Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError

v = SchemaValidator({
    'type': 'typed-dict',
    'fields': {
        'name': {
            'schema': {
                'type': 'str',
            },
        },
        'age': {
            'schema': {
                'type': 'int',
                'ge': 18,
            },
        },
        'is_developer': {
            'schema': {
                'type': 'default',
                'schema': {'type': 'bool'},
                'default': True,
            }
        },
    },
})

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [kind=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

Benchmarks overtime can be seen here.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not design for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.3.0.tar.gz (128.8 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.3.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.3.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-0.3.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.3.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (883.2 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.3.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.3.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.3.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-0.3.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.3.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (883.4 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.3.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.3.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.3.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.3.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-0.3.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.3.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (884.0 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.3.0-cp311-cp311-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.3.0-cp311-cp311-macosx_11_0_arm64.whl (810.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.3.0-cp310-none-win_amd64.whl (716.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.3.0-cp310-none-win32.whl (667.5 kB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.3.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.3.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.3.0-cp310-cp310-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.3.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.3.0-cp310-cp310-macosx_11_0_arm64.whl (810.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.3.0-cp310-cp310-macosx_10_7_x86_64.whl (882.1 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.3.0-cp39-none-win_amd64.whl (717.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.3.0-cp39-none-win32.whl (667.6 kB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.3.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.3.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.3.0-cp39-cp39-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.3.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.3.0-cp39-cp39-macosx_11_0_arm64.whl (810.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.3.0-cp39-cp39-macosx_10_7_x86_64.whl (882.5 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.3.0-cp38-none-win_amd64.whl (716.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.3.0-cp38-none-win32.whl (667.6 kB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.3.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.3.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.3.0-cp38-cp38-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.3.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.3.0-cp38-cp38-macosx_11_0_arm64.whl (810.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.3.0-cp38-cp38-macosx_10_7_x86_64.whl (882.9 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.3.0-cp37-none-win_amd64.whl (717.0 kB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.3.0-cp37-none-win32.whl (667.8 kB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.3.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.3.0-cp37-cp37m-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.3.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.3.0-cp37-cp37m-macosx_11_0_arm64.whl (810.2 kB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.3.0-cp37-cp37m-macosx_10_7_x86_64.whl (883.1 kB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.3.0.tar.gz.

File metadata

  • Download URL: pydantic_core-0.3.0.tar.gz
  • Upload date:
  • Size: 128.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for pydantic_core-0.3.0.tar.gz
Algorithm Hash digest
SHA256 a11b6d1426c0dc1a0df14018580f0fef22aad0986e34a57179100409e8765f72
MD5 96ce8b10a52a6e7bc129a4a9a10318f9
BLAKE2b-256 2e130b65bdd29a2862fb449b2e92f6031d7843bb9f07a8dbe61d84c12ea591a7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c57bfe514aa30e0436430b675b2085b83734b84e51d4ce5a8de4a8bef17b493f
MD5 52cfdc85d2ed670644d64d46ccf07ea4
BLAKE2b-256 aa00e6e35b009dacad067d0e97ac963b14af897cf60c8f1b56f81f558ebd7314

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2789bc803d30e217f8a2c7404074cfe1fd7a1009461989535e284d7f08f37e52
MD5 c85adf14ac8580679bb687b21bfed9f4
BLAKE2b-256 c9176fc2741634e283ced8c1a839be3dbc2ffe3deca32d2c7438fbce47df18a0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb10ec2292cc17c5e0cf576e37a0f15fb159c009c324efedda4c503115a400ce
MD5 5aacf9780444abfb9573e2f719c47278
BLAKE2b-256 00be422c862f71a287e3e9287fe42fc2d5ef4b5f2fa3663e9e3bc8d6541e1fd7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 47994f2c7db2e6777289d52260e8ff8f4155eabc4a654579b4b73a3a9bc6bc5f
MD5 70b55fd31e9096f9f6941363f4521bc7
BLAKE2b-256 9427905923ea9324e8bc2115d5323ab2c66f8aebea1b20825493f70d9abfdbc3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 adc6b0b085f3532810bd1875a8d7d3eddb08ceda1c87e993aa5e4053a6d17231
MD5 7f0e25f195e30f5fad03660d930dba96
BLAKE2b-256 c5e16caefa5c8eac85fdf5cbedfc7aeeb774c6d173dff961805afd33389b4057

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 44d59bb132695dfc1053acc483d04f97e041761f2dc05e40bf5008305a749791
MD5 2dc024765c1f3ed2176b9c2bf0187b06
BLAKE2b-256 2721dfdb8ea9ee146763e43aba26a9c73429441139fde8ccc65c12f9db9a7263

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 77712b313c9e14a42da8bf2deb4451d7b9df2e025be7ae787cc54f304ef2f936
MD5 2fae00bc38a47788b9a7ea82db5ef3e4
BLAKE2b-256 9d4b00f5b9930646093c005d43acc3768ba68fb28bb74e4048d756446a23d786

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5a850cbe72fd4d2955c4df4a25e9b1fb51d593130cb01bcb9a45670c4de01ed4
MD5 d21a5c75117caac5167f98879834721d
BLAKE2b-256 7a2c9160cff16ae6277a36bd05c7ca1aa25decccce618fb6e972640c8fa43637

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d2bb00d4f3e8f58bdf0e8e4026b3fa775663b50e0310360b02d32de72c28fb47
MD5 15dac348e94be9b54f760a3b9b8a25c5
BLAKE2b-256 f7baf9bb05ac92c0d0b7e1c1dc3b48fd2c27aa39c8d6ce5ec8e92da2f1b6a12a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 78815558e40590ac1d7bdd6a466b3e739dbfecf7cbdc43af8def7cfa7e9242a5
MD5 44f244a676f7f706b74dbaaf82ef03e2
BLAKE2b-256 b407efd13d8bb29a603379975d63e9fb2de2efe118a4b3ede61d910370c8236a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 8a7df7aafbba850277fff9d02f2bd48c91b07d5879d51cdf612ff0f8a586cca7
MD5 545425bb0b13d1d0267305e028adb247
BLAKE2b-256 d22af99239776a1e83c0d8fa18f50a3b78c998d4e8141d8dd242923e3adcd3c3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 47adcd38f90bd39cb15928efb36d6e13d6ff7839522c17cf2cc68f2cc786a384
MD5 30cc938bfd695895c6e47c91a2bedf7b
BLAKE2b-256 81af469d67ae9f4534fbf297bf3c99f560a242e7ffc1e19f77586a8b613d88dd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 db55ddc9e0482a4baa4b0b7a9fe2dc067f976e2bfe3a598c0f46511f873e03a2
MD5 df047abd09435e3f7d9fb0e2773a717a
BLAKE2b-256 d101aff13098ef41dd2fab551d6b379e9e69119246e959d243766e66ce10945a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8069870452f911715b5561bb6b271b6666a5a6a8d975ff433a68182ff0a1000b
MD5 b3cff1a1f957c522f195b381a6b8ffbe
BLAKE2b-256 5f4952ae627c86bad923a012fa9867f43829779b3aef9e96ffc7887f227d2580

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93f5f4a96eb89291e3f919e8ed253a4f060153ffea132da21ef3339a66132dbd
MD5 b720d8bf830bd7cc07f576143e7f143b
BLAKE2b-256 e5a29bc5fbe694bb84842625fbc49b237e9fe9105e2ddabce8225994d6877191

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c4cc166a329ce9727ee73f13b166c2a0fbdaa7c764d8b45b26f5d4ac99c4d8d3
MD5 e47206589219974f7779b1fb815ad04f
BLAKE2b-256 6dcfeb2afd11c95bae59e07a41af1c0dac091fbca807043a6f1f11e2c5280274

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 2384758823713c814eede6f859761ccf3c18931bad0efcb104151dd802bd77e0
MD5 8db4515521e30566aecc8bbc2b86c7bb
BLAKE2b-256 25d30df58dff9bc62df1a0e197cffb284477586ea47de8f63b7aac76219f6e62

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 eb1d2af3157fccdc84a0e036024430213d4f8ae59882f640e928c7aafb5c5653
MD5 d334c19317bc038f6033bc705c0b3814
BLAKE2b-256 d8e85e9c97aed280f0c22a3f2efb09f4098edcf961b7f984cce3068962f4fbaa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 d63ed409424b5ebbbb62481822811f3f696c8057e0d1c678e4d567df76dd27ee
MD5 83479b8cc2b86c08402b5636d656b486
BLAKE2b-256 1ab2efe497eb584e6392c69427601e3dd6fa37697860861bf365f8a1465a899b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 80c552f40217b84017ff3f3f83099e4f58486247b804c62cb45b828d5ed183c3
MD5 8b3ef33276af6043a3d06e7b51de1375
BLAKE2b-256 59c99a1047f4cee70c879742304c07b03c2cd0aa709d60a5e65bd1eb58cae4ae

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 bbdaac2344f996bf5bc9706c465b3f3f2c39303267244238d2860821fbcc8bd0
MD5 ea2866e4d6129cad5587aec0316a8351
BLAKE2b-256 c74a67b00a43bf20b92cbf64bf0268d5ebc78195d3f5ac35017d54fd3a5ba021

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 ea7eca5e5d379e8fa077c1367f0259882f4e80a5bbe55dc9619cc1a69d0386e8
MD5 ee73d1bb6b61489c298ec8c8ac827707
BLAKE2b-256 10dd9fc8f43f563a1612b85f900239679eb5af809f9541830891782bb2137b3b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c3cfe290f60071c73f3cf01920269b125ccb741c6932b4d4da5dffc8b0e55b8b
MD5 68672a8885930c75fbe1331051327833
BLAKE2b-256 f2c907db0fc268bcbf9f25090b966ac12fda140f6775fdb5cf520b2e4b638ea9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 6ccc3dd3149ece12048e02db84edb0b8971859797e4bbf73a0b11df1c38ebf11
MD5 e8218255f8168482bedb376cd9a8303c
BLAKE2b-256 671c95c008a534b52552dd9acb635a25bc370aa52b393f4b9a5270b5c2a53d67

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 02a43e5bb6e785b575d3d83eeade7a6a834c731fef3829c7ecd367e331c5283c
MD5 9feb9cb5954b87f53e4ec61fbb4ccfe4
BLAKE2b-256 b7acd28332f9f8ac9eaffc76e6ba4df503b4ebef560964383f85080b622297f3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a22a568260719ccaba862ea15a4cd49e076292935442d29003ef5bcc19dc77e6
MD5 7486f9a200bb2c06aa7c567211e4baf9
BLAKE2b-256 d25fd16e55143090d3e6abcbe9a3f804f229ded95a29a34b4ed1c1ce25120cab

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 67ed85853498323075f0e3e8bb39e3cfbae9a369ad1a9aea3b9de818e1cc4357
MD5 a8f0fb497d80b248eb550ca01fc0ff47
BLAKE2b-256 94f4895ab69b00ab3cf7cfb15a0a1c7a7b570a488530dac8e3f8d34385a884dc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 740a273c749848ff861b3c83394ae8049858c173ea8c9e8f8d13bdcc3bc5668c
MD5 579c859922807dd7cc8f3ffbaecc4c99
BLAKE2b-256 0f46d332ce611cd6c6135577cd3a07e802d2cce35599839188f4deacb448da8a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7d45aee7fd1e2ffd4271a0a55f1e1ea354b6c86e67cf492ada35571846564ee7
MD5 e68f784b02a4e9f2914097381b6c7796
BLAKE2b-256 a8a3280749ff332733ce0f35db4e467c32b8c4048c95077546a9e7a20fe365df

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6b580977a66f715706b73d9ba18cd582a31c9f67e45c82fd6fe08c9394b3da25
MD5 84c172bf1fab0d5f744ea3ad55c2a3cf
BLAKE2b-256 f38bb1fa2361769a60f524aa98fb9d7547992c3df99dc35d4d5f3fac103a2442

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 6085697e6bf94f864d70e5f259b5c04dde652f47248455f94b5e8374cef37986
MD5 c5fb52452e1c26216f75fc5332a046e5
BLAKE2b-256 1044bb417d551d17b299cc6fe5c9400052b0eab4c88b3c671dc492a6a5371622

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp39-none-win32.whl.

File metadata

  • Download URL: pydantic_core-0.3.0-cp39-none-win32.whl
  • Upload date:
  • Size: 667.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for pydantic_core-0.3.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 2b6c918e766e4bbb2975f2a31434d3b2a3a9d18c7b0197a1254ae387a9c5f51e
MD5 cf4abb5d9de7b7cc293805f948ffc730
BLAKE2b-256 39b5f9a590f8ad97134e705d867047ddac882a3794be449efe7d5e4a1bf1a911

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6b85b7f56c4445f496669275609a8ceb978b13f6f1d4012e715a592637aeebf3
MD5 d7c47bf7f3024674fcc0fa2745e31a36
BLAKE2b-256 1f7472aa2660c36ded83298b954b7eb3fb9e4e8de3a95ed9ae51c26aff32a1ef

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2c138529bd9936513b811c69f43ac68d579d2a237118039ef54c332119a0f299
MD5 4cff51720e579df3ecf1bcc7f98ae4f9
BLAKE2b-256 abfdef422f46189f186b8bf3863f4822f39a37e0fe48827d0988fc321d777a55

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 bf785d530e52b5b78a66e5bd1d218d96c8ba095d8ef8aded5a96cf175fde63ea
MD5 199e66f39a71984c523b6af6aa50aa0f
BLAKE2b-256 a33f7aa99c52712676f863eb2fe3c5d13303eafd04e435a23d771326fcee4152

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c6a1708a59aa649e1a891f5e88c049ea37134b944dae8c643e2c1febbeef60d6
MD5 16c3bbcb78314ac904ef114ca9c2b146
BLAKE2b-256 314f4e72a90ab0482c6edc3d5da5fec5fc0bcd445a54dedef54723fb4ff8b3b0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c25094b5a4a850c0be013bac3cc0539f03ba29e2edec0796638b76dc85dc592e
MD5 a5ac6f78e511fb29df3a6f120131a394
BLAKE2b-256 2d6886461a41eecd33cf5848729a2a229ecfe7732fb56103c8df9cb2123af315

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 2c619fc796a2503ec90ad5a9ea6c904e9361dde573f538702b7599aa0e057f82
MD5 57e64545c50ff6a93881c46c424dd6d5
BLAKE2b-256 b034afe7e17d34324d2bd1bfed23c4c121b23bb5595c2534ff80ee2e640c40af

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 26970fe47bae54df891188c2a97b8da9791c9e2393820cfb1070cc89204b572a
MD5 b1b0101e1f4755366cff1a39ac2fed78
BLAKE2b-256 c42640f2e9db504e9a0befb34fb787794388117d1241cb6ca838dfc6420f683c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d36868595a2e060e692d036b95cd028230988cb30d1a3532741fe44d09a6ee6d
MD5 748243bf540308266f9b1cc3a1e06038
BLAKE2b-256 58f7555f089526478cd62fb38aac956ee04b22588162ca5ed47f55a8e487c873

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 b7a8839c7168ab343b1a75dcfc79f717a0765be8e1053bf15ac75fe5f06bbd35
MD5 36b470a5407f4e700dcff4bd3237fa6b
BLAKE2b-256 8952a0819fa782e9e5014b0823f3c2fbe5696e0ca426c2dd4f53fa89c316ba5d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp38-none-win32.whl.

File metadata

  • Download URL: pydantic_core-0.3.0-cp38-none-win32.whl
  • Upload date:
  • Size: 667.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for pydantic_core-0.3.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 f2d7df214c8bece1833f46e8903afd6b3ddd7023ba84332678d6e7517f8a275a
MD5 72d13baf81e677f0ba7f33f31230422a
BLAKE2b-256 4c6d779d4a4185532255dac66466b39cfc246f156b857198542eb9371e2bca56

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 db1f4109fed8217024ddba5b1831f60850a79066e0a52b509fc9258c8556e650
MD5 a0b036b2d217684a5f2e5855dc1abb6d
BLAKE2b-256 268875d4514474c26f9001b62961d50ddfe5e5b3c6c6d54fcd5653dbd543b56f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b75bd25bebbde13694ffab4b7a89e89e99ffb607982b7f04a10f3d54b8efbc16
MD5 97b239548023285444e53cfaa5a6bdd7
BLAKE2b-256 980673006f3be86418b677dca591ec9e1a78e46e782a40e7caed23dd56f33c75

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 6401d8b95df8885c4cfd51b93e5694675c6a8b22f07c2b2ac3eb916d6c6c01aa
MD5 8f0a20b9044d30fa9dcf2e8e2a788482
BLAKE2b-256 d58bdd835cdfc1702d1df53fec9616dee88f2997600dcb550dabaed2b37186b0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf657a35a67d3a41784ae40ac4e2b8dd3037a8f39cf5e6383787e822b251c305
MD5 be80d1efd174b12677166f2bb956accc
BLAKE2b-256 89290f1a646ff39301503b5737a4863576077c5e0908ae75c4164ff47278fcd9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9c047b1c38c49447f1ea241627e00fe416223c404a1a0b1a5733dcedb0e92040
MD5 5fbad7b7dd2d13d1ef5dcd93a31afcbd
BLAKE2b-256 4a8a90a2d3074fe6c75af438bf6066c9e9083e7948b651d4461be24712597397

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 0e58f4ec47dc8ee962b5f0d612bcc9c92c04fa7345f114f129841c655a9c789f
MD5 f8bee9a1cdcf56a0690fd4e3b5cb275b
BLAKE2b-256 a9c80f9a3d7cc5588b4323013d1a8110d6d39b31e9056d73ba328102c39eaec2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 39e69ec9de2f61ff6105b5c7daa7a9dab04cd0dba5f670c6f9991d66b1cbfc37
MD5 2fc7c47e58fc742f42e4d92dec4ef215
BLAKE2b-256 c590d1453799e9022a3a779e1bedc34a236d5731e5115de61f61b5687b7f321e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 de3542e1d31b26c960cb401e592a8d867c2321f41a2e1baa3c8433d62b4bb454
MD5 417e1a2d058ae4c8d6cf71fe5a932410
BLAKE2b-256 c5c2d9b422b9484806d1b3d0dc154ecd512a1dfa6e02c0b8ca118fd32855af78

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 59d361ebbb0fd2996a2485afedfb05b7b16a362a084138a26d688efe075d322e
MD5 11fccf765bbe97e86efa6496fb51b239
BLAKE2b-256 85146f5f926756085e1b17a8234facf675e6d3674206836f3f09cc1f2c104665

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp37-none-win32.whl.

File metadata

  • Download URL: pydantic_core-0.3.0-cp37-none-win32.whl
  • Upload date:
  • Size: 667.8 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for pydantic_core-0.3.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 a3cfb8459d5f8ba1961839beb2293c328d6afe843b1d3c61d8ec6a1373303962
MD5 c2ad7071bfa5cf996e1597001d25b414
BLAKE2b-256 853da50988dfdc34768a185f180366ad7563670586d063a60b1fa28608546046

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 844f91d1a7e1a3baaff5d187bce10ffaa84add3c566fe1dac5f8733fcd0df70d
MD5 1a610866dd16e8e759fd42d2d312913f
BLAKE2b-256 586a15334e88275a0162590938a4b1eb809adc4db3dc4316e4aa4a52bd0a7675

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 73d555506ea1a4a87335730fb6ad9cea2a4ffc7f2cab6b1adbe9eeaa1eb18335
MD5 3aa5e7bd925c53d7b24472a88dc99b5c
BLAKE2b-256 d54dd6cc8a568e11da44061905e86d5a7101744dac81cdf71ac4c5f0b294600e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 a0e85d5a3d72d69795e233079d82b65caee576a03aa7406d5aa1f01369686831
MD5 4df886bf2d27394a272c91ae51c4f5f9
BLAKE2b-256 9b74de0410d3df8f72d5b97d88701719dda17f9ad66a37ef323de24eda6ebbe9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 500bea6cd03e52df8688e9d15f6bcc40c58473b718a449d376316f3a2484e9e8
MD5 009ab37cd988234d4f8f491e1d131bca
BLAKE2b-256 77f19cc8465b8d6d543d21560c5f78a251b846392283de695756ad0d1ec6094e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 71c31225a348199b44515c93cb9537e8a538288cf3a0dcbe22fdc7ee5ac121a9
MD5 767fa918f2fec620551c5b093b671ced
BLAKE2b-256 e2a18b8c56b10403bd6cc8e466d8d4c67ac276e20fb739a5c73ca9b2bf988177

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9aa21fcc61bdc95f6d3e4888f81a377e5fbe5fecd31e99d4505260d269637b6a
MD5 7b2927c41eb8b2e678378292dfb56d0a
BLAKE2b-256 522f48380d8ae5eea0491297563c9f914ade31668880046bf8f40ff69cb0244a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 89f5d6a10e7933748e58d7dfb8c43c36071309bbd99350aab3509cc97411dadc
MD5 c7c83aa1d39840e6825bf1a76a5f3c25
BLAKE2b-256 393da47484ca6ad370d2558e260d10b8b78d98c4f6feb19051f768f137458373

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8fc1bde59c730b28cc5b1d9d4a39ee3cd7b665f1d1bb7b0aa68087643b265a7c
MD5 29e7cc7ad7ecc663eaebfa0c76dcbc23
BLAKE2b-256 e72bc675d8b785fa3cd0a3511c403735f86859e0afe2617c7e97ce4f0a1c0b5f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page