9752ccfc8291ca6435957b9b4b3f70004801b3e6c53ee577
MD5 43bd3a43fec29e6c511e0aa76e87ba8c
BLAKE2b-256 21103affe5ee2b9a9a5b8fe7490060b552ce2d678d900b439dd1e89ce1fed1c3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 63c1cabee1b543f793538e8a3c89d5fc02105358ae0b104952e4c43d2054160c
MD5 c09e4bd3b2aa9f9471691d85348ffe17
BLAKE2b-256 a45d3fb05c60b7fcbcafaafb8ef81e122095ef3b271a421a60bb52a25a1ca2e3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 abd858895e31aaf8bfc2a34c4aa46c3c45d2e0f019370f0acb291bca6063787f
MD5 e4074a118b68bbbeed67dae44fb3db7e
BLAKE2b-256 cc897d7dd991a059adc73e0182fd6148faa82b00a33b7259bdfa614b8eea96f4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 82b54ec2ab627ddb78aa9b8c23d0a525308c95b68d4316145dc925751424c346
MD5 cd1fbc114b6e354a7d27f4a823042880
BLAKE2b-256 ff7d2310ebe71aaedbefbe00886107a140fa9103e10f8fa6d5ebdb413bdd75d4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f25acd8b06c8741e88a2dbc1c27ecbe2d40b53884d383a2e0533b7aca06028d6
MD5 3718d2384e150c2ada888cddf7c61532
BLAKE2b-256 87d67a0256b548dce6db779d6ff77917f9f8fa3a242c51e1139ddc2e343f0efa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b469df56352af3c8409977fed98e6faad2b81b157fd1fe7daec89a6aa7b9e172
MD5 4c89f587b93f4df3a8b12e570d7bfca6
BLAKE2b-256 ff01c632172ae41b889bcdafe9e7258507d76bb0fa86cfd92011eece069df2ca

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f015fa0a8567fd6dfefaf4eea05d732e6ba9e1ce3e4f799f786830c3c3a30124
MD5 2a580ab3842ab08e0003c8a59b6759f9
BLAKE2b-256 85c16552dd31f419cf4da2de65e7b5dade5b742f75d0d20c5e4d52c31c740563

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 4984cd1cc637b05eb8de4cc96d954c95ed0bc9fe4b28f8cac09a0c95ffb2cceb
MD5 785fb2240e99a49c5f21c6747060051c
BLAKE2b-256 23187d31ef9ecc7289b0c21dbe144067f47c11dccf367caffa07f12b66740371

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 6fb6f7e16bb50db0688a7f76a8d640d7b4051719ba1683042f6f24dcc1b20fb1
MD5 a16aa93988921e628ec029e2a810b0f7
BLAKE2b-256 e924e25fa1f41440ccbc40fb365866de767993e668095f4c6be6eccde6652fe5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a3a6cc243ad8d9cfa4ef0e0a729211765a84cb1f3909ab3cf703f2fd9a3aa821
MD5 f0fbac6ae12e97a6c86aec323fe6ae7b
BLAKE2b-256 9ad4de79705e13dec64cbc5276fc2cf68533bae8fff0d807ca52586a297630a8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ce85214034a58f77e8363a06e905ef22badcf6bf9319e75b6404a1bbfd381fa8
MD5 c333b711669fced3a569bb5524164016
BLAKE2b-256 98478eb65823089a1cb2ec9c14fe7b54ca1677ec81637a615adeeaaaad0f37db

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 a76b78c91ba6e5c0fa11b46410c846ea2437dc8c736468c10996e552f3a937a8
MD5 1a9f2f0a50d7ef8f91ddcc71a3e32e14
BLAKE2b-256 72c2ca3cf3c74624941641c7dad21b1113f5af3f7e1696eb26e102fbf3d7020b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 fe19282afc3a93075a4430825143bb97ddfd133074291ceac24732c8a73ef664
MD5 8927529d7d008d7a75c28418822990a6
BLAKE2b-256 ea8fe03570cedd676f259bd8a09d528ff5b691e2d002bdd57db67a5cbbd1f6b4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 59a72a9e4123c843b7c4eee8f3c8ffc7b68923dfd0848b52192a4747639295e4
MD5 13718071c01b7cc9c9f67cbf980dd2a9
BLAKE2b-256 34a95ff11c396a3dc99cc88c583fa73670e785e185f62fb1dd433a6369486f4f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 431db8ba008b5ddede07edf3291cab02f75a555a551bdc7333840c66be7363ab
MD5 c603de764f0518f353962b81b4e91a78
BLAKE2b-256 5c90cbb3578a179a1ab6808b5e8fa8c149a49dccbb33813e74c960c27ed9c696

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2fd368b691e8e46512ae1bbe3397f74798cf06c169a608eb35829d5027eb3494
MD5 a5375c51ecf39eebf28be06b2584be95
BLAKE2b-256 3b1b6836efcb239be74bf8c5e6fd0bde01013100ae335b02db1328faf0b046b3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 80433de8f4334c3acbfaacf6de8cd2c6f57d71068a7418b2be4e08465b6c1e37
MD5 63f8683720f5f8cfb067fe36fa5979e9
BLAKE2b-256 ff14da5d6cecf2cb6ad5af36d5a7593b87d6415ed1412a9f49116e8c2a760ae4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7b018aca910f57b4294cc05852dad402293f48d1b470315a776a9e0afe04047a
MD5 ef0d1973645dc9563f801daf5fd9fcfc
BLAKE2b-256 382a4152b43baa6290e666bc14ca8369ff0c08d1710fded00df1aae87b1a91ed

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 4f66cdb11763792b867a989034c78b7e74a24f24f4db3d77aa865e9e9f7e4f65
MD5 37f7bd8d7117d90ae885d624813038b1
BLAKE2b-256 af5a709de3f83502c2af8543ee1e210b80a55ef734678fa0b8f0fe9cd41c4a85

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 518b7074d359a45e5bb92ddd03387529e7b186bb5c4cb8ccc9dfec2cdd4653bf
MD5 f90fbd8b2845543f00b92b95c976b51a
BLAKE2b-256 301caace22969aa21db96b1f935a5d1e6151485a05514c53124226f6338f31e2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 2b56b36c82d3cafecf84db30f5f6d223728636a9439776be4b8a949742000462
MD5 eb9d62b39bd3cbfa5d0b5046b2f68f6f
BLAKE2b-256 7534802207a30ef981ed031be3468a1d0717af4cca3ded5e622b21cb33976fb0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bae2f8bc5b0a9fa213d5165f45c0a8b7fd16814edff1f38b99599facd3d6ca08
MD5 e6ad7a056d83942fe4d5b72cdf87b98c
BLAKE2b-256 0963229cc83307b47096b94ed894df6a90ab76c9abf81bf5aafa9fc7b8315a73

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2a4955b9b581fcf2bd5a6ae042e73f63cdeae9f06c3abe0d4be17989147bcd25
MD5 19eeccf72b2ded4df4a9d6858800fefc
BLAKE2b-256 e82491999d97c83f9a01b8ae81c59d76d72c037d3c3c92565b7143680f93727d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 d3f0590879e6b976a31fc84cffd2cd7fbbf5554893b2306d6144c192ba0c63e6
MD5 53bb72c5a756ec959d1c22c19e1e0c70
BLAKE2b-256 256df19debedafb2f8e15b3bfdb0a0d9a8d628c90892ffa6c73c50891d9b3676

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 5e099409e8d6c63acaf760f40df080ca1e800be7633ccb4543d5c54cc6595461
MD5 bb19143c6eb29e609cf5662733987f2c
BLAKE2b-256 da52d83ab5857ca143d166a793158889b0a5539da8399e80351af90577539301

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 21579d52f1561a51f2ce857d35e10dcbe16ea83424cd90427dc9cd92b831ef5c
MD5 dc542a48373fffdcb45f959da2d00e9f
BLAKE2b-256 b1857ce98b37802173fb07343e3aab31835bb6a8228669b366df2b07378c0673

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 29d6502ad1bc8b18b1eed1b88f3a0e8180be0f25f99a2746ebcd095bff64449d
MD5 f2f31e5f562cda4287d40824aa73c456
BLAKE2b-256 c1de2e4dc1bc1cab8dac58bf5213e81ec84708a524577259fedb4c46276d7e46

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6b42f3713a30fb1fa60d42961589d7bc3305a9a137f1f95c36f2add389432b93
MD5 b52449b3a5bf4a31ef640eb971f0b9a9
BLAKE2b-256 6476975d2984290432c8cb2f4539d51c4685c640faf83d074c01785a80b46a41

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c2922e2eff6f68fd7f56e67fba5abca52f666f9b3fb430f441e9df905410b7c0
MD5 94640999bb27d12606dda8f3163733de
BLAKE2b-256 b053b77a9e7b9c939590122ff5688afb5043e34250a8d483997d3f378f3fc487

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e5f53486e529be563f187fe40882d173434886f5c9285f2a56537f18ad14cc42
MD5 a3a4b75000a9dda9faa0dbe3b7121b21
BLAKE2b-256 dd3a18f090d0da9a109d298de3fcf20963f2e54da2700dc0324c9a7f8bf40450

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 1b3108e0f67f5926b91ff58806185a69d6f88411728ea7f7ed380fd94ee54331
MD5 0fcd33671f7fff27b7d75daafccfe9ee
BLAKE2b-256 98b4d3b6c0f051622a952e7c563c4bceb60195e966b0870bc1447944ccf6d674

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 86ab06cac8566fc1a0cb5e06de5205102ac238812c762821cad5139493c067ab
MD5 da5c2972c056499003af80b4ece89f18
BLAKE2b-256 d71696bbdb8d75c3248c86a5657da8a9c58366898899204e7de2c058d6387b56

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 3fabe6d5944992b19dc042d6ed18887c9d5f7fce6c03a77b33174c011ae5efa2
MD5 805249dd34f22a558b5536a52711ee93
BLAKE2b-256 040b23aa1576b6fbf89b8ab06732fd18da4e70de019bdb6bfb88ba08efd2e87f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 386d54f925d77b8827f02cb854e5b25e5414397a927471a53a3f00e8a8febb48
MD5 60793c17ebb2e380769ae9ff10986b3d
BLAKE2b-256 8473d849972c9b2c46fa1cf408bc22defffefbcb06feb1e2774bc3fd27684c70

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f41ddd6e834712d9bacf35fe8162a0abdf814cfcf6a6c6a875cd02d93bda92f8
MD5 a3b743f998e698f168afd05dd20eb189
BLAKE2b-256 138211dfcf353dd49dfb0f751903d3e5d0a75ce7d435b89b6ac29caf182e94d4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 dd7db6c168cf80b08462055ea3e245e07d381cb3f7af00e2ddac9ee5112d9d24
MD5 6ea1264f9f7cc7130dfbaea5ea80e442
BLAKE2b-256 c3e0a6b7b6d76fe7d42f387130b7158dcea72f9ba07580afeb121ac8d10a5439

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 20b1122dea66dcccece4cd894c9add6432e2b0a3f82d13af56cb2007e4ba3b0f
MD5 7e44de04a81c29b322f307b6ac6e5bc2
BLAKE2b-256 2035e6cba97e309c69c1b9ec447172b92e98c811beadf5c54d86c400f278b713

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 7cdb8770205ba8ac307f88e830948090e3697b666e82d8eaf525f507a3055ae4
MD5 13eff91e328f1bd35063a85ed467e7cb
BLAKE2b-256 1d51b45347f960f9450e686d5faf0ee449e45877655d4a7c9e40dbaa6f4acd84

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b71acfe2464f6d91c76962d091ed6265f6042d82fff028386da26a0725932a07
MD5 7b170d769436a8fd609ffbdb286b543e
BLAKE2b-256 51ec6cdb03884ca3cff033293769e3159251ecfb380d4a6223111ec854a5b917

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a2b7fc9c7f6b62e103e40772ca97068720dc1fb3dc703c1a42664b2536d5358c
MD5 45fe0611e7bbbf24f2fcbadda90a9911
BLAKE2b-256 5b7488636aa0383d136422d07b7fc8a92a852b24b43bf3a712475cc833c72922

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c389f30d8904809102071ee30e13f45106523b5d5c2c7aa2fb438c89ad57ca2b
MD5 3d05625633cbdf8efa007310cd59d5cb
BLAKE2b-256 0b9cd62005efd1b962eec995ea7a523861d81cbafa70ba6b2c24854b0a99bcf1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 01d29102e0691edb73083252d67f3dd91dadd05ef61471c8271756e148d1be5d
MD5 08233fb8400a26925b36b4239d096f3d
BLAKE2b-256 cd4f059bb132398975047fb3a355e762b970b125301d2f1d7d22bbd75c390e05

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 03df812b5fbe22fc1e98a4a6a156d8dc4a2cf8c126e792d2f68be64b1cb545d0
MD5 feb3d95528eee2018feefb402b99f390
BLAKE2b-256 fddd36a65fa2802f932ede3217f128461de2f639935621306c686e87e872eab4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 e9f9fcd89e53437769df5102c5f3e01b5a8a821cb6b624625955b6798a986f70
MD5 8b8ec4a1ad2bac1cf30ce92396c602a2
BLAKE2b-256 602cf4274bc5b46b9e48b6ec779b0024305e36a2911007b526ed50f7624a732f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 3be0fbca5c6d8ff84343d38fd679018055a610ab3784187421e343b6a90127ed
MD5 0c15b7fcfb538ccad3278bd067fe5a18
BLAKE2b-256 1b6f2680f092f5f18c9ead4a7b5cc2fed5fc2c1308ce15aa6ac19a0685e6426f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 340e87ddafe9f7e439f7201cfea438814aa7164c5d6fa1cb0b11f7f46e1e6b1b
MD5 7c8f7298912412c43c2a750ced14e377
BLAKE2b-256 7334a21f903eeda98e3a3a48e60d524d6cd417dce629176847d7dd2357de2676

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1739d5dc9c13f11e806fac353d9231095e81904af634d38756649efa73962b66
MD5 e61f20c19ee91ff351435879f873365d
BLAKE2b-256 58072fec22db58fbb86c5c9f2e1266d5f1a111773d13fc01587da1e10b09ac95

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 c3e34534ba525d618fa8aad5b53f1a1c95abc1a4f42796dae4b5a77a812f4f9a
MD5 7e99706bf1b16af6b260904a98bfd5ed
BLAKE2b-256 1d93d0472a987a33aa77e64fb4c658490c5785f0f8e14642ea69a76eae0aba6e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 3b1cf471e7cbd9ccd42798d46c06e5eb1b394449cc9d1c21b4de93bde5d10785
MD5 24bf5172d172bdd80339510d8fd0b8ed
BLAKE2b-256 54ec6ab200484f8e914c802257f720455d291666eaae39dd03a3579d2ff2a5bb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 11e50e0cbe190da07fdeb1bbc78d936aa7834ac497c84d820364c3b9dc1769ac
MD5 d32a416c88a41fbb8eb82a85297c73ed
BLAKE2b-256 0c10603fb3c7d4b4077e3ed6f20f9baa2095d7ed1d938a6cf8f46396868a4a9e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4919471d4f21e1c6ad11a205a614ac622d93e23d8dce94f70832b43305fcb89a
MD5 5fb9801c8935bf89f2648def2cbf58c9
BLAKE2b-256 e44722c0a0ce8194d5a6821d5d5360ed8279b52b62a28a877a26fb28d95786b9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3349707633b7f4a79240e53d4ee0b70f18fb328592e4cd886fb4fa14b31fed7f
MD5 27112fa2a710ab23dfb1864e7bddb758
BLAKE2b-256 d17641392b584738e1e363540833027cefdc69f0375a9b9f8faafe0c335cac36

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 36395d042b3174fdbfef3a71ab870a357d2d56011bd6fcb07fe3118e9076a977
MD5 b7f37f4b0418eeb1f182517d2deded17
BLAKE2b-256 d1ee8cd8987849fed716cb1cbdddff6cd17c918777cfb9d97ed72320f17afdff

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5568fb57321e1a89287372088d0da62da568fafe6361f7af9e2cb748d15c8053
MD5 2bc42a0e9efff3a2df9eed012cf53ad5
BLAKE2b-256 4424eb6b0ad3df406e30234350aa3aa02b69434a3e09664b0e535865225060d9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.28.1-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.28.1-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 0db74642507960d5c1be704ca315702293af8305ae7d5f41e6fed4febef8c95b
MD5 a4d00a493661f57d9a5795c8fbfe26cf
BLAKE2b-256 745364229980a72a5b8fbf19a056d03617254396d5eb65846a4529285244e402

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page