Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.40.1.tar.gz (303.7 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.40.1-pp39-pypy39_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.40.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.40.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.40.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.40.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.40.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.40.1-pp38-pypy38_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.40.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.40.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.40.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.40.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.40.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.40.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.40.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.40.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.40.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.40.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.40.1-cp311-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.40.1-cp311-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.40.1-cp311-cp311-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.40.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.40.1-cp311-cp311-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.40.1-cp311-cp311-manylinux_2_24_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.40.1-cp311-cp311-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.40.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.40.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.40.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.40.1-cp311-cp311-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.40.1-cp311-cp311-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.40.1-cp310-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.40.1-cp310-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.40.1-cp310-cp310-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.40.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.40.1-cp310-cp310-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.40.1-cp310-cp310-manylinux_2_24_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.40.1-cp310-cp310-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.40.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.40.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.40.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.40.1-cp310-cp310-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.40.1-cp310-cp310-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.40.1-cp39-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.40.1-cp39-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.40.1-cp39-cp39-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.40.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.40.1-cp39-cp39-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.40.1-cp39-cp39-manylinux_2_24_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.40.1-cp39-cp39-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.40.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.40.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.40.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.40.1-cp39-cp39-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.40.1-cp39-cp39-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.40.1-cp38-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.40.1-cp38-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.40.1-cp38-cp38-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.40.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.40.1-cp38-cp38-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.40.1-cp38-cp38-manylinux_2_24_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.40.1-cp38-cp38-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.40.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.40.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.40.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.40.1-cp38-cp38-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.40.1-cp38-cp38-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.40.1-cp37-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.40.1-cp37-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.40.1-cp37-cp37m-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.40.1-cp37-cp37m-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.40.1-cp37-cp37m-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.40.1-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.40.1-cp37-cp37m-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.40.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.40.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.40.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.40.1-cp37-cp37m-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.40.1-cp37-cp37m-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.40.1.tar.gz.

File metadata

  • Download URL: pydantic_core-0.40.1.tar.gz
  • Upload date:
  • Size: 303.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for pydantic_core-0.40.1.tar.gz
Algorithm Hash digest
SHA256 ca0238620d81f88b080883c2968e42e35733708d3421e90dbae9b97762349c07
MD5 115de0c4c1338b8b77741124ca6fa67e
BLAKE2b-256 bdcb66cd2fcd0107502cde30dd0be5e0df182d9600482f109e97f0acc8ea8cf1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 40bfebe082052fab553f612b4f8b9d1c71a9f44398ee0904a3b679f13c183358
MD5 ddc090a88e9e2c664873ceaa2bd46612
BLAKE2b-256 569c6d8d8c5e523d7e7d35f50b042a97d0e8cb7efda09defe62cf1989e46a934

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6f7f2c24818f11401aade2175c3a839408a086e50873b3326e859c455065dcf8
MD5 4b5411bea5f0560ce28d588a7b0ebaa0
BLAKE2b-256 041e0314a9fe7fff14d8429e094e73fa16afff425b6ce702936e37850aea3949

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7e05f51a816e13233d31f4754ba61d6bf4406396bf47144a4eb50a817e9f036d
MD5 2825036d9a02eed96308bf739c3c67ef
BLAKE2b-256 7bf1ec7709fb1b6a7524f5eb3e762147c150f6126579d7a27b0950fb14f3a5ce

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a087312f491aa206be4d8effd3bdc070cb23da72a21b549b593ccc991b95edc
MD5 3e0a2bf7b61e688f5fdfc4f4da2d911f
BLAKE2b-256 fb0660a38abd50298617eaae2d49201dfd240a51836a242567884f62a7a58326

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d6cca9e5fe0cfaac3d3c871bf0109334040071cabf88d3599eff106ad0b23987
MD5 15715f5696fcc57af8ff71f576ae4143
BLAKE2b-256 7f0251d21490018f6a1ad0e53d244d1f2d0a4baf50a372de1ab244ce3d97f10a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 6586f88333f103b9283445c7372bfabb76b19a148cde48a5d6522a33bbad226a
MD5 abc1a82114a4494c48d3610e8ad26b18
BLAKE2b-256 7ad7d65f5b88cd8e3e200e3a786237a0646f238628d899f9e33c795cd781fac7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 697d91f1042b786948ec135d478eb8bed842e7bc3bf35fe9712105174b2ec01f
MD5 3363e26aedbeda8b58e0ebcc46c68889
BLAKE2b-256 4a382b5fa74dc0cf9268dbdadbbb5e02b53270a90dcd088101dff026be613e47

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 89adf54abb5f16dcf766dc292eb29050d944f184b185d6cd9ef31676f06065f2
MD5 8a8237bc5acab5b1a3966dc7c395de8e
BLAKE2b-256 7f53c2805753f2a3055f94ce7f437b4a10a5e47285bcd2b60a5b756921a9daa9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 96c2cd8091fc9e029d0c080385c5de04768d9635bca865795dc65a2dfb59f6f1
MD5 037e3e498d65ed2ced84caf5ab783e24
BLAKE2b-256 0828d5a2506a3607aefffd9f020e96f78456f515afad763a00391095ff5a73f5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 77e0e4ee3cabcaef6b2849cbed40d938c94167f651b8ce169229478d22db6179
MD5 727c78e7bd08611ee6376a4f9d408e9b
BLAKE2b-256 b4b427ed47cbbc3a13e38ab0a874e4c464c9176279e127aeea23aff9ff240d89

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c1cc640bde0b18f3b274b53b6265e746df0bb93568b65a753e84ada71425dc1a
MD5 488971699ad2a08e89a30e67e69d3d27
BLAKE2b-256 3e3dccd5711e63202ebb892ea5c4e2579f06d4954805b037f832c2b5d65bbac4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8a2f043cf798a3429c35f595da58e1ccd5dcd0b1c9119a7083666b84aaf7fb89
MD5 70da60f7e42b899bbf7ecd8f975637c0
BLAKE2b-256 4a2b89bfcffbb339e7836e6d02cd040b0cd16e3afb8cd8a83b7007dda35c5c07

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 1fc1bfafa5d86628e9a0f38192d8c6a14675b28b8c88a19f319d0b9be9348220
MD5 836ab18dc1caab30614681c485e858cd
BLAKE2b-256 95025fd720733c79a546943c5997b2d454ea5d445900a67078e200a1fd9278de

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 4a9de4e6b1f9ac0ba20e5d3686a57f682cf6784a1a4b66391619b78571859e17
MD5 4a57567fc9f7cc20c120ffb5b7252c0a
BLAKE2b-256 7011d297192d93b97789c42ec40bc4a520a5de428ef1053ffc844fd37c60246a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f3a9fc8aadfc60150fffbc352f6900945cfb08fd15be216ff3e4068170fa316c
MD5 ee85301c8e7d44779028675d008fd8aa
BLAKE2b-256 bb93648d0338bb33faa3a463beca5401da1de9be1ca64de4eb6c03435fbd8bbc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 04ecb04f6a2e019a84ffafb61f0b05b68aae7d4008cf7b3c77c03e84d6beb7a2
MD5 ea9c50bbebb178d05037c79b2e362c00
BLAKE2b-256 c54e254f91a80687a5a16e6c0c01ada941932a680c4098cd0fde56ba3ae66c5a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c55de505feea3449fba0aa987bac6ed43b98bcb899b6dbf977b3889036221249
MD5 be2870882e85df42fd70d54542b4e79f
BLAKE2b-256 d5db89b451d7156f71fbb0b20de7fc3e77e81f05799e75d57d13b97ee302a4b2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 23486c4aa0695394689249a04b2fcf5de999b6e5f1be5455ecd65119def344fe
MD5 55d90ffd2012a4e47d94733ff9df035e
BLAKE2b-256 e97c07a41870b1e0063fc54125b98d6e7435477a60d3531c79fdd1b12f459258

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 d199b30fcbf6992fced61af0871d682417aa3a2f1b17ec115545b72dc9a1ac2b
MD5 59f96adf7e957ee698afb30f28e08349
BLAKE2b-256 1a063c4d2fa1e11a2682c4abf62813b096779183043f0cb1938930714b8c7b16

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 1cc7feeeafa619f5865423b4803b4e151376ec40f275fcf4fb38c65a290d189c
MD5 c09dbc57e6d9141463b2541ca8892ab0
BLAKE2b-256 2f46609df661b676ea4bd73407e6304a8f96472dddbae4d4964e40c2d57efb88

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 163be0a7cda6854aeca35d5c8628d4015ce7be96d88d0c09b532d110db39f4b4
MD5 e252ce21fe9618383902c8ec9e0e3d31
BLAKE2b-256 1c08873a437cb62e7457ec6f9beac2e45bc6d901cab20c96dbc68cb2e643d124

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 6f1157d528597231da1312f360d84c77c8264ba7aee5a427955addcb769eb0b5
MD5 877b47a6df9a95503ad100d27b5ab2e3
BLAKE2b-256 f4596702ce68c29624e1b8192f5009b01b80920c7752b452793506b9fbf5909a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 306b51976082672108ce2c61906959043f0c888b487686f40e594cf7c87460d7
MD5 b2ede3a762f0209451c04762cce15cac
BLAKE2b-256 a4a89ef064b1c12e37e94cfa379f0946a8842eb1dbf7513d36c384225479c54e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 be1f0303a5c8de6fe56aa7b9a8bd4d7d31ab877a7ed6e069426d65b610a5f6a4
MD5 4d30c2ac62d3edca9038de5434155144
BLAKE2b-256 2fe55e5b9d9d62a521487204709aa75159aa6630a6a30cf0deba0ad8779085be

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 bca4a9b8a35d301426237a1bb5feeb99dcdf3157be80aa6a27d12ecc7e0973a6
MD5 ac4dfa554129f57eb95cf94a6b54be83
BLAKE2b-256 5b50478b66d57d71e42efc6bff1ade3f476d6fcba56217e9287e6ee51a3c0512

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 ec9eb51bd035cca7389b492b8bea8d608f017e46efa3cdbd68b728dea8a80120
MD5 9200d14df251159c788b90d6be0031f0
BLAKE2b-256 7d8e7019dd78dec903f6b718f750bc8ffde8a4dd8c975c17f08d620badb2cc12

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 79c26f9be8c2ff867e401f7be35dba67637c716a680328ff341fb44ba3ff3d7d
MD5 3073dd86e1d4e2743c33ff329bcee3a9
BLAKE2b-256 7ff82540da002aa23f405a435464a4c4eb51e40123774372da0a6de6c311371c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 abfde9688486b5ff7389b4c02728ce952269ee88acbac04d681c11e81963740e
MD5 149b14b9fb1037a752be3db57cdf9177
BLAKE2b-256 4d66cc956c285f4e791373a1f81b01884ecfe9af90e9f6acc8d5d4709621cdea

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3bf54227cd59fac20d6fb63c27cca3edd4f1394770b3bbac6f83d3c2318d40e0
MD5 6389309185a7af56151ab5e1e6f691a5
BLAKE2b-256 fda0a1b56fb99050a24830e9461549799a1f4cd130b4c21eb99da5375b3b2942

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 dc7392a652fe9ae379b2771e93e6d83b6a1d9d8eb9a37bfe1a8745903cc86ef3
MD5 12f262f981e6b3614cf689f76e1c0ac9
BLAKE2b-256 4a3c5d807d70a885e353a1f4c1a3924506bd20e77c8f2ec99f9937c748dd4014

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5c52eaace4926f313d458432d9349470133f780e20c4be3c114dfe6e0b028638
MD5 2d5c18a6dae3a0b38b5845eba5b19f66
BLAKE2b-256 f272c20ca9971bc8f8dd4d3658615a8ce1f2945dde5c476c078a69ffa7592dab

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 709662bc27e854cbf7e7e71b9614f06a6da44e63bd479ff3d16c9feb5d913483
MD5 686f57f5ce1bb3d80ffeff5c3e93986c
BLAKE2b-256 e0427ca61a168d892dc8d1585ed199f3b096eb90e40b0047c618826895f612c5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 bf8f2698264566d87d88cc2b4e5d3d3e9acb293a6bf8030f22fefb45f3eca99d
MD5 6fcfab2d4e0501f890d8a12ebff8fda3
BLAKE2b-256 f88baaf26b69ce1980b6447e189501349a21e30a964874842532fa0deffa28b7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 d6f4a00c9b0435073b1ca49cd7b40b112fa0b4489bec3127e97bf5bcf6746930
MD5 ac114d88dbe1707d08fe6078f9222a92
BLAKE2b-256 74b981f3346b573b018974d0446e217bc76cc2806bd0037046d68eb31a38a444

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 24e5e1171b2e2681c455fb406235fa9187210e5a06fc4cfd2a793759e46638a1
MD5 112b776a0d786332b28872236b8e5581
BLAKE2b-256 2080ee0cdb5b6f7d25f352ed2ad93da4bbb835a5752154a651c3a08d81d5ad35

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3c0971e06ec95d046ccdc087cf7e863b8f1f35deec3c01448e56d5a2d8d56ff6
MD5 aec16f4abb6b8acd8e85fbbad8936b20
BLAKE2b-256 70b844a4a2ba70786187425a98b47d50b920fc3a1d95205d5ded868ee1775a64

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 a7cbab7216e48ce0f323dd2f45f5960691f2ecc5570b0fa6a41938b4d01b2e07
MD5 d753dc1c54d7de4a2f7cf3454a98cd8d
BLAKE2b-256 90eb12ad220b4ba9782cbcf84f7e9449396d12a67338f9e7cd0d969757de2cb1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 dd829e9ee1276aa40b02829b1740a07cf2458940ddbb0c413abf8a3e6d86f575
MD5 3f0b1d064df2f679487cf8e75aae3f70
BLAKE2b-256 cf04bcd315fa149a906561edb9f6a870df2d461e975fc163b3385303475ebbcc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 61e1eba00d25e50066ba5c076dd4f246c5228a8128a2a5192f17dfc2e40a26a4
MD5 d0cb3b65e4fa97f114f1b570b75b958b
BLAKE2b-256 c65c903e17e6129eacb4d8b5983f225c58759b10b920fedde48b14029e0924e5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e5290770461931cd9a3379695b634eaf3b6113c3d4a996c2b52260262b7e834a
MD5 43c1d3562242cfdfdcb1b2f85e52d3cc
BLAKE2b-256 0a5e29a375b325d3fc49684bae567c7c29c340af6629a02c19540b5bc973a7cb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f6a2c93aa3b6acf8013ff29bdab5229eed65bea846cb69c532ee606bdacf86b6
MD5 65cd3d4b64988efda8cbc53ccf3a8eb2
BLAKE2b-256 a6706a60766204d079a6826e962f501f9fdd22486f90c2e446ecd98a42adb27f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 2c360c62b12895a503f25cbb029d6cd381383185619dece999c9ce07b11d721c
MD5 200f3e236cd20d43f7e79ac47085e378
BLAKE2b-256 79a7f4d9558c9be45ecdc9610a611270df07df674e087adea57e3fec7537442d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9a4130d721daa18f89e12801e587f057cfe5f12ffc98323e993617b1f36b8bc5
MD5 f3b45844e4eb718e00d6f0aafef1457d
BLAKE2b-256 5477278b5a275060368cc7c8d6a2f8ef10a7a0cb467726257e6ab6cf898f17df

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 180a37c541327644dd9ae835703a0657ba1a63375b0bc072265be0d2d89a41ea
MD5 33ba8ca35559e032bf9cb74bbfda9967
BLAKE2b-256 5c440d9a143db4153824c2ece6f7e8c23c6540d670d795c1d4cd2113dc6c8d57

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 630095dd32185454d303060ef1f66505583370d410dd4a093060f38d8a40fc6a
MD5 d7a99975cd293c47b10cac4cd8bc103a
BLAKE2b-256 9905a15d21820e065e5fc464471f57c77b64c643c308384ee50bc5eedebc4ab1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 8eb19edd60f63fd707716478348e9ff5372e78f9952c459ca583d0a28db69191
MD5 2bb15746911b4eb7a351eb6ebe0deaf0
BLAKE2b-256 54b89ab5296bed32455a88c33d33d9385e7994e487355008fd25b29972d54bf4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9dd6b7e607433c9043747f902becba4f97da429663da4f7062afcb635805a34a
MD5 258889973674360fcb1dd08da8d434c4
BLAKE2b-256 771d549bd554b2e52e2ac6f1b3c17b39937b07b4dbe8e9fbb73e404d1337f1ad

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b63ea6f2ae00aecf5898882ea6a2ea7f66838badffeb90848643d8cb430ab989
MD5 a2c52bab93fcd3c6e57d09c78a088986
BLAKE2b-256 4bba098d29b8c0aeaa4e6af297ad39964ca641df467b9505edf06fafdd9460b6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 87b03798e97ec72b11f41ee3c4b0a5316bdfb84b47b9c5f7dc3393a6154fc40d
MD5 e0a48aedffff886a6e448391bc49680d
BLAKE2b-256 5d2f84d09efd9f22dbb1b503dafc6d75e8504b8d9cea79965cab70c40cd3c7ea

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 24c1b74072d363964852632dbbc589634bd40885b71e6b1c9e013c68b721834c
MD5 a7f0f5fc7a6ec98d34c3a7b8e3457a5b
BLAKE2b-256 ec956af2613a97ba0ca774f0931be5284ab9adf90dec19c5d453faae8109b41e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 44a45847d329bec214de142f321c514d9e93297b5e1179797c094cc06a3334ac
MD5 ce19823f3e0dbc101185157790dd31d3
BLAKE2b-256 de58579ba1831d11fd7050b7e4628f97fbbf503d8414fcf26cee4a71cd0193f6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c1bcdd8723370a26a01c2d171e8eeb0b0d0c923af816e1cfb3f0c10d9238c475
MD5 a55def5ef6ed26446eedb1c6104c48b1
BLAKE2b-256 63ca095217e023ebe1613adb1db0dc3183a6fe0845ab7b6f255604ab96d2587f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1b787c92c77b9b85dc9c19b2b8852633fb2d85dc8754a2d3c9ba0ec61fd4636e
MD5 f4fb83e5c30a2aa6c85371c1e9e870fc
BLAKE2b-256 15284acb307593d7d3a014dfc8dfa5894d17fa27485109af4dd9fdb6ec8d9ad6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 26fc1082863345eda517e6cc8d5ba887c2d3441073684c6de0be0488ea86601e
MD5 6143e2925d0fa83d20052eb0b0a11419
BLAKE2b-256 daad4c355761142f3814812ab487b3f0c2da4dfef06ebb613a66b12dac4473e4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 11408e821c244791a3e2ae7b0d1cd10276300301b6041746fb6e5a794594cef2
MD5 3825aa1e39969b81f1ff636caef1161c
BLAKE2b-256 b041d3295dc7716a9ed856e73aa25549ab73b80d9373e71049f4aca6b7283998

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 b210b45594959cf91da3c84b5051483a04e8ea93cb9dda4c3063988e2c4c67fa
MD5 90f7789c583ff5d422306625b89d01e3
BLAKE2b-256 1b97f2de6305663e28cffd3739a236798df335fa6cef310145a8e3addea491c1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 430fdf9d6b6c192a6718ffc5c1f5687af012d601a8ae96307fec65496a011b53
MD5 43cbf10396ba63bed1e89f81c6eb8302
BLAKE2b-256 78d4359d2c14c90361c4122f182382702c91162346d525c5d46bdb764d381676

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 c1d90692a09d74a4a1eb28997c6b10b5ba84934729f7d8d98c0353bc1c80a9ae
MD5 7f17018e05dd3437e89e1fe895e21ed9
BLAKE2b-256 4f77de9fe07ceeea0000c549feb2df889738de4e429b2b18d1fcbfb1d24e60e9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 178a502b21c18071c1b2b98a24906876c5db1a034f762bf342dfcd0c342d59d0
MD5 151f414b380938af4df9c4e980a23278
BLAKE2b-256 3573215137b37668f5da7b19f00f594283602c8dfbc52ef13bdec2336f014be6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ed09866c5ad6d9144619d3903a5400adc2915262d7f6cb641a7f4a1589aa52a5
MD5 3d1304dcbf0b1c9f455117c784a6a364
BLAKE2b-256 a341cf96b4d8a43ed3d3edb793ff2b73aaf91ea636dfe5141d6629e2e9c5926a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 06a27ec76be804fb124030bb089b19d25f0cc16e37c3f43b8606e176f2de74c1
MD5 73eca453151d97c46af51bf4133228ec
BLAKE2b-256 5cd411b73b7b67db616d008d302d1121d9673af7cadee0e90eb5bfc3e0cbd8a8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 aa8cc5ee19482e8c42587f34f98aea8ff19cf2fa0f18f7234dc961ad07a76e31
MD5 803898b59e409b2739ace4745f6d11cd
BLAKE2b-256 ce25a37e43ce0acb5f62a8a4763f689e3ab5324deb0047a984b5eab052639f34

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 a77942e3d60f6a44b80ed652a65db832f3daa8e53f7db9b7204a73899d0b4643
MD5 5b22926fd012e63c31f669c290e41d77
BLAKE2b-256 2ff1da1ab5482c17ad6feaee26cda3a63888ddf848992db6032211ac5d45f47e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 11755285de1df49c6655f91832be60cd3b1a2fa5071bf884b3fab1261bbd8578
MD5 15178ba06ee57eae24193683d77268ba
BLAKE2b-256 d34e46d88edd4c10459493b46f368a6d169859b4be07a8e7b61e63834a68f2a8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5a4081e96936d50b9fad9fc0f0110c8bc55810b8274138a8a3498010e0afce20
MD5 769cb566c335c11118caa77a4d294989
BLAKE2b-256 8cd2225143d1dc12a3aae52cbddfd187adbc8d4595fc81c43af7c596cf43a68e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 5aa8c65863277ac4c4c4700f4e4a4c0ba32e785b02b02056505fa8c87fd3b5dc
MD5 06c8df3cf1b9cf374aac01a18c4eb1ef
BLAKE2b-256 a1759e6f77c163449e23faf4da81319abd3a022ebdd388c650c6fd7603ae7d6b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3ad009bfd76af7975678fa20bd62e3ce533e47df285b7483d9f924f1a26a26eb
MD5 def1079bd08534f04490ce7bddc5ef47
BLAKE2b-256 a1b9646c98e7fdd12e0ab5aebcd863291b873affcd7706232acc3c1857975181

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 669374720d06b114a4bbc4bac9c48b03ed038a255ffc0685be8d54694aaa0cd6
MD5 83e67695f82adf0756deaa025b6205da
BLAKE2b-256 035a3da18df2e4ea90e3f0500c4c0ed0927d605a5edc32def19aa1c9b5f61ec5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 c138aeffe6f522ee29cc5a346d612c3c11958c04a3eae797a28c76698853f5e7
MD5 ebbfd97c1aae4602e2ea05b2e1be3b0a
BLAKE2b-256 9b25cb513aa21572bd5048affccb4f0b8cdf315ebabcfe29967adb5f74ba5157

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 dfb2c7bf822d8eabdd4bac00067aa71648499f7c7589e8c9025aa119bb1794bf
MD5 021d326412776354dbb5e34cadec944e
BLAKE2b-256 679e5eb528bb2fb7cf1f8de66804d4f48838c39a21b701d0d1ff219b6f20e478

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 71babdfb526efb22c9957105f3ecd47cce6259eae4950e2ff7f1101f68e239d7
MD5 e0699f9c1cb3f6e49c349245bf5088b4
BLAKE2b-256 21aeed611652224867b6afcb2aca46721e5561e28afff611283432f8a2936c2f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ca3e5bbbf0968a047a1d2124397f7b1450550a33730b624b86c90036f7f5a8b7
MD5 76cc8ecd7a589298395bd32ba143be03
BLAKE2b-256 46487bba81b8f4c6ca9e33627cf8053f4b2d8ea4500a98c081c745cf334fa46e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 533dc07bbdc8311c16358f121384b0df9ea13e4239128ff846cf6045b1e73020
MD5 9109dce11a6e85c01826a85f82f7fc45
BLAKE2b-256 c9ad15f4c1663c37067960d0c91487f784ebdf6b234ce69edf641d3f8281a854

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 0dc4209a981c3df73ec532ef4ce3bfb02412221971f2cd424704a2bbd34cad6f
MD5 c796558ab91b0af343c7ef118b821fb3
BLAKE2b-256 dcdb9c7056341c70e35663698d37a8515eafa74dad271fec924d40030d033eb5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 a27334ebc26bd36857bf546139332439034ac13608c94988e07014bc10af6a3a
MD5 67b693aed87efb048d87f72e3b61a4e8
BLAKE2b-256 6ca3b0896c0c61fcb01b4148cf9f9fa2ca0cef2a0e0656749827a56581902111

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2b3f1abea67b50da190971158d3eb8e9016771ef4e24df0ab99d2c807bb56ee
MD5 9c8405caa80c7e7514a8525cd680724b
BLAKE2b-256 f50d54223b776138cd5f4566ec8ff1c145253dbcc445160bb9298100a61ddaba

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a57ee189bc4bfd22ec924077666a8af413a6396758929c572bb4708968debaac
MD5 27736d3bc925aa2844cba6231ac8e1dd
BLAKE2b-256 533f538d511d77daa2f805e797cfe9c30bd986aa3e3a3bb080ceb8241dc36f43

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 82541f5bfe48d8072676ba374cd71ae14842122e23e6a572d8286a7d29485512
MD5 7b5b9e5fdefa4dc2a3c9034f0ae0dafe
BLAKE2b-256 362c3dd7bc843b8068c82d9990b35925dbd3fbda536aa73d9d88387b08aa3425

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0b2a3da01cb0c2181a79044fe413b8becf42826f30ac3c49f6390a3cc883f607
MD5 16010d0c1f4cd707acc9042620eac6c6
BLAKE2b-256 a45a82a6749e8a79eb558b68d893c3f74beb0a4be2c12618d3f173331e733d6f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.40.1-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.40.1-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a811624d817ac77e4fd82944620a00733ec446fe843103e9f699011ffc1380f1
MD5 ec5174e215038770a79e4f9ea9a40b7a
BLAKE2b-256 a7546e836ff297b5500ef554b06416f9276b3f67a63e661033379248405904a4

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page