Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError

v = SchemaValidator({
    'type': 'typed-dict',
    'fields': {
        'name': {
            'schema': {
                'type': 'str',
            },
        },
        'age': {
            'schema': {
                'type': 'int',
                'ge': 18,
            },
        },
        'is_developer': {
            'schema': {
                'type': 'default',
                'schema': {'type': 'bool'},
                'default': True,
            }
        },
    },
})

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [kind=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

Benchmarks overtime can be seen here.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not design for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.3.1.tar.gz (129.1 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.3.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.3.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-0.3.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.3.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (883.9 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.3.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.3.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-0.3.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.3.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (884.2 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.3.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.3.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.3.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.3.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-0.3.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.3.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (884.8 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.3.1-cp311-cp311-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.3.1-cp311-cp311-macosx_11_0_arm64.whl (810.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.3.1-cp310-none-win_amd64.whl (716.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.3.1-cp310-none-win32.whl (666.6 kB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.3.1-cp310-cp310-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.3.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.3.1-cp310-cp310-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.3.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.3.1-cp310-cp310-macosx_11_0_arm64.whl (810.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.3.1-cp310-cp310-macosx_10_7_x86_64.whl (882.5 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.3.1-cp39-none-win_amd64.whl (716.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.3.1-cp39-none-win32.whl (666.9 kB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.3.1-cp39-cp39-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.3.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.3.1-cp39-cp39-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.3.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.3.1-cp39-cp39-macosx_11_0_arm64.whl (810.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.3.1-cp39-cp39-macosx_10_7_x86_64.whl (882.8 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.3.1-cp38-none-win_amd64.whl (716.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.3.1-cp38-none-win32.whl (666.8 kB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.3.1-cp38-cp38-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.3.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.3.1-cp38-cp38-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.3.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.3.1-cp38-cp38-macosx_11_0_arm64.whl (810.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.3.1-cp38-cp38-macosx_10_7_x86_64.whl (883.3 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.3.1-cp37-none-win_amd64.whl (716.8 kB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.3.1-cp37-none-win32.whl (667.0 kB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.3.1-cp37-cp37m-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.3.1-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.3.1-cp37-cp37m-manylinux_2_24_armv7l.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.3.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.3.1-cp37-cp37m-macosx_11_0_arm64.whl (810.8 kB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.3.1-cp37-cp37m-macosx_10_7_x86_64.whl (883.4 kB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.3.1.tar.gz.

File metadata

  • Download URL: pydantic_core-0.3.1.tar.gz
  • Upload date:
  • Size: 129.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for pydantic_core-0.3.1.tar.gz
Algorithm Hash digest
SHA256 dff7532af68e3eb519d6aace428323ecedf8a5d36f5edac7d861f0738d8901cd
MD5 2f2d223f1a6751b0ce4c862be2667fd1
BLAKE2b-256 1b00fe0842f379a865792a006b71d6530b0c39a4a82aa7b6915d9dc5e400347b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dbff499a6cfc1244a5931a39acc5e03faefedb12dcda64c77ada4b0dab386985
MD5 28f6e3186ccd959ee15e5e420f203885
BLAKE2b-256 e43d969958e7611554a5b50732d6faeae6d68e8ee19d43bd4a11a42ee583421d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bb2b9f0bbec1895bfa8d0c85bcfb332af09a5f7ec3bbec1ee30d8b4bc7178ec3
MD5 4425d31e21ce9263db11b30e3a75ac9d
BLAKE2b-256 5125fffc6734d5bff883172dbf9dd1c100c7fc7827bb23f52a2268b795b90391

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7273b39a6e2a47385e86d897f284ffecfa22b9969cdce8f161e3fa45b3ea0d0b
MD5 a1154a4bea4c881c2b37eb399646cf3a
BLAKE2b-256 22ad0d1e1779bdd1854d23750afad852c96e76bc0c0aebed941ea048f90e3a25

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f0f1093448a344933392071d19d88a7b67588753468bd92e00e22f493daa977c
MD5 04385f3cc66b93565864935adaee2fa0
BLAKE2b-256 f9428d08e2fafbd5c12398f0adbe3b444ee3d76f413da02b7d1baf0c83d56429

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 87713eff6b769d7751db60312b35d2d5d83d8530d9093dcd97afda1f62215a24
MD5 460c0363e9333649f635c027a09a29bf
BLAKE2b-256 d2769ca07d30b7d60ef860dcd632f5793fadad329e3007fde04dc271c7392f5f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 5906fa2d50eaf2769b5d1e39a72137c6310b227a214db2d64fc39faf9c8e96ff
MD5 e161770341524e00965d2886dd72f714
BLAKE2b-256 c406420991cb4689e73f4d72a317c3ae0fdd473476a8b147ff553834fe372eb4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 30e7220cdfcc4e130ad1d431fcd6a439f4d74986a3afd28d78f1dc5a46d9f30c
MD5 bfcf710e0a088010b0f0892826118a5f
BLAKE2b-256 a49414651b7d7bfc3a7c7a575d25cc3fd4a4c6bdd1e3dd8ca4458a17f9c8c59f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c91441b65f027461c0dfdfe1aba77cc01dd87e82130dd1c42c6f524165a3f2bf
MD5 bbbaa5d325fa1423578d2581e8fe0e9f
BLAKE2b-256 c08c588bdd5f8d20cf5d204f342d555c7c526f6e51fbfb393e6c10d29a639261

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02eaa2858317a860bbdfb86e9b57101708521257f9d401646252382de03d416e
MD5 475b466b04a99b88002c4c9abff38cbb
BLAKE2b-256 ed0322cbece2c05ecccff76a71474a6689deb414dcba3e19c9582f1c33c302d5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fe62119d46a462906928784ebc29d139a396a6113d9cafc26bc68299a1e20324
MD5 e9c5c2baa8599d744d0163ea90e2f294
BLAKE2b-256 3201ea47a98f0c092f200b0a961a4ca1868d5ae86a66ea187fc283da369b1861

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7d5032d6c20529c03631e3cd06f99e723eb6d0ae55c99880edb6c69bf39f0fe5
MD5 d9317c0fd09a050a8ca7a7d619f813bb
BLAKE2b-256 07728207e3b37a3974b13b0a9d16361faecef8ffee3abca00dc9dc5b755a308f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 be336d0e0ae7820c2e5ec122084800e5efd3bce9a6aa14d1d76cfdb2a56afd0b
MD5 f84dc7bf16f91ed5d73ebe5e967d0dc0
BLAKE2b-256 94404f05c2a2dc7b7fda43c145426e0d20b61606d47e04f0ecdf4247875921eb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b3adff4a719406bc14a8ca619d38befd851d67bab76166c8c24e2e01ff7a23e8
MD5 8a0080062b25b2c4699feaad44a117c3
BLAKE2b-256 a2b3e9c7358e7756a44a02219491b788ea05cfed70a098b0d6f606e00a62c14a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4b717e77717a04ae31b928287c296361b1dbc42881bd7b48e0861e327e49d012
MD5 4e2f6c0edfb616860f57d87419a15951
BLAKE2b-256 1c6dbcca8fc84b65b555e4e349b585fe43a8becb9aa913cd09365ecea897097c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c43386450ce07ff49ecd51aad846f2188ff6bab87ebc0121ae806ec23803b08
MD5 c790006415ecf6cfd4c0ab6e91a83dfd
BLAKE2b-256 8da7cc032f5026a1c9a38019ce5836401f2f89ccd66fcebe9cbca485f40760a8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1a5dd28c16bf14f2fe5a23a47baa9b3727510218151837306f4f841b1aa530b0
MD5 b2e36715e7e1de5f0f78fc10183df2aa
BLAKE2b-256 08a932fe7ac33f5820455445ec1aed54c249e5c413bcdd4353558fcd1a720177

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 a0be84f13e143af0964b09d851f97e8a7926d53e5ebe15af14f5053f560c0e61
MD5 073da83d9f3b80dc733db1e9d869efb2
BLAKE2b-256 016a47a7cb41ef61d1747fb0f078dc4177b8c5d07c045f9d20fe240fd47afab3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 46a47ec480fb5babed69bdf7ae6bae96d48a07aca5466b92ca17ae030c32020f
MD5 2593ec9f02d8753430f89d3faefe6a9f
BLAKE2b-256 688d08a160a6df2a38ea87c764634619874aebd04768c9939d637de4b54904d2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 44dac38e875f5a4e7b861ae98a1f701dff47cf4f10b079e170a2805adb6358fc
MD5 62f11b1a87a5f023b05176aec80da852
BLAKE2b-256 df66ea27aaa27e428e495901c38c104d7e0bade8044a56e436c2f808d4d209ae

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 41c80f652ffc0c5e2ea76311ce8f8fb6d9730a2791d993e85375f8dae7a0fa90
MD5 e48183704aff74c6ad071fd7d72a9e10
BLAKE2b-256 799b2dd1c9fbeaefb145d3b96e39747362c1c5d3e71c54f3b3c78eef84f662c7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 5bcafe0dddeccf77a70de6bdc784863c5c1066657296d93b20a4f0aad36b021f
MD5 8de273c804b8064f37f415e416e74bbc
BLAKE2b-256 5f3f65b008c19815021a5adb0b1492370f267415f2f02edb4bb95cf528330895

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 e3591235362a0050e0f6dbd3c7af7908fd44d34832959fa2ad9fa424856fb56f
MD5 eff9f7f92084f9498a7ec1dc060d6854
BLAKE2b-256 43210544a2de833a4bdd5458ece95a92c96d32b7e3ea2a7fe95fe47b2269e477

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 13d8e206809afd489bb5c97f84004b60c3e0fd7701ad0863e65a710f124785bc
MD5 47d55c71e1ba3b8958dc98552554e4c0
BLAKE2b-256 481081678feded4a0ce2b827f43b10a31508a0d92a3be78dc45068ae0b37c262

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f5ba6c0141d031b1071dfa98e60ad8b56d63a6bd8e8272e370702c559b86eeea
MD5 f48f3d7047f029281be2bb2b144fe729
BLAKE2b-256 748ee38d2b44f716ae202b80865e28243c6175a7d5493d2c948bd07e3c5b4406

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 fbd294086e27db89ab9716b49005739a0161f8b578093a86d49df8bab0e33b68
MD5 9f807e36dac317df75d2ca3110d39fe0
BLAKE2b-256 c5778163db82a4d98f21bc6dc1cede1a9d5427353122b3b9e53b5c844e9f02f2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4da20399be49886cfadd196a199a30e6e326de01b66f7dcb886eb595dcc875e5
MD5 9812bcc6855f02f61cf6f877b1416349
BLAKE2b-256 c4e46904785707487f27c08935f1e6bfcc8d43a9cde090ef53c7cdc0eca5bda2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 da291c6d24cd1ed17388a38f0a2cdf198c2836730423c93b658a969fa34a4c41
MD5 38ba6625a67fe049bb22c60f563b0fea
BLAKE2b-256 9108bb5628f8b7464b6c6d2ff025caae5cfef948747e1d1df2c06954a6e43480

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f0baf93cd1add8a3066b1c46d26364971038ce7af973f2554dfd9e6d8f1a780e
MD5 7e49904d804ed7b248a723d731c2ac3f
BLAKE2b-256 beb4a7227a33d25a6ecae3d9841d33ef105ce09f50dd40be04ed0c97d7486620

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 814f695dff0400d060cd1f96be0ebf88cdef1a9852949ac9bbe91d8d9fa3bfe6
MD5 5fa57fb3941580994b143ba4b4a7c9b9
BLAKE2b-256 44084f3d42a8cd617267498da4f3f8bb0dd395d1153cc135ad60c5d0e0483d47

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 b32617f7a3ff7d3ebd8f52ec17b4fb9e2f45b0914620450b80ffe1523eeeeb03
MD5 463a3cae9352b6f72c9f1c5c1e95e519
BLAKE2b-256 054e85015f0d0d708212391e34b3640dbd55631660594fe036b46920bf1b78d8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 c2e1fe4085f02ab2b501e581b40c4c4e06d02fe8aa5ee68959ce474d5c99377c
MD5 499751ba716f9645a7eadcd847ade0ea
BLAKE2b-256 203818f0ae6b3c42cdccf0e8bc63e5d98029548cb52fff270b9709db1c66ff38

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp39-none-win32.whl.

File metadata

  • Download URL: pydantic_core-0.3.1-cp39-none-win32.whl
  • Upload date:
  • Size: 666.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for pydantic_core-0.3.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 540edce48b1928026801ef0c7c4b0534bb69fd667c838d28203bdb607359097c
MD5 c7a29c02bee66fa8b2a17394729e354a
BLAKE2b-256 204146992272c2e5c81eadf2f949d5ce1d3df91e2ea0ad6faaff8a3fdd910432

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5e032fe83dec0d3729f3d1d6e5769fa610338e8236d534f507913475da234780
MD5 fed33f39cbce7072738f6ac034b723cc
BLAKE2b-256 2e70c5230c2f728c38e648e3fbff4acdda275eb046f2668eb1cfa9be7a7d356a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1710ff47984000f3da6a7f0a0a3d7d6e954c5bb97fc15af67135113b4032c8b1
MD5 bb426ad39ff503b4bd7c1675f9d1ba66
BLAKE2b-256 b7350f29f467ba9d97f4042a5acde36e52541c38adfa47472a405b496def0edb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 9828050cc2836eeb55b7be3b104f72f748a82ea87d285682fb165eda5cfff8f8
MD5 cf4d2b06390b0b31baf1ce10f637f361
BLAKE2b-256 4254f0bb5453dd68f14f11b9798b6be869fc1db441f1db99aa58bc625d64c7ee

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ef5eb0f0c266d2e02b0ff5acded460d52e4e20f21913e0a37c4544bf8a1f698
MD5 16593c5cf85d597eef9666fc3224f465
BLAKE2b-256 4ad10c599af3a912d1658cf860ede888e1105b6d7d34806a833a526f2d10f533

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 599dff5e8f79da59ca8732878713af5c2bc6a2871cc7da66aa2a836487c34ecd
MD5 b372fa4075486458fe4b8d0f11442616
BLAKE2b-256 1d24b8f33d59826225d90c0d18cb4c28de33a327e2b5419a2a3dabc7390b69cd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c27036c9687a09922e3e9f730eced32582c287ef7ada6e44d3aa1f646a39c86a
MD5 8bbbc9e88a9e66cf9d7ee2b418afdbea
BLAKE2b-256 73cecf33a72484caa8d8cef7d8301d9f0f0c45875012e0d25247fd7fea705e96

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 11da3e6103335687e5f10eff0f9d578a32746c823f3433f251695719f0ce58a1
MD5 a3696e4af713abf25c0a1926581783ef
BLAKE2b-256 3b2eaa56dc286d4cee595b06165122574d9b9bb3221df4c317158d10673922db

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 025ac32192aae166024cd8d58283c92f67f202372e1e67f972ed8b61a74f2efb
MD5 91df627978b7bd0181e8764b9fbbba11
BLAKE2b-256 b45b5e2809efdf5cbdc8256267dfbe00fe91fc0f2b52222367f67c293851761f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 2baf80afee34687743c63053b0a4135aeb222d33ec08209297b94ff297b049a2
MD5 be9428ec390cf38fba415b8701b0265c
BLAKE2b-256 6008a64a190230810ef5a14d92668920c7d9691acf3fccbeff3128832dbd1cbd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp38-none-win32.whl.

File metadata

  • Download URL: pydantic_core-0.3.1-cp38-none-win32.whl
  • Upload date:
  • Size: 666.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for pydantic_core-0.3.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 df046c439da8c848ffefbbc9f6210bae49947ddbb8b02397a9f05d1ac01ac604
MD5 7e5ccf33d2b3701e9e5ce361af09aa82
BLAKE2b-256 a53d4466bfeaec08904030385364a4d43c2ff411d410ccef91f764ba2867b937

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 94951e321ee3dc08429a8ed802112ffc3c1bcceab3375f6daae4259f83013235
MD5 d98e4a403bc35ac9a787e26abec39b93
BLAKE2b-256 d0f49fda7cbe3f135bca9fa707da566ea4f7498700d100aa6d6aa5ccc70edeb4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bc79f7d694013a6bcc48b87bf18c5aaa688ae95a161ead7fbec92bfcf8ffbc06
MD5 d68317828249170e12215a9e0c096aae
BLAKE2b-256 d3b8e737c2c89648d5735aa63616b81c28fa95be8de624bd22ec9b1915b65c50

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 eff31652f9e124614ebd44f9966a9588ac97e5b83c17fd3a198d02a09c50d70a
MD5 603ad76ed42c2a4206743de1be053d07
BLAKE2b-256 8e337b9d78b87c0ba85e2d61e204fa5f72e34d6a6c96c123284b193f21fce31a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ba30ac2101449489d00e5ba571ed14ed3002e4747deec025bb7d1fc292d5db7
MD5 7eaaf4e8c3434bfc684f29642dc6b7e9
BLAKE2b-256 7a1672cc0f00d4618efb7409e3dda9b159f5005404cb2bf6730e7111683f6b04

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fae4fd5519707fe84d2b93a3356734de9720abf4082e6a7f9a0512dd9e3f2509
MD5 b708e8e422bc41b978df07358b174d0c
BLAKE2b-256 b2d64459ec322f300121f6e23adbfa8a643b7db3f30a241125023f12a40d9c7d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4d0b6e5441fa79eb1c60d23e5f7bc35a81e36b803c15f315cb7d7f6dc546eafd
MD5 ec940e09816f5aff7cc3f8acb4b0cd55
BLAKE2b-256 5ef2864af8d86375170f7e5c155324df5c5fd6081de8e6b688fb7424d5cd5e7f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 47df5fd6661d7c395612a1aff41af48d7ebc38edb3b352b077e303b58155d53d
MD5 196e0f33eb31e0ae0ea97fbcbf6fd392
BLAKE2b-256 9b74e4a4e38a7166486ba17fdc649ad70f78bf3a7647843f32e893fee4ec334b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f9624701ed2acf3af769e5ec783114666a16d1d630b75673344319a585205155
MD5 e7f8bdfe174b7f04f3ab4159689ebccb
BLAKE2b-256 15fa0338e9025e34968eb3e2c616de9c18ad50c555ed143f70dbfcfdbab19e2c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 137b65c15c016144003cd23af953f14f282a9ec86be933d77a9a60c5de1fdf6a
MD5 d12869583cfbc90463f008f995c1ba16
BLAKE2b-256 16efad91f892582b6d6814818f01a96729fa2ef25fc03adcc0c0c4abc3ea0536

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp37-none-win32.whl.

File metadata

  • Download URL: pydantic_core-0.3.1-cp37-none-win32.whl
  • Upload date:
  • Size: 667.0 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for pydantic_core-0.3.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 08977b24c405de156385c846a56d64cf33c24fd935c3f39fadd3cfe66fc9c34b
MD5 f6910b94f0998db883dacf71e26af2da
BLAKE2b-256 eafd9245b0bf7d2038f894885883f09f319f985e2a733746d6bfe6cdde598914

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1e75a5b42fd5f2b1e525720e1697e40ffb7fa29575038874e4aea6a07b0a8159
MD5 656a3e4312bce7831f3a4eda2f040c3e
BLAKE2b-256 fb57cd6bcfd7880c751f019e17e297986ec0a2e645394fc8afa5cf8abf3e9a2a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c65bb982125c643919c8c67955bc8f484f90f9a64c7465331e991462a52d8c99
MD5 53b635d36034829b3a6037081f92a3ae
BLAKE2b-256 e166acd0fb7ada3d6c0c639c8588eb517bf41365eadafeeae0bbccfac0ea1fad

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 e30f1e1646a8fef772fbb7b0671cc041ad0284931d2bd40fd2944ddfc1503d0d
MD5 cca9789d6b2b4a0efc5186ccb8f992bf
BLAKE2b-256 9a5e9db24a52fb3079af24c381ed6b7c8856788557e883091e6332454f30b8e5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a8b8e3ae17b721d1b0c3ee4825f850e5752090dd6207bb26a5d1e8049243bba
MD5 06a94c92121b527875df6323f1e22c72
BLAKE2b-256 addd6fe7be020f8683285c8e01ced8c220b3833e60f63189a7fb2082e55a147d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c107106f38e76457788cbc00cfe298177ebe17e2feb6145c5865b85f5bfd0950
MD5 4061b78feaf1e651a7a58915802c983c
BLAKE2b-256 719e58869181af6c7254f7a3987ac4db1eaf3eca34b7aff020ec8488f8148a09

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 8f86a7bcc08d6f05df94e6d0fc6675ff450df0cea12ba14a8ebecd13fa4240f7
MD5 4478ef9879dfec8a0c8f371a75871324
BLAKE2b-256 b3b6bebfd8f049157b738ecb626fbb49a81bfbcbbf6112caac80d5df5b15233c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1b9cbd2f58942ca9a1539dde36b657cd538952162767929716652339babf1ba5
MD5 d8175138efe6f7b4bfe4958e6cc25a17
BLAKE2b-256 dcc68a8e704412e7c8314375037dbfded3bb862d057a5de30c27b51e2b97a6ea

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.3.1-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.3.1-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 2b35cffb48b33e5f3426a423d166880eec8922244f5bb1757e3b68b3eae8f4b6
MD5 dea173d8dc7490c75884cd7a77e60f04
BLAKE2b-256 be5cca6d78d2ca4f66c57af5f3e44e5ab3a548c734ecd9cf941f1c2d229b83a5

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page