Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.32.0.tar.gz (292.4 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.32.0-pp39-pypy39_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.32.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.32.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.32.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.32.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.32.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.32.0-pp38-pypy38_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.32.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.32.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.32.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.32.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.32.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.32.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.32.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.32.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.32.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.32.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.32.0-cp311-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.32.0-cp311-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.32.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.32.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.32.0-cp311-cp311-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.32.0-cp311-cp311-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.32.0-cp311-cp311-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.32.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.32.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.32.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.32.0-cp311-cp311-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.32.0-cp311-cp311-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.32.0-cp310-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.32.0-cp310-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.32.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.32.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.32.0-cp310-cp310-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.32.0-cp310-cp310-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.32.0-cp310-cp310-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.32.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.32.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.32.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.32.0-cp310-cp310-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.32.0-cp310-cp310-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.32.0-cp39-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.32.0-cp39-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.32.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.32.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.32.0-cp39-cp39-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.32.0-cp39-cp39-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.32.0-cp39-cp39-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.32.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.32.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.32.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.32.0-cp39-cp39-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.32.0-cp39-cp39-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.32.0-cp38-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.32.0-cp38-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.32.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.32.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.32.0-cp38-cp38-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.32.0-cp38-cp38-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.32.0-cp38-cp38-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.32.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.32.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.32.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.32.0-cp38-cp38-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.32.0-cp38-cp38-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.32.0-cp37-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.32.0-cp37-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.32.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.32.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.32.0-cp37-cp37m-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.32.0-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.32.0-cp37-cp37m-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.32.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.32.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.32.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.32.0-cp37-cp37m-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.32.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.32.0.tar.gz.

File metadata

  • Download URL: pydantic_core-0.32.0.tar.gz
  • Upload date:
  • Size: 292.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for pydantic_core-0.32.0.tar.gz
Algorithm Hash digest
SHA256 655247c1a18eea39a83acfbc2a45254d67db4e98968b4b91647c7f31ce027758
MD5 7093a1ab94c249c6ba1b8fa966f35bed
BLAKE2b-256 9d52c17490b5e46199d38289248bc5956ebad0289386d90b3955bebbbd671bcc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 8c7516ca2da6bfe7bb2d37519eed4ccb9768462d1c71a823f706b649e5e82fff
MD5 e9654659d34645e77d218f864fcebdfc
BLAKE2b-256 34ed679db757fa50b2cd7b17f750154c8e1045ecb3dcfc6ff01e773b1eb067c8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 324e1eb3219a6fff2f537e381f01d8834a8dec7a5ea8b41d5edd59fc23180ba0
MD5 6833441665d7382a469a4534a2f56eb9
BLAKE2b-256 dee5c2316c8f7c8c40a1878ca8f74b5580eab9948b3976ebe7a70ec4a853ad3f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2e7160c44982e3c619c738f9e71834f096c258554fa63e0d3e5ff73b5b2742ce
MD5 57e555ccad0635e8e5129ca30a41ca5c
BLAKE2b-256 10414802cc4fd89c5cb28255347ea1be3adde0276222910dab027f7c7710ade7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3bdd55780ca6d36b33709d5f83bfb3f718a44e47e287350e2d2f003834bbcf0
MD5 22b5b03ebd4551881ce58bd86f771820
BLAKE2b-256 050778071ac9ef9096c005479792f6c6b58f687cbb07e87801568db4d775dbdf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4379e479486d8a08aa95a230f5ff8dd2ade235ac15debbffbecfa5c1a57b3b57
MD5 f9cbc87a8ecdd1dd9a5a312ae80dfbb3
BLAKE2b-256 9e5a3487c644132cbd0f3e60444e60522c627a77093d9d9b2ce7a5e27875b1f9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4c50ebb2e9b65c5ab848a2161b84edce517d6d7b957fd1714facb359c661353f
MD5 b145cea3f53525ad35330bb5e6a20abe
BLAKE2b-256 38b9ffd462e9caff98d1fce191899e09f1e31e9ddb475af25b21a4cadbe0d76f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 7a8aa6239a98ace545bb43d2d0f572e7a8167d6644b53c2bddcc51c79caa14c6
MD5 667592bce7c5307a9f032f1a30d8e77b
BLAKE2b-256 cf20dade40b6d0db159de78998a8077a1f8fedb078feb3dd02dbfaab2c55616e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 22d8b30713580f692acc2d563f63bde4f72897042a7f8cfa7900ba4e049affec
MD5 0c93a283a6561fc49deb1bf36d5b922e
BLAKE2b-256 98f30290e603ec86c202a006d068e9ff16b1f90db5ad0658d060695997e74567

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d5d9995683265783db544eb9f11cb07f2edfe5d8b4f9bdbc19b81e073348b9f1
MD5 d8041612acb22804cb57337f72cbfd04
BLAKE2b-256 2d0a2b467f0b46e2b34a50864fcd74ebeb7b4631d3ed1755602f4c5859bc311b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ff09e1d1ba461192c60c6538e214574ceebc6aea65c3da8eb97b860745da9d64
MD5 5e77d66f5f75f4cbb48afbfe64357db4
BLAKE2b-256 8e515a5c62b4e95d4d26b69e759a803a6312edbd23e4f16879cee072d8170721

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df760a409f24f219b4b477ac20e92c9c0264716df292b17ffa9dfecea53adb5f
MD5 fe135c952c089ad68befac9bd8ffcd42
BLAKE2b-256 bee42c308a6ce37b532787d52551c310200a886826330ea05c455af8ca3c67bd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 deb43d62eeb7290257213a711bc7ca59939ab5a9feef9941b28cf0317c7c1ca7
MD5 1318129765dbf875c11608a3e3d97d4f
BLAKE2b-256 04d35b968fa839f490db8b3e117c0f53049f4ac082e404e88dc6c1057a40a272

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 5c6fb7883775a8071d3ae3b0f5180446ab2fecb024b8827d00ad126309103c5f
MD5 bd651a29bbdd70f474f4169e2394b2a0
BLAKE2b-256 dd3fc4b287e11ea1b90ace357179b78a609eeeeb6fe97379f217585deb945ee2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 65434e29e96332104d2a25576cab212eb561af6595424f8f525362ab4661db21
MD5 de5232bae9f08d2876665f611bc3b2a3
BLAKE2b-256 cdab8ec667b5d52543d07acee2eb7739da391c2ecfc3feaea057e3cac7bf8888

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9b3d013e8c2b738e60fe58a2f79169cf66dbc7cfd29fc0b4d4c1f0c3371a2db0
MD5 96ecc36e2a5de2dc6659a830dc2a3305
BLAKE2b-256 e7f8b5b0d45efbefd6683eb1f65de50209b5030dfcb85f20b3a61f255f7ac810

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5fae08fc3ecd28ed32e7a1fde9e2d1ab131814d0f5423d3dbeaafc1cb5f19993
MD5 0d612183bd8fc03599f4a85bc8117fac
BLAKE2b-256 ea71605f6f3413cec5dba7d7bd400fa87121162324ceb618833d80b670f05b36

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae11b2becac15ba8ba179220874fad306314a19fb5213911b8320cbd781e18c4
MD5 0177f7ed499cd7759a60f0614e8faac9
BLAKE2b-256 2170e419df0f378245c10eff251a5c7a26a71a84d5cdafde29fe63d5b95411dd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 96710908bab7fdda657ace59d0f6e944af53ca761bbe353fe26a5119dfa09809
MD5 52b75269d97ab18266b0197593b6dde4
BLAKE2b-256 ed81961b6dd81a8e96a7fbe3b19a663ec2b40c04091ceabf548542a6e2f7b680

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 32784de431e698a88c91ae39b65009ae168a87890416cd07ec1388eb61d41aac
MD5 8690bec285f2d7888877e4f541f1d6e6
BLAKE2b-256 92ca7d9e16470338b4713910e8431f0cb115de97306aadfc386bd6d979088dd1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 16a0e32f06356a0fd7dff0be3d8ad6f1ad0b02c9fe7806a28ac42de441f477d8
MD5 59ea1e34d8ba8fb6ba1e41f6e4922643
BLAKE2b-256 1afe1f955259530720c861585598ee8f175c6ca263daf3c3cfd6f34a6cedb925

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 c297123e782c4aa654efdc88f68839391d9218633cf147139dab51b6e9b4a998
MD5 e11c84d48d7f5f818adf19d29579fda4
BLAKE2b-256 dbb30942be185af74597b03ff7d1489d7cb54b8ff3c0287a5202f33865121698

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 13aff2c7fd378a7ed728ab809386549ef59aa6f3c5c6fc71bf1206c461e5fdd8
MD5 5d10320db56257b87d9f413fd085d6c0
BLAKE2b-256 fd4f30f5aea38126e28c1ca4bb2287f84a18b7b238087d80b4c9a4294aa78206

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9cf346ca7d65844a742504368aeec1d44a82546b9a4812704ff8d4418c0d9546
MD5 31ce1faf123d165da379a77e9033ba7f
BLAKE2b-256 a8859f96548acf1ab2290d05fa5ffac3df0e481e1c9f14c3402a5b597eb598b5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ebb821d07531206b8c7647f1fe685200178a09c85176daa123454faea7ea953e
MD5 6411a86f4925faef26401863f4be4f57
BLAKE2b-256 7a1cb4af4c969aa36838fee2b4e9395988c917c1b0cd253f7e3347267f5e6b85

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 c552aa5291292b8590869a28c17d8de3bf2d8dddd2cc9453298c850af788d432
MD5 a8f74f20d024588a26ed564d56bd3e85
BLAKE2b-256 2d646db03adbe52b4a9d5b7d6aaa516bb3dde73132adc7b1ac90a7302982e68a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 2f646066bab2066afc2f8e89b9604f4eeeb419c1e2d4a1d7e149912a19866c22
MD5 cd0582827dac1d72d03512aaa37397b9
BLAKE2b-256 02cd87e0d6344eb5d8f988cca873365f8661e48193762481868193291a3ba905

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 37adda0faf2723f1f67cb2a7575795e4174e779e1f8686677e1983e109632e73
MD5 7b118479c383e7990db3224e44031663
BLAKE2b-256 a0243d76026baeacf8eb228d57dc272e94b532c9b647c43ec9c28892ba4a2a87

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 09f37e5e4231894c399cfc70c1d3810e2d84ad480196e30d3bbd3251bc1672a7
MD5 88aafc6d4f7c823896f45d6dd327a778
BLAKE2b-256 c02616d96e25b1f71e0a3db69e21e084720bcc4ea34a96441f7d3feb5d69c46f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d0356036e47982a717a476977ca96e7ca58c48170988da5b51a86f0ad4bdf1cf
MD5 74536f292ef9bc0ddc5bedf0506c838f
BLAKE2b-256 757ef1e8b79da8bfe98c1b10b7d29d324d956a6cb3a9de25fdd4cc544a5caf9c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b98fa8e1428d3895f2132d01fea0a88bae4e92cf5471db626838ac6d9a7431f8
MD5 b8cc5ca6661ffe9349150aa942e794be
BLAKE2b-256 c43a8f3bbfbd0491ebd93cdd6befaff53a2c887f69d76fd9f2f8b40d7ae92175

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 212841d4054dd262e8880697808374925d9ec2890c52960b026215c28d050eb7
MD5 c3f674435428dbe8240651acd7cb6f4f
BLAKE2b-256 98654276dfe0d3ed6a4dcf1301f8333adc67a6842042ddae1890c6d2e5519c1e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8a2271bc9871345bd252bd8193e598b0fdcb022e821a484b47b56e7f9bd47ff4
MD5 ebdf3fc3891532e3dd6c4fc45988dd25
BLAKE2b-256 667af5e2948171460fb82b11edd943ab208dfbde8fe5e170e4d98e3c6764b7e0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 d42dfcbb4d3d851c99a69ed00507effe57f590d7bcefa7d3e931c5810f43e1c0
MD5 07cd452de4ef4fcfcf3165361d8efcac
BLAKE2b-256 8951c42e76e45c7eaa78bf416bf6c7e24737d825e5e6d210aa74dd8ba5e83b26

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 e8e9ce36a3d3f7990aedc77df279a0bdf0f2c906c1384b5feda10ce4ad99830e
MD5 82152c921075b87741210b54e43738a9
BLAKE2b-256 0efe2c6d2adab0bd87411553403eb23da63da194892cde7ddf465162ebf9553a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 66655d60146492b1b7ac94326f02c9f55db92fb2c63a2aa1069cb02149667be4
MD5 21b76e6829adbe44babe8baee1a60a16
BLAKE2b-256 00247ecb891412a7a527ce51162fc888bcd0b35212d26128859e9b0528a2ade3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ed86b00d7fc89cde138c026f845060f147f84cb340da67fa14209c4d882527d2
MD5 f02896915cfc29c7724d670f73465c29
BLAKE2b-256 5f61271abe0f34c0cfbd6596af4b0a28b280430012e16588e203952a77b514ca

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 26b8db6338a427ab8894451116b31cf0afabb4b9bc7e12451ed39f065353921e
MD5 e1c52c4fcfcf56e6dd98d0744a107401
BLAKE2b-256 6d7c7ac77ebc844a77fce4a1191b73d7c69353aa89134def8c3d0c2a3c77ef4e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 e7bf071c359fb4a2b5905542a78d676a958205887624bdd95de89d28635efd4d
MD5 28d8aae1080889c5cacfcc0faf78cc91
BLAKE2b-256 a021a785fc42f7467a34a521fb891d619a15d0c7030584cc235641ceebc1edad

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 58b07f1f4acb6808aedf089b640493a227c75aff5b39b01b71ddc0ce6b60eeb0
MD5 abafbd529b3991bca6409d65c223b020
BLAKE2b-256 e5c71fec633e9d5007bf0b8492b8ad2614e22aae82f5f76a4a4d8f5bc6838a3d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8af49fd06aa2dedf71be2c2f2a918fc8fc591ad159395491020d35dcadd33000
MD5 e630792c7a36dd1bf57631bfd8062dea
BLAKE2b-256 991798340d66e7e86371a772271bc6ff57bb22e18e800a216d66317d145a07d9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5b79ffc2c6dc00587601142abcfffa3d558d424638ed4ec103328999537b30f8
MD5 2bc9fdde1a1105c0ad6e144f381d4104
BLAKE2b-256 c3676ea74c32d76b894253d8e9db99b085f363f9258bd4b412136452e8f72832

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 6e58a710ac3ebbfb827f9bc6122828df5b4f029575b2529d648a873f5820e2ce
MD5 d6102627e98f7e1f48a7a82a551012c2
BLAKE2b-256 f7a5c3b8e79110270919d0fd0a1cf1da9198e43b199360473e83fdecdeee52a3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 77b53fdeeda29b84e67184471343a40376c082f633fc360dc81719ab0f1bcd1d
MD5 761a2207773278b64e2f8ffe0e2e8c0d
BLAKE2b-256 0e3ccdb3d1fea3d6bca3797ad55e2459c84a06a6b45be7ada0b7225774a4e93c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 cecad9525c1244beb8cf707948dd114e46e8a38a86d2a908a60c781bd3733eb4
MD5 6effb6ecf2277813eba99b414183dfaa
BLAKE2b-256 2660419216ef09853b1f822a933e1b692ec96bb4a61896a8de245efd0c33e146

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 594747fef16d2892f5b339afe00ceaa997107f96bc99025178e800d058bc9682
MD5 28cb2253c6ac0d8d836992ea8a32578e
BLAKE2b-256 bd27f01ccfb61ff6f22bfeaa6f35dadcce954ae7f168bb25da7e8a5ebd037f1b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 6a0907a2a6cfd0e7fc91b1847e50cbafa4dc55c66e805aa5dfb3f777bf85b1df
MD5 933c02c32c1c04a2b28277f9d992faa6
BLAKE2b-256 e4bd3248e5d8913ab2b897575c513bf23db1b1d17f8cb0609f95870bb77a65cb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9493847a87e03ce9e9222f3598807b7e94120979bd34d1d8337802f4072ed63b
MD5 e4f53cee4b732d616f6b2aa2900a866c
BLAKE2b-256 d77c61c3d059a85bb129888de47122d9662a1c4eb2f6173e9ba0c32813db3c27

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f44f7d41c6a329328c0d49a58679841db8be3fea17bb354a8d9e7c479478c65b
MD5 81a33aedebcfd2a2fd6591450e2ccfca
BLAKE2b-256 687f53d754863977e6a77540a996c2a49c42db5ad7daaa24df9279c371bb3ab7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 37cd272e8536a9562a207dde1de482f1c3f6dfbbaf72436e8bbbee3e03da24b5
MD5 597ac56b439c07cdd508873566807e56
BLAKE2b-256 f5617fc48048d0ad78f3f3a86a759030ef10f3bdefd283ca82f3d3af5b132b9e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 9e60f95a96a29c8504c44c974424bbcaa1844de446e2ae477e35fcae58c36478
MD5 2ddd504ef95ba2880e2d13d2a8bac023
BLAKE2b-256 0d3c17bf3ca6d65e46477e9b74ec56cc66f7ff32c6f0e32305d770176e5af086

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 32820cc9ef5ad563d97d2d2a6895ec61183b2a8f11b8a5491cbd5723c8b0fdb2
MD5 5945bb2c4050886d7fefd4811beba53a
BLAKE2b-256 bf38baf6a56812f73a5a004da3ce54227352ec87da9e8cd04cdacf16681d8bdc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4786dd60c4df94452c76b26e6a0dfb150f1716b6116189734ca249d2854aecc1
MD5 3304a8d0da65744bfd990c6703309a0c
BLAKE2b-256 e3b07f7a8099758f4e219e438faa160db62d988303141166e0e6a638c30f65c5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dc0a9435bf3ddfb095dda86c6ae35abbcd633e9c56c2f97cd382bcc3b95cf6b5
MD5 a2097197ccffd63a8e3b3aff2cc83bad
BLAKE2b-256 41e62adb0e83c87e7bc20b2e4b61e33a9593c13a982cc5c8d1c1f6e0e1a81e42

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c7abb5f06a3704dfb91b3f3002d68f9b31ee55797ae0c4a53d35dc4835f133c0
MD5 0404a6924719ec3328a76f1aada05f49
BLAKE2b-256 1713ebfec7fcea4e746fd89c793e1e4d22b7d8caab4162734870c6b11af11085

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7357bf9780d4e520a68426d1ca474fdb31418cec7d8aa1832ed4eea9dc0800ad
MD5 cb2577bb9863a803497e875800b062d0
BLAKE2b-256 3939df80e7296cc1a2984a038dba713d9def9ab240aee6c3412fa5d6932f23e5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 9321e1cde5042fe9a538001c0d4ec429ed8890cd8bc4031962b6d6319c5a61a8
MD5 0fef1a321f39dbd7848bc7fe85ee2d41
BLAKE2b-256 8175c41341c905a050cd24caa0630f14ab3cf533f1b4a18ce9858e96d6b4ca4b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 ed8443080f2701fc64c48ea24062dd8347f6aeb196604af955293de4faa55c8e
MD5 426017ee0531125fc731af0d9e8c1053
BLAKE2b-256 3617dea709b1e909fd386c50741f4930dd1ec7150dc1e474441fa3c98166cb7c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 937530dfbcb307dff3c6b56e29681bd124ee125ca6c04169f6b3d4e437cf565f
MD5 36a52ece7515d039fb4a547595aeedfa
BLAKE2b-256 2e0a99c85d5664241c145d86bbe01984f457d52f388d4547c00b9f7dfb6ee4af

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0f8f477c7e15e9eb870438a9fa971a51dbf51eaf80fe9ae1876f83d62ac8eb0a
MD5 522175dfe7aefcd7bc979a48f0eb7584
BLAKE2b-256 25c12d04c5f5b66a73beac75fe7b7f7fe19f0c8fb82e59fb28cca43524c1cc4c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ab099aff80b1e0e525fa16f0ed30102a08820a67aa766507e0de53051a1db23c
MD5 5a2684c3404d744e1030790df7dc99c4
BLAKE2b-256 0615b95b3520673820df71c337daa52ff1df8f99d33014d648eb4373f1672cfc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 a79c56e08b0fa41cb1bc9b2df0dba99f7e2bab95b9736ca0be3535ca08472dd8
MD5 215a79ee358340337b8f52a1d88ab968
BLAKE2b-256 7ee470118a7fcf1f9d48d02a4f7183abafd19c99e7eba706e1446c86b5fb05b3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 623466ef32a1209a136cbb31d76e2324a46be7b9f123e73953410012aa46ada2
MD5 ade6c0e96f0a07e004cb7c87a538273e
BLAKE2b-256 abde6fd350380a4ec65e8be52e3c59f15292d220a68c76c7ef9ba7416ea34a9e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 01192b8bd2247b96b885b1fae397458ba9d91a567e1519fabc45a129b3a00fc7
MD5 1a64638eb85e630c116796ee4fe7f495
BLAKE2b-256 1cc4b855eadec3c8b4f4190b9fe5278ea7120ad23c7f1c5deb4e3e666457c566

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 684d5fa446590e4e082c971ac3b32b873cbf7b3ea3104f35ffed128b6dbfdaa0
MD5 967314fbc115c57dfae95278b3a147f8
BLAKE2b-256 a9b4a552743fb36086f9126bf3119007485c6db5abb99120d4eb9419659c5df0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e2124f2b18606608a3dc5a8f456b1ef04f1b0f794c13ed973217382255b67f79
MD5 0246d71d430f893dbbc840bb54737435
BLAKE2b-256 b11cf9125f09716b66d310b869d33ef8aa25252d35fb0106d5236e43905f0a98

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7f843510c60e97a22490857da127500f27a319326220035ced600bf05d2c8982
MD5 d3a24623f3518f56d956d79fd17a8c31
BLAKE2b-256 e519f8ab8ef7dfddb585e55646e913cfb79eb4c4e914ded93e25dbca4fbe28b0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ddaa85d37375f2c6c58ff6b065db5e561fab21d92beeb6e1975805324973c9e0
MD5 23625ac63dcc352d554830391f744f17
BLAKE2b-256 f9b8fd5b181de5f4175834a1e571225ed537136bbe3ae746c7be3cb7ec8520eb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 912fc85b83fd481fd550d849895b8f66498b012574b1e349fc902dff8e8e91bc
MD5 db36e61449ea6c28fb4ec63af9084659
BLAKE2b-256 184c7dfffa1913d8df935c1c8a3263512deed7ebaafc9485c74673088993eda4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 88ae2487aff5693887581156f216cd47c3cbad569e7f71a4259885d5729e9eb8
MD5 077a8d5270058f79b83cb6429590d44a
BLAKE2b-256 57230798d623b848cc99250415490b38dbdac9a131657a419e0d34103ec0785f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 c419fbfe851ef61156f723ce478ae10a01ad0b62de123419bc6ff3214853590e
MD5 2d2fbc0292a8b5468830fa240207c96a
BLAKE2b-256 a0c159433e6ee6457dbb3dff4f1e842eaaff8ab9ef1d0e17cb8bc6244594168b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b7c9c01037bffccf4c5208042848a0c5cf865bf61fa6f46a0716f6fdbf82d564
MD5 dae1ecf8d8a292c44e6348367052dc6d
BLAKE2b-256 06113632d16623a009d6ef6ae89dd14ad3e4a3e09572589446295e66ecf15eef

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 955e9380ee74e0e896000de43eed9f7df8c9eb4efee746ca43e556affb0ee35a
MD5 07fcf00fbf617ff81c570e6bc1752428
BLAKE2b-256 a1488e2caf8441f5df03a8ab033c1b2e63e999077e00502af41137dc2cce049b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 aaa46060c98cb536c936982d988dddca50b9c2cb7702fde645f277ea2063fd11
MD5 a0e177b427272c0e0b0c92833505a261
BLAKE2b-256 3747c54fd2a818021037aae32f3450c82bc2f6911efb0c79c7677054d67d3604

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 fbc3102ff847679e9ce405426cdecd811f048bef8ba8e3b08c17e9ed637e3152
MD5 7f5529465c562fb45e5632e7bbe86554
BLAKE2b-256 0ef941de92dbb811b489b11244cbee0c841cb2cee15307907c6e570858258c16

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 f8168a158c946d5b63a3e1238f85acd6d7b34acef5c2749f0ae4c24665da336e
MD5 13a860b475f178a1ecf3083fdcd87d5d
BLAKE2b-256 88d857212767420f8cca4877fbc5ce43a7df5a12df35670ebb06f85624e20691

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2c1f19724053ee3617949825c47c139328903b935fdc451dae08a5bfe89a6db5
MD5 84eb449a367f534c76f41d53ba417a43
BLAKE2b-256 5e4bba477526144e97f82d017838c03eba98319ae6fe7019d186fcd79cebb515

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4889892b5272f88fd3d5eb49e9272e6fe402af9241ea9442ecba31eeb3d7f8e3
MD5 d4ba7f0d1cd2d00ff75002a6d82c8e9c
BLAKE2b-256 484a7a60520d38bf86e647df336ff9f84694cacfc35bee5e8d8bb6a34e86c29a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7051dbbc39eaf645606a27f622bd158b2eebc12b35ce7a175b446a8672ed82f6
MD5 a34d0ad3b0fa27b5d6afff367b0456f5
BLAKE2b-256 45e4f5712592b0973cd3e64dcae1a93ec83d94131fd937a2a022b5e879037ab2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a964332ad4d1e6e6480302feace74acc9ec8d115ba86652672a58ab431c07cfa
MD5 2f3f053981dd35a3282371b414abfcc6
BLAKE2b-256 bbf82e14ee46776abdf8712faaea22a141f7162656adef430645836e1959fc99

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.32.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.32.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 726ce843fa5c09d86a3f16ea33d3e8cea7bafb3a6d955a0cc5f723804aff787c
MD5 70b245412c13fa75868fc459b8ecd498
BLAKE2b-256 97315f2fedac32430c938ae3ab1dcf72d98e1e0db120bb074f4b762662f4c5e3

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page