Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.38.0.tar.gz (303.3 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.38.0-pp39-pypy39_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.38.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.38.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.38.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.38.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.38.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.38.0-pp38-pypy38_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.38.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.38.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.38.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.38.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.38.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.38.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.38.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.38.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.38.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.38.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.38.0-cp311-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.38.0-cp311-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.38.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.38.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.38.0-cp311-cp311-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.38.0-cp311-cp311-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.38.0-cp311-cp311-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.38.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.38.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.38.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.38.0-cp311-cp311-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.38.0-cp311-cp311-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.38.0-cp310-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.38.0-cp310-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.38.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.38.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.38.0-cp310-cp310-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.38.0-cp310-cp310-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.38.0-cp310-cp310-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.38.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.38.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.38.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.38.0-cp310-cp310-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.38.0-cp310-cp310-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.38.0-cp39-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.38.0-cp39-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.38.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.38.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.38.0-cp39-cp39-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.38.0-cp39-cp39-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.38.0-cp39-cp39-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.38.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.38.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.38.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.38.0-cp39-cp39-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.38.0-cp39-cp39-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.38.0-cp38-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.38.0-cp38-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.38.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.38.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.38.0-cp38-cp38-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.38.0-cp38-cp38-manylinux_2_24_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.38.0-cp38-cp38-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.38.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.38.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.38.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.38.0-cp38-cp38-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.38.0-cp38-cp38-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.38.0-cp37-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.38.0-cp37-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.38.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.38.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.38.0-cp37-cp37m-manylinux_2_24_s390x.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.38.0-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.38.0-cp37-cp37m-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.38.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.38.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.38.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.38.0-cp37-cp37m-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.38.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.38.0.tar.gz.

File metadata

  • Download URL: pydantic_core-0.38.0.tar.gz
  • Upload date:
  • Size: 303.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for pydantic_core-0.38.0.tar.gz
Algorithm Hash digest
SHA256 b94a00b52ccc368720d4fe6929a818e368901091b36bca049f89b600923d6c45
MD5 28e19b3f010df1f7b7b98256a6b5db62
BLAKE2b-256 fc7f8b5c2323fa7f2d4ae8ca5e1d95451b9e8f38dce3f4248b521243b1598bba

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 05daac88565ab9fe343c8469d6606a122288c2ade74a073d0e0df52a0f701dbe
MD5 78aab774a43b30889531c06809b3add1
BLAKE2b-256 56da5e42753d89d57a5bdf87ecc13fe7f49e717988b38a50c5e45e0497c10e0a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 eccb197288f28fd773562df33742b5347658211d2679e7e2639dcdbf6ba32389
MD5 62f7ae2f07fca749f2a367a7880def7a
BLAKE2b-256 44d880c2c2de8928914580edb1d61543d378d4f1ef9359d82f0890d3684609bc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ee661c6d648ad35c790b14a6444e399e508e779e18130b2e603c8f8fd30e584f
MD5 c05c498706369fe33225ced9b93c1b58
BLAKE2b-256 0319e3e8a4b75754b85b67ab2a91429dac56a12d07ef2d997115f2d5d8021204

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d4affc151ec02510dd6973582a21193880ffb3960c5032368643fc86e26e495
MD5 1def23cfe8035c2c28c9bf64c928d914
BLAKE2b-256 72e1a5259c6ecbdbb09fbb91d4a12312be6e38f8936974e10caa84f5d9529b50

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4bc7add8c0ca9385dedec86671899ff47d08b1054e1719f335470e2d8460f09a
MD5 3e0a2e169bf3b0dcbcf4e972bfaac151
BLAKE2b-256 7175287c8ff1f811f8697543df71607dd8ebcfe75aa399538766ea43289e4002

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ef093c90c95f4747f5eca63f5bc7f345e05996137a86a4131587a3a90a6dd208
MD5 c0f43d4395d51aed3966d38e226f86c3
BLAKE2b-256 6c2ba56267e6856143c6e79d641919945b6f21070c3842b60f0d83575edec566

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 07987d16882bbb70880223dce838cf6ded0a962dae1ee045c2ba91e2368062ca
MD5 c0a651298a3c2dee50ab314fc6120d63
BLAKE2b-256 bb5c287a6a342e6712d8ecb1365211a09621160c3220727964f1daeb2062754e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a30e3aeb02d5326084e8917420f74f56797f1ebce08685fc1ee8b69e86a34917
MD5 96546d8c31f804e586ded6247581a912
BLAKE2b-256 308e3a8b2eb11ab3b571f6fa8e59267318d41042cab3b9c972607bd561af2637

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ca37ae371e5a66325509926b3e86ff59486da1046696000f4f3e7c7183054abc
MD5 49665dc4d73a028d802a6eaea994ae38
BLAKE2b-256 6193d3bd13b300247296963df0fa038991fa7e8015ddd968beef5ed293561e8e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 35f737da50781be050aa675fd371c67561bba9119aec552dbbc85b7abb60390c
MD5 f1acff8badd3754e84a105cda730a60d
BLAKE2b-256 5e776d6c0b22f1c22c5211566787ec5c7f0ebb2cb5c977c82d2710c547774676

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b59cf0d1a362a1e451398b61f0f03fb63acf138c73c03195a2d439ebb5e75b17
MD5 3067139e1ae3935230437a5fc758b95d
BLAKE2b-256 714c7abf99c1e48e5153288aa677d19f4085fb50604e5fd67f22c9a9a9ee17a8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3dda6549462b9fdbf07ca8531c07450fd99def8be5676ade3a6809effb567922
MD5 6b30afc2a7212e955250372c7aef9350
BLAKE2b-256 b212ebd9b8664dd73f85bca77c8102f970a4848b482e267c052e15e76b777ab8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 59ea7fb6470d6c8c106b22649470ec322f5289d721dc3ce26c7bd9e1beee0110
MD5 ccd42691ff18529c15e18063ed9f2693
BLAKE2b-256 3e74b907721d484044740741b8557bddba9727106590cd070c69b2c53b6f4211

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 778d84e366d67ad6afc0e0201040968e27d9c16c3749025348cdd777eda7b66b
MD5 4557905cf3c2bc41e88c21042807556a
BLAKE2b-256 17787e1cf85519d5cf2bcae065bcb0d6887f8e76393125354d295bc2020accfd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3e11dba101c6ad15def6de7d651a97d2bf4f9cebcbb35b73af759a24c22a6409
MD5 5d7f7236ce54b0424be9ce8d8dff87cd
BLAKE2b-256 b825a2fc5e99171f3dfed42a6e701c25978b33a0d8c2580fb3e07edf61890414

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1a442e40dc11bbc6f9ab1a740d20c5ab3997214f97b7dd465c11c9055032d90e
MD5 8ab8ffa89a550d6a391b1cfb70e0207b
BLAKE2b-256 20c959fedbd6a406092a9966ecd2fa94e47431f86eea14f674af4b1524cf3f10

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c6a1ddda8eb7f774516701ecefe02d8d2c9ee0d6a924ed5abe46cbade0c294d9
MD5 a0f4a17f51ba1878a3287c78439fce29
BLAKE2b-256 a471aefa588cd6425660ec300e3c6fd96c4dcad77a0cc82a69729bdd68e1331c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09a65a3375ef6da47266106f10894452ccacf3c12c5645f813bf511abfff5020
MD5 b82b93416f01b719085df7636607ae35
BLAKE2b-256 7fb08b67a37379b7d2c879ffe1a88be9b7789bd42f54d402e0c70ad4881b4ecd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 488de557c2544f084bd72cd96fd7adcc88b0d31d5f27b2d658f13107fee75642
MD5 dc97c37f726cd170722691e3da1bd658
BLAKE2b-256 40dc34e260d6edf90f705870db0a94486eb104255bf843323fc3697d7d65f765

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8616a7a6fe69b9751b53ba45821138bda0bd815d55616172e7ab6fb1b891ecd9
MD5 83817eb67629f224197fe6dec8fdd2d2
BLAKE2b-256 268ea8523dfdb2e59cc5cccbab75aaa32295431043d90c44737e2487e104b59c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 766916b2456ea7101919ac6bbd3f5f2d48041a3bee994916cff476aaafd3b3f5
MD5 beda7596b559d910226efe4f801c37f3
BLAKE2b-256 b57d2176efd6d731c61e88a491104987f9144d3e6ce413b7923886c2542c2228

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 8c8ac6d074cd4308afc4bc002171e8f6f1d684a518baa5f339b838a8b5d3173b
MD5 c65dd52787e64250a0f7d9ead864adc9
BLAKE2b-256 75b10c7656942730687f062cdb2c800d2c6cecde147d2bd4727d9395d58a80dd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c458635159543b85d6f40cf492d9462e92ba2a347d5458daaeccf6dea335275c
MD5 655df2cd6c46ff024ac3b00dff01563d
BLAKE2b-256 57fa887a5a70998399f993cb625ad6553a00dbe7d08fa8d44ed7dbe247edcd77

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 17596cded1e8f635b797e5bb0139543fb7fabbcfc920b5d243365f490978a989
MD5 c90a33495eab0a34c638152b59508aa7
BLAKE2b-256 2330fc83bc887559e5859f73d3f0e91606b32e57360222dd84ed4c9af4743053

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 9a00c1de2f3ead6becf379a61bebc444561a8542eeb140b126482113d4a6a146
MD5 4f6be68b246dae89a71186bc12a9b104
BLAKE2b-256 0322d5a96fb2b6a606a49f455c9ae1ab233450d0bc77415619ce985e8ce85143

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 2e773acaefe9b0f9d87544725e6e59a9d10dfe035729cf1ea154c85390f4a8f1
MD5 ece94bead8cf4a19af6ca7e2013ca66e
BLAKE2b-256 352d156e831677e4cfbf8b1db6dbfb97fb891fd71e7e1a43de4e5c9265299c2a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 c8083e1c82f0d816ddfb07698c4c1ea126624114ddbe2d78659a54f3cc2749f7
MD5 ed3bc6df4ad8b91af02ec69a14f22ea9
BLAKE2b-256 7cc7bee2a9d9d6d830c11668ef7df7c5b30e400b79bc04702e3357d805640ffa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 936e127cca7e108db179cccb7e0918408d125d9e1b62aaa74cd2fe1730626e4d
MD5 c6e4d06ab583f20b21545638b318945c
BLAKE2b-256 01639f7e1515b7984dfcc9542a9654113a3f84055c74d2416766eab6490779e2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 752a6f0bd20dca278f1e28a0b94e9654a7c2151e1a8d3fff8d5f247555a4c213
MD5 6286bbd54ce700f9e9e3ba587388b2de
BLAKE2b-256 9b34b0fa47dd42f60873d4ab9730645e5460adb107a982c40dd62fd607e3af41

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 8cfac969e1614217629183e8b37f2ce21f366341f6923cccf1d522914a5d1ae6
MD5 0702a8becbf9558e7f53659d06ee6a61
BLAKE2b-256 110ee58bbc600e68f524f016d03f0d38a2360d6fa10c15fa3381bcefa035c348

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9c2c5afc146acd7f98252a02812563a8eacb5e07e5d5d890899c519fb5c890fb
MD5 78f6dd0c2dd824e5f62db9b0a1641587
BLAKE2b-256 7811f97c852a3c3c1bea21fc55690c1afffd74f55544026d279cd6661c7dfac2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 bda2b18ba047e8b16fc022ce9c36825c7a6175b821b6b718ff4520c27f8b04e6
MD5 32e2c9619c6a5d2837d72e990a1e2dfb
BLAKE2b-256 3ac31724e27344f3b78bdb4aadecc77443cd242108f72182f89ec5672864dc46

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 bcb79118d68063b6ce54fb0aa3ce350027588cbad7ef6880317158a0e005b747
MD5 752d2b3c87eb00e24c42a5382f3cc88c
BLAKE2b-256 3817f854e7c8e006254cfe322154e491c4cbb09e1a254e38a6e6e8f820ef92ce

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 1e4475d319feadcc05ff0b8a8b3509dfdcac21b852667323bb7862ec8ec061c0
MD5 480a93ee52de2b215e63a74283a20764
BLAKE2b-256 939e9101083efac1e71c24ea4262583efea253c6af3af5eab4dbd5b337398608

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 03b05b91ed73699cde6749c74c59dae16d076b5fff008e9388859b44bf573918
MD5 94f3d70827cbe328ec0d13071ece9166
BLAKE2b-256 2ad49204871e8ab7db2467e9b0e95f297125aab66c44db5a8ca9d6882cde820e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 db673aab3e55f21bdcc4d8d420080593437c795bd4d8fcc4718ba664bead3e7d
MD5 b5f69a5d43a7ba0599d98c706103a404
BLAKE2b-256 87df0d0dcd91298046805c5da96e26c5df91401e34bdebc43592165ffba49b93

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 ea751034409470b3bfeef9a154bc3653ecbe4e6bc539ad4fa7789344a9ff4e2d
MD5 c9685cd5c7ab372a4d72984380303150
BLAKE2b-256 3cf08c57b488b89ecc5576a8a129c9738e5d4a03c328453bf5b3c2c608226d58

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 46e6a14096525eff39e453daa0a636cdb9d8cc1e16b7585dd8bc424bf7f87cba
MD5 8167c84807824f02355027a2998ecdb8
BLAKE2b-256 11f44bd5272cfa98a2b69f603fe13312ff2934790c22e5810ae3937401e2fe9e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 2e1cd60a1310b0abc8a3ac2871536734e4c7692df85dc5b4b91fb2976005d5dc
MD5 5e0ae12d872249a9a3cc39eb183a1862
BLAKE2b-256 40934b29a099983bb118bd7c3533981b75eacfb193b8142fc5be8e99a0a134ab

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7e91caff0aadc8682e58c0f4d78c78cade1ab4da0ffbc83d8d609c3ddc35124
MD5 bd7b326366eb6d8860d11c8dab08b444
BLAKE2b-256 0678a0fe6c7e3cc5de6c4fa2e13c1b0eaf36f65b21b8e0a78fc16f625d480830

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e60dba35a3b7e295d239887497ee44e086ddcd1e3b5a5aac94940172dd9a9c62
MD5 e061b70485932dc1adea9014ad90571b
BLAKE2b-256 f7f26d0222111802b678235d742e8a831df2412ed39541f31b46618c9da04a90

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 552d4613436d3a485f579137a9a64069be1695922f704dbe9908f195e49b58cb
MD5 b4ef8febccf82bf3913b31484f3a86c3
BLAKE2b-256 78e63373e50cc9c990d4c12a774f980634c3eda94a243af16fd7a6fb92f43dfe

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 064010574757a7fea60dc2be63c047ace8a653f3d5c601b33603099d811a53b0
MD5 7cab7483fabe511fb3af708ac6acb0fb
BLAKE2b-256 4293a38edeaf76a5aa1cc6321b274cdec52a3c7019f64572a006e5b2df8164b3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 accb236fa98c1a66e5270f2a4e60aee6911e977f016ef40a0cc32115047075ac
MD5 9348160070d59abdfaad5c41fa575cf7
BLAKE2b-256 1b60c1f8f287c83fa015f861dddc148ff36fdf07d1e3ef1af0aa2aade243d5cc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 33bfe0ffa5584d3521a68674f3bfb034a1f6aa27dbba43f28731614f23df595d
MD5 e5003da83c05fda887575d233724cfc9
BLAKE2b-256 a2d98c9998ad174e8267e0c629fc419034be75bda7d41fe85d69acbe59566da8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 d9b6070774035969b0b48d8b8d15274965dc3155b88eb08e27ba193f73dc979c
MD5 4c7a601792e32450e797bee66bc68c64
BLAKE2b-256 8262e3fde091e45d9c0b342081a81be5d8204bc00d9be5acf840ea871d6e5e6c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0ba5ea4ddee0b721fd0e1f25caefd5bea4ab43d99bbf20b4b0b5b4c98af97a86
MD5 d7f71b235c93e926b2a4df2f1fe53ada
BLAKE2b-256 72d0e7bfd070dc814968ef7c82130ca5f879710be0246cb13e7fb7edf24968fe

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4a7297db3a7249253602f121fd1186b32c850dbe4cee7e2f4ed411d7447e1469
MD5 0cb7cb7b9c8ddb9c21f5c365a1f0d2ba
BLAKE2b-256 37e66e3c2b1ab72c79185aef5f969ad11e92c0b4d989891c2e004e196b384551

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 e3d97b9858ea4d8b1ede28eb07d5ffd39b104e0491f125b12010be183390e3ed
MD5 6c5dba83011a0be3658539c3116e64fd
BLAKE2b-256 4e1f18e4801818d42359a707778b2f6540752e11f765d82542c5b11c5cd33529

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 56929a9ed009c799c6a25af5a45a70ee929cc87cf8d6dfb48c7e7b80c5749eef
MD5 bc66a265a057bce2002386bf1fcd08b3
BLAKE2b-256 7169e8c0767ba4bf322d3518a5c31b126659e3043aa918cbc6be03fb86c807d4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 559ab8165b6b3c48c75d0b4941ded8d35800192eabfea15388591a69ddecec5c
MD5 1312af47b1bd14e3c9622b5419e18427
BLAKE2b-256 2dceb60b7431a48c1f9239855fd6959f5f620630e750a728ec67516720e29630

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f5e744f72b33abf292c0526188f9d0b8614e072dbf3712ed32b2a6f1f769869e
MD5 153dee80780c12c35463a2b30366bf70
BLAKE2b-256 aea4b34ce844bb791ca0c4734ee455f591104e9e45d1a527107f00d61a1a6d76

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9de9165653127f2d06ab3b375b0f330ea8bbc6f935b9a61f32e08b6011569076
MD5 d4f0dc0701ea74a779a05c7087c79ddb
BLAKE2b-256 c65c9553ab75c60df17a49ceabc412db57d16f4b22548f45e9d9362adce44fa7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 d9991c294b73b39f88fab055bdc03f3f890d1d7e3abb8c6f2d8bb4fd4185e407
MD5 f1714ef9e10af80de1ec6b5c62fce0e4
BLAKE2b-256 4b8e766165fd99090a77eab75856afdba04aabde28a58f0678ed71e802605a4e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0410d2aba8d7f82e00691b6a4d3b12b52e0dbb0006278b414db48d0ee5524baa
MD5 248f791ebfdc2223579ef3858edc9d64
BLAKE2b-256 d25ac0112e9a251d5bec4ecb832f94b3220e7de6c52621f36a654650f4eaec05

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 c8adb85fca667013e373e6df23743fce72e6730dde9ffbcd1451669b037d29a3
MD5 1d189b8172ef3ab8c6c4121d5180a2b5
BLAKE2b-256 48d5f4e8096247ea8f3bb95537c6a3fa51e73855c764332961bfbbb41b70b345

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 4affbf8e1722d33c6611870e93142eceda5cdbcbbc9712dae98c6cef3916d7c8
MD5 e59db410ae14620174665bfe5b27437d
BLAKE2b-256 04e7b1d488453e5da908fb8397c24a2b6f210f3c4dc8c7404accea35e7432f55

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 bcb73e4b971de5c7d6b6af4f0878bae99a72be5bd1fbb0333c3d2741b1f9c04c
MD5 2d0ec1dfcce5c9a17a5f9647699d2461
BLAKE2b-256 37fd15c2e64d7952d6e1bf3f11e9b826c2deb4bb919208cf7bc77a8bc6cde69e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 60bd9f221b434619d50d78793a376efc6e515233f5cb694f9688f4f458c3d99f
MD5 892c5d7baf415e5832082ccf94d269cb
BLAKE2b-256 dd71bbc65baaccb7d71d4da761a3773ea2cf225966bc0a470a7bbe725a5e83c4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2bf57bf395b9f9435ee0a3c7017592d64eb4e702da2c6dbc1da0d9369b733ce9
MD5 dab86633481eca1b99774e3f94352d39
BLAKE2b-256 454a8eb3e1983abcc6bb7c63dfd2f69702ce7d860d7a021e11d7395ab1038ff4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 8eccf9a9a7b861214a2cb16939b8d54e8b00c4e4a94c1c57dec9e253c46b77fa
MD5 4d6e2aa20b3302a90064aa660c928f70
BLAKE2b-256 b2b9c082de0d8ae2ed32ae2ea0335065c80ca3dc31827694f1d1c999095173fb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 0ea7cca3ec85e1926a2b9d0511c3b3565515af350704e285c8e2d915f75b2aaf
MD5 d3c815426de1afc7af065307cc0db43d
BLAKE2b-256 cb27e2b153cc34d6bd98f06b7326b502329e950100f73a79bb5b02ec04444a41

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 bb862c3ddccbd86470557ce2b780a750ed29d8e6636c3be2399e02bf76b5b4d7
MD5 ec87ecd3d21ebed6acc8320ee889d149
BLAKE2b-256 a1d0bd0298f328d83b4a731bea83e13510bcd7d6bc321b71222888d73a446824

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ed1f15613f0a067edc373a31c45f80c55454389806894b101a12620b6f0e68d7
MD5 7e8d3ddc9d1636666df58ca704b5458d
BLAKE2b-256 69ae861438940cf1d4002a188c5a59343a2c1fe7f5f71c4fb1bd39d9244a6d34

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 16aa493f005447bf6528734432ecf571c7c4dcf54712154a6e3fe70d0576b9d0
MD5 34fe49aa2e0b98b0937fa03ea20e2ac1
BLAKE2b-256 001621726a8e6d18512f6d604934adc82e6a326cccaa1b6b3b7a29fbfe0f8f12

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f9fbaf14d32c3afa6159ca87f2d7fcf07b36a7579b78bdf80b14ada0068c164e
MD5 529c03e5cadec4bd6d5e8f6754021f24
BLAKE2b-256 690699dbd542cc7c25a3a46e678d9470248a5a5f073b5d657cd89e4430131de1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 24475cf8055ab19f91f5a874f5e5434a64f8086a76e2bfd39a820bde80a077de
MD5 8d8f390f4c38e8ef96e67cf88e7c2e08
BLAKE2b-256 33195c85e046dad099b269ed36cf2233437f044a48fc4895b1974fdf3c865b98

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3397fc9fdcce07c7018a5f627da1b42150896f4face9860d89a46c8b9fa3c96f
MD5 5b1505652f8ed7c6b6d114033b931e78
BLAKE2b-256 719681e811ea942c01fb1224bd58942b2d59cbce134452c10a6d9133213b7783

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 f93ae751fe034a890d59c37a95eaf4ce5dfcbe7e3bedd49a32a45367671cdb80
MD5 efdc4dd59b5d4da69563a425a512404a
BLAKE2b-256 5565c155d9f8e5d808a641b4fb741fa3a92c7d856b3c78a39ac87ea6677cc4aa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 aa02be03ccbb60ed85b1be36d68e1354194f78da74311d6e1d4187045a596edd
MD5 d8d5a97944b2ffff489cca119505e482
BLAKE2b-256 194390676fda19b88c24b88c2d13ddbbddc9fa72743521b72be35b30e070263d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0fab1ef6d7c241e06fdd2fce41826f961ea415b044869381909e463eca1d5461
MD5 98616927076f13e384569517f8a69262
BLAKE2b-256 b45c87da54a6e9a4e2463d936c6140ff444b928a5f11a225d541143e049baf19

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 af9e40fc42b5e9ba2d1aebbcd28376f3dc1fea779804b53cba5116f2412b54aa
MD5 7265575b1cf84379812ef641680e5571
BLAKE2b-256 0a915ddc2a2709afb0a5f34329578a2d2923befd20a555cbce227c98c2400292

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 d3ae5a8cc8d0f95bf2ac9469822c5deadd78fcbe3bcee7d0522c77e84ec03243
MD5 6787136a2f90a13584c561a1ddccbc19
BLAKE2b-256 bbcd0276a61723b8c46d59a21fa80e7d139b7d333e21bc280d1305d20dabb7eb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 a84c9d20bc8f3473ef5e4d5177a91438b87650615da05ba5045e8378594673be
MD5 1979d0c2993187ca468a5b506b7ff5da
BLAKE2b-256 9a58aef09b70f98b4f60d7c6f4728ea9cc82b2ba5ba20451d28b41baec0ccb37

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 deefd57033824e41cfbe984e71f4cc2be8be2b3a9d44890ce29b0db774c20790
MD5 c4d92713d728f494f827c3fe9d46cc97
BLAKE2b-256 c28a427fa0e6dbf64ef4fdac352c1b175352d97469219f3b470f2a14ff7ecdfc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e616c427665c7ef7e747d2824d481c96d283df72bfbf97f1f1925917af2fe3b
MD5 99f1c9f3d51d1331f7025e3bda69f0d8
BLAKE2b-256 22e735d913327b3702b801e6984c1ed241012ca86d24d8e4e0c1203dd9d8aeda

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e1b5fb341fb0fc065d1d13d669f11ed03c1c39901debcd637b36a0380fa42a6b
MD5 2763bce1fe678b85928a87cf0407facd
BLAKE2b-256 f8cff90e20287cb4697d440aeed435e4fa5587bb9a84082dce1bb19411a9176d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 fdd0c847ddc51c6419d2f22934c089fcdd63e3e7f7c1d6bde3490eebe37eeab2
MD5 192ceb6e037de73772d69b2c97ee94f7
BLAKE2b-256 cd5e1d7c432522ad22750a3967bfe660f7182d801e1398a7bd98cc75456d68e9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f4f862c699c6184e0926173cf845a9a6e0937d346cee2f29aa21fffff616e3e1
MD5 f57c19683a6eb706dec3e56746cda02e
BLAKE2b-256 5e0228fb814b4d76d54c8ebe90448d64f07c908a2209f11052055aba088ca7cc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.38.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.38.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 c6857e05c3437943e2b1abf6dc99b61fd059b60fcb0bb1487f687c5a86b10ec6
MD5 8138fc7b9d762949b732e9bc6fea9537
BLAKE2b-256 c98ebb78aa76ebd117e6b531e8f7f4105ad1e15e77fb3ae7eef8974eae8458dc

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page