Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.36.0.tar.gz (300.7 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.36.0-pp39-pypy39_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.36.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.36.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.36.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.36.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.36.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.36.0-pp38-pypy38_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.36.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.36.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.36.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.36.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.36.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.36.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.36.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.36.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.36.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.36.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.36.0-cp311-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.36.0-cp311-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.36.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.36.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.36.0-cp311-cp311-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.36.0-cp311-cp311-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.36.0-cp311-cp311-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.36.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.36.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.36.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.36.0-cp311-cp311-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.36.0-cp311-cp311-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.36.0-cp310-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.36.0-cp310-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.36.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.36.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.36.0-cp310-cp310-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.36.0-cp310-cp310-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.36.0-cp310-cp310-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.36.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.36.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.36.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.36.0-cp310-cp310-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.36.0-cp310-cp310-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.36.0-cp39-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.36.0-cp39-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.36.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.36.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.36.0-cp39-cp39-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.36.0-cp39-cp39-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.36.0-cp39-cp39-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.36.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.36.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.36.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.36.0-cp39-cp39-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.36.0-cp39-cp39-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.36.0-cp38-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.36.0-cp38-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.36.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.36.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.36.0-cp38-cp38-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.36.0-cp38-cp38-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.36.0-cp38-cp38-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.36.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.36.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.36.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.36.0-cp38-cp38-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.36.0-cp38-cp38-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.36.0-cp37-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.36.0-cp37-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.36.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.36.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.36.0-cp37-cp37m-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.36.0-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.36.0-cp37-cp37m-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.36.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.36.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.36.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.36.0-cp37-cp37m-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.36.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.36.0.tar.gz.

File metadata

  • Download URL: pydantic_core-0.36.0.tar.gz
  • Upload date:
  • Size: 300.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for pydantic_core-0.36.0.tar.gz
Algorithm Hash digest
SHA256 7689b64f3388452910584395b5dcf4930d5fa669cff73e8bd737a5250f429e79
MD5 b4928e24f9f1efe66ef0f4a8335e94d1
BLAKE2b-256 30d8e530811b64de2e17066777af179e03d70a9458b1d5bf2fa5515226e8bc3e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6992079b19d1f0d675839385414f312e374dce49b52e3cbb97c52d5a379ba9cd
MD5 2c92fbcbc40a1e38253525bd8e63a293
BLAKE2b-256 53ce8c241b1a7443c7bc833f753256689a43369fbfd4bc319a066f870325cbc4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 42f572e389953037256d29d56bf454651a575ae0062a985f6b23ab18c7e453c4
MD5 fb0161c6b1bd7a95097a9084025e1fd6
BLAKE2b-256 de2c73c43d2280e99e275d83abfe5ebe7fe480683622b83a7f2fccebbad5914d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9027715a636b650dc53d7bb0b4b42884fab642acf1902c41e0a4e5ba95d47849
MD5 20df9a7631dd989c6e3bf443fcf2189c
BLAKE2b-256 d23888f3be4bf8d282733dc73c8037e45acaed9e2133e00f557a82a2c0573d63

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4d486ab46718e99265828d1269b0547cbd2ac46bc1b8678282d0a8f8fd0e983c
MD5 61e15dc5677f7ad59b6882c539e1ce36
BLAKE2b-256 955c5fcb84d35457996af36dda4b5dcc6d5496c74b1be77a96b3450485976806

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ee2ba7b332785f47bad7aec6b92365df64f43d57dccccd353a4aadeba23ae38b
MD5 4541df6433f32f56c41b69b8702c1d46
BLAKE2b-256 fe004e1f9fff858070e0297ebaccc7109a901199151dafd9b5cdab9b4b404dda

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 56c763c01f57e16e30b7ced21390183826eb36eaf84501f6b7ca154712cd9e48
MD5 a9ed0cbed9818d4611e110b9ebb8d11e
BLAKE2b-256 63d9e34ea39dfb24ab43887dbb31af3286868ebd141b69a76590bcc1f73e72be

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 0989873f63a97829edace952befe390c4de2e0b76808e50be76c23581895d6e1
MD5 f7e9cd40083dd5ee29f0b98b1ba1fc4f
BLAKE2b-256 11cea581ad37aabfd4b9f1f5ff5fdb98e07289b41ce21c4aae624dca8f3b0514

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 627021724719fbc3f60525bfd5e0a0b6866f1ccf0605b930496d5e0a4823ab42
MD5 9f289e946d68fc843c22df6d5542e36f
BLAKE2b-256 1b9c332be33c99bdfee951b4f75b823499847af76ddb8a2ed0438381bc05cd33

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e8f52603d6a609856998812eefb57009ebeaa0f2acb65ad5852eb662954fd960
MD5 1f2ac331cf4e17df603d38b8c6af8239
BLAKE2b-256 36d2e4e9001b11f9ddc35c8804138a2df01fb8fea3d12be9bdf90caae0abd9d4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 71968f1396b554efcfaffac6ec6ced8abb6117918abd810db3fac7a0e0c59e9d
MD5 191e4789d2e1aa9127086a6dd025dbf8
BLAKE2b-256 e9d19fba51bf17f6621a77b3620bc237b6a0b713498550d9787b3179514e5a71

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b6aa7c6be9bba174390489868e5a23259c3b59864496f5f8e79073f285ffc776
MD5 10c49b264349bcea0e51158ebab13160
BLAKE2b-256 5e6574dd9272048a8b108cd92e73e7eb7012cda2adb475ff7d6073a92aff6f43

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c2be350e0ac5d0d244400cef67c0e2b14b8d14ca451de5d36e090383be299e4d
MD5 5ec3dbc9a2ebf02924f6247599d47cac
BLAKE2b-256 051e29522f1ab990db1a7af21a71a2d3e15c4ff93aa504ac0da47b639807163d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4a07fb1d5eecb7212a865b574f596e6ad9835292ce00d73b4f9dccc04de0c767
MD5 5a615c0b0d4299207d2827ebb77564bb
BLAKE2b-256 d9023071658ebc24f98bb89ecd5dc8e900d2b09bf8438f70ce931bc0ccbce34d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 bca0f2336dd6a0a51f3626b77a9acc1c7af47d10a8386c560ce0832507a17aa4
MD5 8661a77495401b77d1fcbc682868e6dc
BLAKE2b-256 d10809c5aa2ffceb356cc66fcea14e6e7f5cb554c25cf1d92761e7b3db1608a6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b0ec564d1379521d47010ada5311f5e4d06ec424497b3e8d544f443872715996
MD5 d35f72637a320fd335e26ce067d99c54
BLAKE2b-256 f4697603049f47c3caad75a86a8363695749a1a91d86c723865454b4054f4654

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9692f0e0ec67920a8a832c7dd77c5dd8e6385a1f75e7085d3081f04651eeda7f
MD5 6b045fb312e065c223d9e840806cd538
BLAKE2b-256 88e98b8d0fa92b4e075fee1ebe1bbda93c244c6817d470883902ba6e7cbbbb32

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf0e089edbae908604ea7d1d5192a95e098660d398cb8318a3c4f706a5e7046e
MD5 f03789b4133d58366f3255702d3d3ef8
BLAKE2b-256 3cfd513bcfd39a78035d54b110d36d0831579777ef4d533196d9d680188ef6d6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ea83928a2fb3212864c57405cb25c3c6290b5427c74aa2fdbca9bdd7d377fe44
MD5 5940128d608a88f7d5cc132fa49f0b44
BLAKE2b-256 5d025839f37beaf276ac272517da373d5d3761ee41d9edc6eb8aa17be8916dc1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b971c1c3a234750dee65f05fc4fe435edd77c4beae7ca916fe634d28e44af61f
MD5 3faa0a29bb8d5c9dd4f9173fe74916be
BLAKE2b-256 1a39677ba841e2b02c2e06ccb13bbecec33a8da774efcdabc0a0518c823db73f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 cdd1b4e07c0e4216b7253c009f6c33519a88482250d42c9b6faec71256eb84ec
MD5 1eb97ebc54a26ebb667687cf5500751a
BLAKE2b-256 d01a9b222df3966577cdc76ebb189d2c6b0c34e453b057d928205381406ec364

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 49b73d91835497bf90429f9fa84adb5f2baa746f62024f8dfc87add6c18c9520
MD5 04510035a8be3c506e4f8f3b21a13d51
BLAKE2b-256 be8e84e0910a7a4f565ac5cf7fe4c51ce06ece1ad63b7131f2498d49508f0b18

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 ea3d3b7f85e4c8feeaeca9e2f5bbbde6a8aa0aa44ab025bf9553b5e8a8f74794
MD5 c594266b9a4c8ee4177602b07c529161
BLAKE2b-256 ae5e6bad24c2674c0d1c1e80aa4da909dade1a80022c30bf978866f77706cf60

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 edd3ecc8b5f4c375ca825f87d8531e64afc8e0bfd7a81d5b197a2bba46b2ed43
MD5 2390324379392fb8d61cd5bb6471d004
BLAKE2b-256 7639f1db1bd229331c9fee02f0179f5e1f8f0c7bb46467853460ba3d275d0c17

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 074fd05472d61b94bae81d2657a7345a63fbdb49d1a4c32df43df0dce252b6fc
MD5 08e60e54c836f603a3721db7ef26bc57
BLAKE2b-256 7da30e63117163d4dcd25cf07128f971377468596fe3daf38ef3a689d02057f3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 f63f098cb3dd4d0cba60d9c8ca95c3ca1cb47772a1a7f02ef95ddc944c21771f
MD5 ee2ed4946d7aabaa81b2e28467251a29
BLAKE2b-256 3f8886dc8b45342dbc9f1178fc600fcc63551339eaa42c41d8ed8a106e678983

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 93cd6519f2ba916cffeebf65b9c82481b34cb98b00f0babed4c4aaa47a1878f5
MD5 ab9bde4876e83395d190e68e0b5ccddf
BLAKE2b-256 b5565c466d7964268235b6e75050541477ced1ac2ce4f75d7a37e56f6895eba4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 8556624ea8638efc8e26d19b2d6a5efde09b2a385f577c0b4bd2873d4a6b1e5e
MD5 167b2d2f35edf90b50753509b14e7f89
BLAKE2b-256 8634f4b1df599e7b9e5f9e52e7c8b352df9179342d9e53dbcb91e862eb0ef16b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ffd8984294cba017491bdd0a45ccebc53ecd7080e8bb3fd4bf37ea0c348a9d38
MD5 d5779806daf121a96390e6cafe3a458f
BLAKE2b-256 4344c881002c0b06c9d14ba6aa674d7eba86f4861d7ce37ada94feedff66c750

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 65be5522d21acc0d48fe89c7e773949de6f9d2309779f22b771515e65ca07900
MD5 8025a96f9d464b0905144909f2b1bb40
BLAKE2b-256 c8a34aca9f1e83405c73dddd2a48d3042fc944c23d294a65fe8993ff2bda778e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 39ed8922dd1ed9c1d09c583dd69b6480cf115df6536adaa6457219ff01fb169b
MD5 d05736771d7e3787283eebfd68c09a9b
BLAKE2b-256 3d6cfd223be245bce97c03e9721ae3cfa09842fb7a56fae3db2b70e7ffb9b9c4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 866321547b8f18ace6a25948ddfd99d44c84128c821c87bddb30a3d7990ad88c
MD5 18a6b53d7d8f416660ab350952469c43
BLAKE2b-256 0b27ddc0ff32bc8359651875ec9eecfef045339a5ef58e9adb8797e6a9ed3e3d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 9d5ac6524650255bb9e08e882f224d6f0fcab65a2c2ae26672da30b8b8ab816b
MD5 3da526c6c124d33165e6c972ef8ffaca
BLAKE2b-256 b7a715cc365583a0675f42b48455aaf887f0da3eb2c9248ea7ad17debbda0767

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 898b77309ac55f6eb8df8310a7c16a83831c55361fd52833ea6845b9219c542a
MD5 2b31500820724aee7a1621dc23f788b0
BLAKE2b-256 c383267feefbddf94686750c199546a88f1c92677f932c79591ed411c4fdb702

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 86c7a6acb6c163b023f7a527b4a7a443e4c00854f6c6a21dd5a6246cc74fe675
MD5 41a758e5fc4f8ed07671c48f91e2cff2
BLAKE2b-256 0901f416edb735db1d03d2cfc1d198efdc52c3812b2b23d64176fbb9f5e6068a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2443e083442f9ffe543679e6d815c1d57b8b7fe6d455b1a20b7df48400ddba57
MD5 246d79c3c05f28b3d2ffaee8c90a1c1f
BLAKE2b-256 4f1266313276b7890c78bd42081d5e406fdedb7bc593cce6dcf5283580876ade

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 003d6daec30c60d94ca1f39d3326b7a56c8f8471d977c09ea8b39f321492691f
MD5 fb743e17cf554892965fadcf0f7af3dc
BLAKE2b-256 6efc37b0470bf5f6d05a97a5b8871804a72fc500ac4f74a24f7b7489e4b43b4d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 5f3e012f635f07db3c7b935b383022b9f6313a6d75ca9090307249798f298dcf
MD5 04d49ac2c8aa2ac38f4039b1b1ee43a1
BLAKE2b-256 9b169f8e0a4160678b121880f2f855b8e1e32ceb2eca43e365965fb73e407a8a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 40ea90e6e2bc394396b81759f03a62444254728bb8acb30031e8da6504db22c9
MD5 f231446d295e86632f1a853299474a22
BLAKE2b-256 25fe7571d8e2ccc4ee49d1becbd94ce1a5ae194354cc9ea1ff18abbf5dc79412

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 78274eb97cb0e2995813badf75d24211f324d455c92562c0e0691cb677ef95ec
MD5 3e0089787e3dd9f2a97259298e21ae0c
BLAKE2b-256 e71b44d8acd64c30aef8b1517cfd157099d26a3f4a6c0d69cb2f60ae69996f4c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2b20eff83b9d91c17099b5c8af16df1e288779949b87e9d26a078471d9f8431
MD5 cb7062e9f06d1f8def1ac4020b7cc41f
BLAKE2b-256 aa23e33414d93fe27660a6d424c5deb30b568e189c9749eb5fc503e5a598dc56

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0dab2e829c2390ded4460431d0c7674f07118c106741a76ade209638771d7e73
MD5 f17ca45ea1c7311eab80653ee3a91520
BLAKE2b-256 57c3be244c8dbfe59249e0d8dea3db6a20bc55cc9c774c5cbf15a98f7868f90b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9b94a350b9bf0d2d288b44c7fa60c6f26b6316681bb53c142ac54c7dcda269b9
MD5 a5d5f378e4f121116975ff8b9faf9a94
BLAKE2b-256 cfe99c6a85afd23ea107438651686f286947c888a3d6f947acabba129adcb3a4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 91b7bd1bfad6537ed91169129d98a22b936882d1b56ed16d9173645b0255204c
MD5 cde5c2fe4d75c7207f7a5ea7a321a6a2
BLAKE2b-256 6326ca0e2780221983b527317716a0ae4ee7dca0c6653bfef271dd285afc09a8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a6aec378868e1b2805d76ee423bf07c1f2d6276ecca20091f72b06fa4493433c
MD5 caabe61cd33feaacc651f7c6e2ffbda2
BLAKE2b-256 cb90c65cf63bff61fcb867bfdca029944e5839b554c4ae2879a57eb848c4004b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 5fa5f90c4bc453cec7195c1bc21c5eee27e4c5d84d802924cf3a11766af8b32f
MD5 ead92857801d4da869c1ad66e951e47d
BLAKE2b-256 8e01ea3520ce3dce10d7ba8b292a05434b84de2f40e5d1b0657069d9c51baab3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 f66ab95794496c99330c8d8b12d7461a6301c651723731d3ccaadd3fdc9211b9
MD5 0e8b4cade599a7ed31f77a1bb89717bb
BLAKE2b-256 5737ab4be65aeaaa5cf0077efb0126e4014dd28322651c28688f3ea13b1e4748

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3e281a99b40f928bba0f8c713f98942b5dfd8744ae03e04a86fdc747d6695b09
MD5 815dc89061a8f36a2ca478961b17213b
BLAKE2b-256 932c278a2dc7a64ad9e04742a545e839cb582c2eeca2f2d71844d6d1741412d7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8ca6a91162e9ca3af144803c947f3a923ca9ca4251f7156491244893a05d3c2a
MD5 ca630427dce2f27ca7259aae3b6415e6
BLAKE2b-256 827d295d490b65c4799d6703c02ac32f4316c5f110b3a558bfcb7053eba8955d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 b2ab75cbadac2feb52cbb953c1dfd25b723f31339f9ceb6215380f4327ef39b3
MD5 f87099228df441cb990dd10b202a64a5
BLAKE2b-256 3a5d7e06e165a26e15b804078b9512e57d1b6506060309356e8a5b697fbc4e2c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 5d0f4d2876e9605e7d0dfe5dc0fb6f01064746974099536b2567dfa9ef6306f0
MD5 9179a9617bdb6582c5c0d8f4ccd6aab7
BLAKE2b-256 6cc766a28ebaf26e3dfd5f3ee2cbd52c067f75e8241249f2334a2b4d80423ff5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 d0bce27310bffe4a7b68e67b1d9f31ae146e2e9113833c240f1dbe1b7c0e2295
MD5 f0b42f3de9be414df7dba4228b2baef7
BLAKE2b-256 62d4d48aa4be0c46395a86d8c25a47f8d3a1fb6c59d63000def2689b8687cc67

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 424088d4ab054f22d0b619bf49ae7bf35abdfbeb03ac2340b037900734551d53
MD5 760003f77ef7146276198f4695e91eac
BLAKE2b-256 f8d7642f1446aaf2b61f36717e391a150f8c8b8189f42bd928c92cd7c9978fe7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ff928bb2f0d8279b7efd131499f37d5a7feaffc2d458cf8c0747af1e9b5ad347
MD5 3911d473174258f11baec8fb300273a1
BLAKE2b-256 4ed98a7e4ebd2453d7ca46bb89acc6ce051fdf40607c158f2317658663c66648

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 0e230312744b714f46ab9bb14d9967925af348e629f071a8846176d38947d014
MD5 a38c7415401a4a86ea91c9866c4bb3a6
BLAKE2b-256 ef51a45cd6ea6527505ddbd6b4a27b94fd7e9757ea72ef603204c59c613554ca

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 65d386065b0244c46f33ed689da2b3df79696e70cd6dfb3433982afe4e05d1ae
MD5 2e085191aab014c8d8fe39eef2901a7b
BLAKE2b-256 e688308e73f5a7c98c42ac07fd6660ea34537f6d3dd9a3115888e099a05a31b1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 0512a7b9765bd4eba3d5507a1b7f072475f05af2b781c9cad7c3d25225a35722
MD5 ef310da0505c2805623843eed0786ff0
BLAKE2b-256 e29e22399ba0f01e7e41aeb0baccf38d84bb7db79af4e66658eb765a3fddeeb8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 d5e2ee6689398f20e766657c76ff369b637b060301b2f0b3ea1ff2e83d7da329
MD5 4649eebde0df065d44b51cd1b5755140
BLAKE2b-256 d3254d0a8204c1b17e5cdf2f7c3fec8f1aa638b668b9b8c7d0c63ab9f14669ab

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 82b36054c32f7c65ce526ece01dc154370e382351ddaa8c6658e0b28e8ba3cde
MD5 78c1e05e38f13fc1f8ee7579ac43256f
BLAKE2b-256 e566ed66c7ebc59664b4a683d5e43c06208b755f8c49b406eb2a3dda4f9fb74d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 30b8acf55e593c569aaffefc559879d1c4368b661b2e30435d91536589b04eac
MD5 e8aa02ae01ef5fd0cbe95409aa88063b
BLAKE2b-256 9f6c06b5aa06908aab1ef46335e072356a662a9e6238bbda1d632b1d8a4d4fb1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a1eb7a0dc913b07fa91ee01ab3881ade76581f3feb9b7f53f2cb00f531dd41ff
MD5 357277484caefe596eef7cd2f1cf3742
BLAKE2b-256 ce3e229eadcebdd31b86a0717ff1ecf9aac429ded497e9b3491c2496876a3d97

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 04c14d72d9d2d8e0af152d10f2d6537a805be5e7264b61b88796525775580446
MD5 a4010c71e7ffdddf60a992cccbd573c0
BLAKE2b-256 371de462a9a41f2464244adfb244bae6885feb574af1f42f7af1fb31d9549161

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 aabfdbc88614b2dc481a128508196ac108e44dc2723070fff29e1514e2b8d4b9
MD5 130b6f72f89c62bd2b48b6b0bef2ec0e
BLAKE2b-256 234383c89ca6d6b418f87391bda2a5322b464c3de380af5f75a1c097bf3a3733

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 2258d9c106de2fee0ab264f53f4478c19cfa48f49651128f702738a106cb7a7d
MD5 b0cb0c1dfe5279c3b153927cc1425fa1
BLAKE2b-256 24b385cf8535fc7bedd7db9f2b5abf38ddc68f55e46c8c4d16e7770153c546c5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b80e0625a6bb7876aa1903133ecc073b5e9be72f53832810595bced82c5e732
MD5 b41745100ce5b4be2feeb24904f65673
BLAKE2b-256 42f59edb7407f4ec6e4f54da5f1f758b861666851e0a0887b00fd4144e87bed2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c894db33ce0e20dbe429136c5c3ce3da62d6ad0ee011d8c2d645c0d5643a6b7
MD5 e6112aad8df721180d4607b5c5fe0435
BLAKE2b-256 1d529de01da2ae9f306421e39a03a3dd2f144b0ac1fa23b3a6f1e1b8d1b7494d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 60140423f581cea9bcfca4cce9d3b45a13f91664518c03e689c44d24d5b8c4d7
MD5 72cbeb00d4888f743597e4326d88746a
BLAKE2b-256 0189347d0f0879e812cef28d97466ad3586d56a1dc6b8681df4d0a2cb00b8b1d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f754f0bcd7621c0a17ae0b817dd9f98e8d13e64385ba6e6206f1dd585864586c
MD5 7524dbdfd77aeaef0e5abe8e0162edf8
BLAKE2b-256 bb4d99f8ae356d64231ae7c18130be570bb9a89e43a30a5f19e593ac5f175800

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 337cf63fc405d5f2c55af38923e0886554e68cbee05869191bb24bb17d21a94d
MD5 a25b39ae6db14b598af5650980f24ab0
BLAKE2b-256 f26c2410893a49e0787c593b764f323f80022789ddf09a2cd39bb470253f5cdc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 125da7212a6459577bc539ba94e3dc60e97db91f506e9b8f2438d494e437a440
MD5 274b22b6175e78a3a3273e9d5dee7559
BLAKE2b-256 cde463fe615d944661a4de91ed79dc71cdc41208d6755a73903281becf353ae7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 4ef1aec4510ad6e07efebcdf48e96187d9c9e5a5c40ae1209a45cb9e1386a998
MD5 cc408b9b7040d69ffe960583ece28317
BLAKE2b-256 21cb0c9251395a803564f9bb87a6cdf381e9bd3e1ae893aac3dc5143d8b3fd2c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ed636c728285969bb5c86e0fcee06323e61c0bfbb168ab493d3580cc3b4c4254
MD5 6d5a023966277e0cc20575e3eccb0abb
BLAKE2b-256 fd4aa777cc1788ca8e1db622bc1060e34aea95722a5b1da738b04699754b12a6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4e7317a1083c423e2518c08f10184bc4ba9ed00640dbd2e0f07ee8c199f61714
MD5 980521254be1f2db85b7983607ed451b
BLAKE2b-256 2d98dcc3fb2308862266731ff62f25faa14e3a5102d90218936a5f9992f18c99

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 56475e9b63042b8b942af457b7598a8fecec844c76a473b89c6766a9bef8fc39
MD5 207fae5221e5f051bb30f093f187956b
BLAKE2b-256 78072aa1e30d6fcbcf996bb9a31f78649c83807b71eafd922db2641423dab83d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 16578c8788a4a5c12c924f7595317f20f67be8f0184d340e158e2f2813d3bf13
MD5 1fcec069358be7cc1c81da33bb3f0041
BLAKE2b-256 8ba414945e053232dc025c7cc8a47ee8748daa50ab0e9c8e506c3aa13a4cacf9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 be8e47bbdbbde67b2ce5260d41f0ef6a1d1a8b46e502884bbe0ac163881486d6
MD5 cd988fda064a04bda6645b6df36fc67f
BLAKE2b-256 131abfc80126a73796e44a65d09b87e64d289676fab33e781206a6bc4a0d5abe

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ff4f9e991f4350d98a3b3056ac19ac960c1a6885b054a4662cbe4f3db792c4c
MD5 4ead4a1c8a6f0bfc1dc3306b84f50df5
BLAKE2b-256 30733b1145bc01ee2c5b54faa73854444f9210011f6327addf0d096ad03dccd0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c56564b6225e8fd0807532251544429240b819c8a51378bafd248742ec1b61a9
MD5 47e2df60811e281c954280f5ab85a0da
BLAKE2b-256 e360563939480b46ddae3bff4022889f8953781e504eaf37e0e7fa078e535e10

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 946a5959543f3a31cb8420874bf1e2bd06d952ccfbc6108923e12a9060570f39
MD5 b99f12748a92eb3de50c3c551454bc90
BLAKE2b-256 c4ac0cd72ed290272c9cef7b5a729acf8c16ac6cff79379001fbf68f7f045419

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1bd884031ea9965daa1b4443fc17c54bb2d67211cd5ec0604ed68951d8d2137b
MD5 cfb00e5b11f284654606138f73ce83ef
BLAKE2b-256 aaaa28120186e5b4bb5ef35ac7b52f8e28ce1d33b09bbc7a4f5cb937d77268f3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.36.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.36.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 efe46ea426bbfbe9fb69e09fb7dad6d2d1599a9647cea3f4946c2a06b3e33534
MD5 f15575ea49f34a84b0de4fa2b699d850
BLAKE2b-256 2203bf36285026bca8e14840c24286d9a3583ab32f37fda163d49434cc4a6979

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page