Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.33.0.tar.gz (292.9 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.33.0-pp39-pypy39_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.33.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.33.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.33.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.33.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.33.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.33.0-pp38-pypy38_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.33.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.33.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.33.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.33.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.33.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.33.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.33.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.33.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.33.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.33.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.33.0-cp311-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.33.0-cp311-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.33.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.33.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.33.0-cp311-cp311-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.33.0-cp311-cp311-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.33.0-cp311-cp311-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.33.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.33.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.33.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.33.0-cp311-cp311-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.33.0-cp311-cp311-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.33.0-cp310-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.33.0-cp310-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.33.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.33.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.33.0-cp310-cp310-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.33.0-cp310-cp310-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.33.0-cp310-cp310-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.33.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.33.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.33.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.33.0-cp310-cp310-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.33.0-cp310-cp310-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.33.0-cp39-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.33.0-cp39-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.33.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.33.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.33.0-cp39-cp39-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.33.0-cp39-cp39-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.33.0-cp39-cp39-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.33.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.33.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.33.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.33.0-cp39-cp39-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.33.0-cp39-cp39-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.33.0-cp38-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.33.0-cp38-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.33.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.33.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.33.0-cp38-cp38-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.33.0-cp38-cp38-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.33.0-cp38-cp38-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.33.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.33.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.33.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.33.0-cp38-cp38-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.33.0-cp38-cp38-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.33.0-cp37-none-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.33.0-cp37-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.33.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.33.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.33.0-cp37-cp37m-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.33.0-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.33.0-cp37-cp37m-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.33.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.33.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.33.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.33.0-cp37-cp37m-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.33.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.33.0.tar.gz.

File metadata

  • Download URL: pydantic_core-0.33.0.tar.gz
  • Upload date:
  • Size: 292.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for pydantic_core-0.33.0.tar.gz
Algorithm Hash digest
SHA256 7088a915719dfc65701b75fbb342cc6278313891cdc18e8ebaa172a9094a12e3
MD5 3ff8278dc4af26a423a0e5dc328b6781
BLAKE2b-256 cd37e6b8c9406817a0ee316814b2226518dcf9c553e92565e6bdf541c29bbee6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6530a992c64eb15f8e259701a12d8b6207af7f0bc3185a5a38809211e9782ba2
MD5 ed066b635c34422a69dc6bf985268101
BLAKE2b-256 f6cb2066b3b806836b05d8a79ed13ca7126e86a8ad5cdc3494c3da0f06e8b0a0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a1c54901ce971de06b774a0261e95af36a329fe0a992ee0adf6f4eacb2a6a307
MD5 18b02dd0e8cf777d3461740c9e955725
BLAKE2b-256 447ac59335724a5fea9a84ae6ca2b59b36eef34682f24f9b49ec0bf458b1329d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 22d9b61fc0bdaf627b1a082da7a96e36a64042381ef051f4dfca325054944a84
MD5 37e62945f13e8639b7ae17813b6825fd
BLAKE2b-256 920115c9422ee37a3abdec54a78d5edb8e6678224c69c5ea3c01b1b05ad278cb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb20d72b6138fd5a4d324b29c6120cef1dc756a7b52859a98f402361fed6ee4f
MD5 1f16e5dc5b126caa4e9b614813352f9b
BLAKE2b-256 b925cf067e0041862349d22c1a3f4551c46996f30e686cf01483b046936abb10

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7ec4e53f667d9f767b7ec5b3c5812667505b844d4215083104a1ee8148ee0c24
MD5 26e12121786e1f565cac363ca586d20f
BLAKE2b-256 05db5f91239b6cdbee2ed892f904b9eaeb8362fd6c6ff0fe478823bea1f2a87b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f87e38dcdb9ca5f4ad3b372d5624346f45dff7151d79df60224f447727182326
MD5 5d8f4307a792e17390d33595b0e3f741
BLAKE2b-256 caca6f91ab0b87c0722805792c837cbd62c3865f8f228aedd3967e3ac71d068f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 9b0a6026a1413abc0a7dd4c355586b51d74d35bb0b91bf420cf705c0f742ec06
MD5 86a73766c240a8edab92da673ab6fbd3
BLAKE2b-256 f829be29174a5daf651598aad466f489134db854dc2ae8b5282a897b2bb8e43f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 36a7a3cfb65ab20b269045331a964fa5248412b204540e3ee03c5dc7c0d2a010
MD5 3749a97805d9560bf523fc6ecc3bcf9f
BLAKE2b-256 db3cf021a73c86aa862649e689a6569a879b5c56acc254f94ef86522ccf35ae3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2870bee3c72c10bba3df219ecb36347a1c98a6fad2f62e062881e1a26911ebde
MD5 ca3b64c3a669b3008df71983dd539562
BLAKE2b-256 c59004ea33566b19ec99e393b77c60c7f777546a35380edfb760f77032a4dae3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4b552ac3830601d6afcb6c06baf3ab5699ff480895e3ea5ad9ad4e00e7616b58
MD5 920cec26d7a1ae580cd2dc17c09bf9fd
BLAKE2b-256 ecf820cc47358462059c3bbe2f6c1f5c2acd8c1d1af3c3fad21300b156d17485

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3882ef168e30e8e14866eb41f0cc958448e2aa55878208aeb77c076ce800a53
MD5 bf575b8ba5f24b7452142313d64a9c7d
BLAKE2b-256 c756a19bddc1483c924617787b562b8f053f7d72b4dda56e310ecfb34734255d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4aaca7365644177660b0c20b85fdff4ad33b5463f84e6ba69a59ad6a40778663
MD5 e270e9b97d34a56ab9ec3a7b057a07d4
BLAKE2b-256 3ada8a6bcffc37315dfb6eb374bd132d3d3c754509e79f0e7a6e9516d3a5d7f4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 6abf969410e8d40368a036e9cd62944b1b1d7331e335809017b6ccc196519ae3
MD5 f844cf142cb06fc7fa5ec84b91c0ae8e
BLAKE2b-256 6fff0d389dcb212b36185d4fac17d16e6b36849cfe0f84a52a07d53ffa398d71

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 1ea7ea60ecd66304c16c4dd775f6a42fd360aa83741d483010e217bb8632eb43
MD5 642ae010820936e2a79774b9830a6230
BLAKE2b-256 7b9a76257398fbd06eb437f3132d82626c2d681a1739fd9d443ba12d5282faa2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 77c6fefe143657d9592373e15c6e5ea3cd996c26f232b0440c8516cfe208fa38
MD5 c8ff5eb9bd0ada8aff327cafdc731673
BLAKE2b-256 6f4a5e4aaf9cd1262272155362a405a54fa4082bffff82fd5404dcc97c72c614

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e7a490f24cde47880221a77b3efe46939cc596bcf9c0099aa7a6937b573895ba
MD5 b7f3ac278c16da48f3a455911d3ee0d4
BLAKE2b-256 914351f4cd8e4d7f35312aed873a0036da9202fc7849e2e4ca13e29aa2ba1c20

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a04a6cb519f6f0652982c148fec77893d8aa5f83aed6526ddb6d985e3adcf27
MD5 cdab5d86d9c778b32aa2e82eab0aea7b
BLAKE2b-256 1d72fb52f62930837d28b6b2fc2e39382a2638f8ceffc83ffe27316547609241

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b71d52917bf9442791818cc442902df271b0491df245dee93a583088bd7213ce
MD5 2ac925e0c3654ae3b98260e9384481a7
BLAKE2b-256 ddd5f9dbd5806a57d81bf56d2efeae9b3428fb6afe870580a89a19b9ae4fef00

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f485a13bfba3d45b17140c0501b9b4348354392cedba75d5cc08b8f4a647b430
MD5 64f60126f1a4a2e377cfb60a15429251
BLAKE2b-256 b1964117d14d02167ac41c977f24596fef407faca8be3f9f4790a1eb472332a5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 1056cd9106340ba64faadab19c3614859449f3dad869fda00db5f6b180c7b4bc
MD5 5082ff658fc2de8e9debf0603d998806
BLAKE2b-256 54ba463f50f8abd0d69e1263cb3ebf57d836dfab3803727b2f97e825cf235c92

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 727cabc25c75371271b39545b16fcd8a22775a496e77bcaea039a19bf121fb0a
MD5 323f3fd5000970296dd0b7a8fc21510f
BLAKE2b-256 c443540ee5ed2cd8b9e42a3fd8c6309afa72627e6ee96b55f67eb578205010ae

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 3b1bbd752a1c2af801108bbda15b31796fe482ed294aa6ea575e25457820d89e
MD5 5d26d6a8a36babcc7e63c14878c4c09e
BLAKE2b-256 f245d39e58f2153d5da08d34c69714401e2b79cf523a88a1b35990c9d8127c44

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 af0f00bbc8018a3adfa85291623bb716a834cd63270c3ae1fa534c6898c297a4
MD5 49a5544012e26cd8266472ccb976e8ef
BLAKE2b-256 15dfae4e518c8043c98213cf8025c8ef98743fe422a59e1f160241eda50b217c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d1cf52ed9c652ae594bd61bb1e83de28ee54b80a042fe426ea809afb0a54e2f6
MD5 695dd582d08980cc1644fc3d2827a736
BLAKE2b-256 3303133c5eb88c1d138803bb6e5eb656d4854f8080b208dccc6022f19ac82080

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 aa47e8ad2243bb94c063f41c38c4ad1a2aaa24f2028d311fa39475d88d70b561
MD5 714c521c8875292b41ac05cd4ec6d285
BLAKE2b-256 f8d00d8b1e7165bc2d6ec0cea3b7c00bbb70118e2ab5288e89bc18dd3b17a885

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 95dcde407bf54d8fd7f660c1713139269cb161d7dbb9ab8b0a4b69a285e8d249
MD5 65e96b302450353c1ea6b25fdd4924ec
BLAKE2b-256 d3b901db736f179a4a08657cc0ec8214d397a995466f49f9eee55935ff5f98ac

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 d504ca1583a42320574dd95e67533d4bcbca689d8082a998c188bfbb3856a3c1
MD5 66ae54c0b6be6a8934b9711ac5dc4426
BLAKE2b-256 f3df5d29cf5ff493c3c17921c5c65545cc16e68a2552e5c1d753b7209374d729

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd805d03206aa4273d5703c7e5791e5dff926676dc55e4a6e1b04d77abab91fd
MD5 80c83a07844b62c6619fdd3cf4c0bc00
BLAKE2b-256 d67ef6f0dad280d1554edc7a7dfafa99a1e30e9f78f5407d1e9cf18526273c22

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 30ababc250ef494a1b575565823838bce3ee1a8ed6ee10815672e8070273851c
MD5 b2bc546ad639690314ecb7b33b74f5bd
BLAKE2b-256 b476ecc7a66976ba3033eb088d5ec6a50ecef7a1e77b4af033d0ee12316f8316

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 697dda71ac65c0088f2b60636593dbb35b4668402c3b58e714e1c7a42ee09718
MD5 897e4b7163af5f675d0da201e58ae9c9
BLAKE2b-256 87061521cade36ab83c70ff590e6d6ab5727ba16ed191944b462891e1d5ec8cc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b853e8e16fb4e8370723b4c4b00b91e71e1fcd690c8b6d795544890e890a0c3d
MD5 20f1510906c68c3797a12a0862f9040a
BLAKE2b-256 c8e63ff8aa5fdf8d10cf3deb7301ba7492d5e127c8f8cc6c5f349cbe112aae4d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 4641472b7bf7fffd265b248073d746b5e8d9756aa37fa24a7314176268243836
MD5 f5272f4ebfcb0315a96e56edafd76557
BLAKE2b-256 fc7bfe7d3914d31a2c4a7f230a32fb5b308607ba7ed9c32d99a1697f55ea76d5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 1edcd2ac14e425d16c25847372002487890520727a176bb7f0dc7720c3e55874
MD5 09118500b00474b1969b860591f4bebf
BLAKE2b-256 48d4ffc211b14bfe6df8c763599eabb06f843e08bf8b63f35003d6ee65da23a7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 78114d90a08d8c431b59431c255645fd2dd9cb9944e297ce74f5c8053e8e6e50
MD5 fa72917c48e33eb37b92b223658b603a
BLAKE2b-256 ea1684e8f9223c22328c1b220df56227e027a17221458fa1cc35399a642f1862

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 89a1a4ac0ff6c3ff1030e54c74defcc10d72afb10e6131d738f5902110cd4515
MD5 d6827f83d711b62c32723bf81923d77d
BLAKE2b-256 157dda36fb443c6df2082544c7b12f1f23332dd622dfb22e0d8ed332958927bb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b1595a258cfb9ed981592d8a54db145e50d695ad3491b6c45f2de26e40ac5ed4
MD5 00ae2cfcd2344466bc7e69dd2c7e558a
BLAKE2b-256 e0d1745abb14eb329c56bd5c95af1ff4d7fb4821c99c646d6e703b1be75557a4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 354de62fb4eaa900d8e33b9b216e9b375b45cb996f6340ba6475278ec1beef44
MD5 dee2aee24cc39b590a38e9b4b539818b
BLAKE2b-256 3e25fc60530ed16f06f561fdc7bbd4b1c14c8f121b3d1c08786f59f0f7b4dfaa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 ab8c3e41a51d0b32128ee41fc9d9dbd0df44fe6474c07ecda82cfe90af061d1b
MD5 d410ebe1af5d189a93f7c43b79bea26c
BLAKE2b-256 434471cd23e37511d51d05918e5a90b14f8c67b601e89deca8dfa3fb2a9666d0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 53cb44d177c2d7648899ee07fa45a37e71e910fc1bfb6d6a1c50d03fcfc8d158
MD5 780d22d6d8432428f3c5bd76f075bea3
BLAKE2b-256 f9523f6823b0885c3364a54e304476d03c1105bb3b6a39a149de14b3b762009b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bff1c0652fdf727239c3d50f25549a32a64407870129083303b9f81c9d204e26
MD5 2845734c7366e86b81713b559edc181a
BLAKE2b-256 51c6475e2914373e10e2fe0e981017576041002f385cea0d160ef1934a173cd2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2d48900d7a3da469844b0f19eeb6239c4983c85635817310f4e929b9f22b1834
MD5 f325f3905dcda98bc362e19d87bfc276
BLAKE2b-256 19068f4ed9f25326eaf71c944fb3f052f6e5c61e81f86755aadd818820ca742a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 10ce6214d54aaf5ea694b463f977198c64f8d50a54ae30a59ad474d8834088c1
MD5 526237bbf5654cb78382086b9ae6dafe
BLAKE2b-256 dd1bc10366a1d05c21998791d91ffbe956b8eebb26d348c5e990447e0e22e501

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5b0fe7217253af3924bb7762abd5d2fbcd08b02c4e2fab1c7a04c4000267ffeb
MD5 49ce7ff87c40341a479b7a4d491bfe36
BLAKE2b-256 feb52642c8744be04b697faa44bbb9a10a9422a8ac965ddb6e69aa5935ac1dfa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d788db896631cca0c740a84b3bce9d32e1ac6c65c16f1ccb8f4fd46658c2c624
MD5 a824081cab34148bcb699917b20767a7
BLAKE2b-256 8d2065dae91e10c2faefb311c227e8e202e280968e9c14918443823f6f4a83a4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 24c1b77f409f025b83510785eab8c821b494872319c299a62049cf7ca227d32f
MD5 6d54e5aa4e0acfd27bc87673541f7e13
BLAKE2b-256 4f822187d2d3e1776cf631279668fd82d13b380253c0afde018b0746ccc17e01

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 aff8deefe1090a3be9be9b4552e5bc1936db872804514423de9449181b26176d
MD5 5e4fc3b4ea9ef4aa54c4b8ea48f404c2
BLAKE2b-256 8a97b001377f29afa8f7ffd1263517f152fc1f6b92572dc04d84ca3ff27ec21e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ccf4ba8785cba71a678718736d404829b80f27641873e34710efea16287df979
MD5 a4338a37fc2146e5ac49c7fd9f81d54d
BLAKE2b-256 0fbe038904ea0a0a77d694422c2a7aeec6b626430e21e8e5ddf3dafb11401ead

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 efb3774ed2663dbd790ced6a37f0057cbd1f24a5e59b955eda2723bfd86e69ca
MD5 ac6c954cacb73c69ad228dc244f37d87
BLAKE2b-256 310de49c5cccc4380fb28295d4af1e7d34f94235528a0c1c758bd668db9543d9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 aa715c75885f46ce9870585dca8e36ffa30407e295ea8a691b1ea794181dc863
MD5 78434d812e7797e862e4a7ecc9fd4554
BLAKE2b-256 0b6c0f832eb5f8f956a0c63892cda5bbb2bb8ca8e56ba0a420465ab0fedfa41b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 50ca2c3e7377d50bffe7fa1396fbc231abeae0ce18e6d0ae17468cab0b09b1d2
MD5 0c67d77894da7c41d9ecc88986c2318a
BLAKE2b-256 c8376672fff2a082417f7d94da7206f27d306cef4b1675fd684c46c0d2d0bcb1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 bc622212443e0c10c4aaac6a2aa547b8310a7a603e66ff654cc2fd24260c392a
MD5 6b133de53f3d61a9d8b1773689b04133
BLAKE2b-256 294e6ffb0736b3b265c7693e5f925d30e501af7334ff4c0a5b9bef9e73809a4f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69460dfb536a1b4722dedd25bdcf6facf1727e8d52089ae80aa61f10f18ad5bd
MD5 899be08a13fb728acad18b08ef090461
BLAKE2b-256 b63b8cae28998556df91f2735aefe0f77fbbf8b33f28aa48c145388ba5db85ce

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 adeb515d37be20bfd41a28763ee5cf344428b29395bb48e625bbd6d11e93adef
MD5 ca838a36082268ebf112c15b4b18d231
BLAKE2b-256 bcd2d7f9742bfdffd45e84e4eb63c2c4a090444de3920b6a5ce4b7d0834b2975

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 1e619063d3ed67c0273926d49e14e814e318aaba228b7b87876187739be2588c
MD5 c8b9d4889c585440d08ff96a74c4152d
BLAKE2b-256 3d942dca9cb49bbcd01282013eb9f2d0e655495abd9eeaf078ef4e3245498d59

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b03786efeff786fc9d1bd4648b1771516251c5b3464108d06fa0ec28b81769dd
MD5 8af655be7962b23b56d753bc2769d5a5
BLAKE2b-256 6c67d505bcd29cbb866b9b5e06e1d774d0f04b089f7b3a714521a1b0f3bba562

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 03b593af4a91dbae8ff33379c681733d819f7a203d400668f53738b5e9943063
MD5 a9927b1f66714b5a925d4ef0c0306a8c
BLAKE2b-256 899eba2f9050146554e3fee3dc4e9b5e64c17000d2542092af756f0c9d1f5fc7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 27ff3637bc8d31ddc6bbe8b6b0a8b5b3db2020d68db72001f39712a525e5c0d4
MD5 25db2299412c70a7b4b39ffbe16cca13
BLAKE2b-256 0a79945c0d72a61daf25ad63d273445854c8264c62b77edfe27d4e07735326d3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 df68ea803fd0de387c49b42ecd4da2fdb31b3744f1b645f27f589ca0602a1668
MD5 7951acc97b7f1a958ecc0d5d29b58f15
BLAKE2b-256 50c8146226b7dc69a890ac174a14c5d31887a98c8ff89fb5d9ee94c3085ea8e4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2b4b508af1f610c5aa784431a3cf477bbb52efdbf27816f4a8b45863efee1b3d
MD5 cd6e3e54ed49a280f499553d8428dc32
BLAKE2b-256 34da18f274cf41f9eeb4e5441c9ad664e28a91f5e1c407c8f66ce0e3f211dc71

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 099d9f784d75cd7fca24db036432cf5d29e47d6a8b4633ca5e67f5aef47797e6
MD5 fce7b8ffb8700bbb73e94ea86275a529
BLAKE2b-256 3545c9e774a47c295c7ca2ad00fdea312b7303de55f6709932864db74be4bd6d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 ea24591b7bdb1e488918b31412a54aec20e4bb38104158d84179fe2f63671697
MD5 ba11acc2f1cc41615ab9c2ca1063ebfb
BLAKE2b-256 402ba10bcb6480c80c72faf36ba629412c54cb7e27668e56148ea560dbcc23a6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 7a991b7171c659889fd8ae4389b6bd789d8f8c8e56eb83b20e6f8e846087168c
MD5 fcac349531bf6a4e338ab05d0de8f365
BLAKE2b-256 f34d6d870db781c690b30e845161ef8fabb9a22ce81f79bc1f7b4069f07f3319

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 2179b6aea2cd85333ca4cfd04472ca2258eb80830a97985fe6e37923fca87768
MD5 76670a8034e2bd04b65ff6ec48aa82f5
BLAKE2b-256 d3119d804adf3d2d15f0e317ded06ba3b7b2dc81e7cd7beb3b0d04147e0c6f71

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a92587b4389ccf47b4af8ad032a0545f699db9c5ece8cd75a6d6e4a55343528
MD5 53ab92b2ec530217fe4e5c84ba390de9
BLAKE2b-256 41505278ff8ae3dcc7902bed0b5c4e67110e271e478ee4100c340ffb1b33d654

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0e344d9d273a8093abcaf24344cf9ea82d3b276dd15968211d951ab1ee717d71
MD5 fa8b1739846e1afe5b37a87c3b245a3a
BLAKE2b-256 2fbdcc5d535f4d4a6c6bcb443316ea059ecaca2de420159b7dc7ed6bc2936f50

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e9bc7aa471f639b283e9cf71df05dc0b13ef050e15d7c47df9973836d9b2c537
MD5 bb8a9d0c257cc6ccf50d6025e1a96b2d
BLAKE2b-256 6c370331cf6a967aa0d92e45ec6992b3fb77cfb0de8195789d5f540ff058ce24

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e786f9639aa68ee71a859e7785ba859654291fb2e23d4fcf34418b33e4334673
MD5 6530ad390cec2a4f96372563aeb997df
BLAKE2b-256 7f7b9f8dec09fa9525299bbc5165c7ec26194a1c3a8e9a195b54c370aba289bb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 51c9d13916cec52402c696f581f71b62517f80891373a1b6ded4bb5ea0b6a86c
MD5 ad251bd9ba0955ab70719d1262365067
BLAKE2b-256 0aac08c53d455151c16b1ea92eaca383adb4d60da292b5c62a2fce1885420ad6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 c384fe99e1fef70a0ca4dcc0b9a5bbbee84ab53ec4dfa56b3d9294f39c28ba83
MD5 c25b12aa1fb285dbaa76f3d5fd6c59a9
BLAKE2b-256 d495eafb571dd3be2a355f313f6d4d100a90d0bf1e9f86cf83f2671fced0d451

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 6f9c0b68dd378369a744bff685e3a7f2d91cf297c0ab20e0a647baeb904e6167
MD5 e9c764e38cfe95fb685bcd4a053d6621
BLAKE2b-256 63e213f92ef2b4aebcb04af349791b3ee76209ad7f2f237f979132697509c5bb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 525621fb3b984b33834e7bc15baddff6e9d5eb4d8d728d3b8a526a8c58e54d76
MD5 edc2d0c5bffb245df377c92e3f84f045
BLAKE2b-256 67c49251a529873815999dd99e0564146c7bdd646984a9c957be653ef5ca8b83

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1788d54d2fb1279951a58fea1166caf598807109fc39522ac959fe3054c310b0
MD5 ed103f851cd0533bf5b8aa25d6f66ecb
BLAKE2b-256 27b8c01cedd8c2150d6dee0211c4a3adfaf166e13f26524389043b943e064cc8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 e6a708dcfe0fac7b08459e1c041bcb2b291532aff302da4e81d1f72f8683edf4
MD5 e54a6dfec630fbdb64a420448ce1290a
BLAKE2b-256 73a0df41077b42ec3052279b6935b07972485d603b27ff470abdf959b2214cc1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 048048123727a945b7268d0c2ceeaebff806bc883a3907979739ffd570d598bf
MD5 ba982355abf1d1a9fb4820acbc755115
BLAKE2b-256 491bb9f6ff1d17a27f64b28bfd89a138299f24394cbfa1dd47a567dc3b3b04d8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 b28b450aea869fbb818f63137de198207e9468d28edbbc7d63becc2b7024659c
MD5 37a68c1be7b74a636aa50f86bd4c59cc
BLAKE2b-256 593c4e2ac2d3949b719add11b24ac8b00fb3ba358d7f846d8da7f0deed946e34

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 539387cca4524a4f16642d7825ed73bed725b460ffbc69d8f80c84023bca47be
MD5 c8ef0082a73ef9261825c89f53a4550e
BLAKE2b-256 f2a66fa1b688d63c26754f86cb5bd3859ff51ced6e5073af90278952a13ce78c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ecb8a4c385726261cfb4c7d542a6dfca1f2dd64a40c898a365e64a2e38048b36
MD5 aeb72b69d43c75b8f70c5e5091f18a63
BLAKE2b-256 841518ee15efe6cc42f3b9351e9c1791bddacc67a5127ccbca79838f16a639b7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9a8e551fdeb8a8f0b3d5de16412830ebc7742dce4c58f91b841d4ca005806697
MD5 c69c590d23ce4b20a6aceb36274572ff
BLAKE2b-256 aed5838ecb6f620147e1495cd05bf7ea497a762b3ff6a396322dc3f54ef1ca0e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 78e6bbd8b530d00e9103cf1876d9735a4fe6542c4adc3cdf4757943668c15bbe
MD5 dc2552f2a31ec3f790be7bd27e99f14a
BLAKE2b-256 04530d64cfa066484931c4a965db384bb50d88f461b7520d277b229c78feb904

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.33.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.33.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d0ac2346e18dd8537a1d1f5deda79cbc0546178128f33591478004eb076e022a
MD5 52a572d4d6124a093b9fe5c391c5f84f
BLAKE2b-256 656d5575301958a20498826f22d0bbde64083c3a6c49016ebee5fab1f663d9c8

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page