Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.41.0.tar.gz (304.9 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.41.0-pp39-pypy39_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.41.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.41.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.41.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.41.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.41.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.41.0-pp38-pypy38_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-0.41.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.41.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.41.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.41.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.41.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.41.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.41.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.41.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.41.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.41.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.41.0-cp311-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.41.0-cp311-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.41.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.41.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.41.0-cp311-cp311-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-0.41.0-cp311-cp311-manylinux_2_24_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.41.0-cp311-cp311-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.41.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.41.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.41.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.41.0-cp311-cp311-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.41.0-cp311-cp311-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.41.0-cp310-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.41.0-cp310-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.41.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.41.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.41.0-cp310-cp310-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-0.41.0-cp310-cp310-manylinux_2_24_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.41.0-cp310-cp310-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.41.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.41.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.41.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.41.0-cp310-cp310-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.41.0-cp310-cp310-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.41.0-cp39-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.41.0-cp39-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.41.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.41.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.41.0-cp39-cp39-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-0.41.0-cp39-cp39-manylinux_2_24_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.41.0-cp39-cp39-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.41.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.41.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.41.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.41.0-cp39-cp39-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.41.0-cp39-cp39-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.41.0-cp38-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.41.0-cp38-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.41.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.41.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.41.0-cp38-cp38-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-0.41.0-cp38-cp38-manylinux_2_24_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-0.41.0-cp38-cp38-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.41.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.41.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.41.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.41.0-cp38-cp38-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.41.0-cp38-cp38-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.41.0-cp37-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.41.0-cp37-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.41.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.41.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.41.0-cp37-cp37m-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-0.41.0-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-0.41.0-cp37-cp37m-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.41.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.41.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.41.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.41.0-cp37-cp37m-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.41.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.41.0.tar.gz.

File metadata

  • Download URL: pydantic_core-0.41.0.tar.gz
  • Upload date:
  • Size: 304.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-0.41.0.tar.gz
Algorithm Hash digest
SHA256 451066c12d4aae60d0ff6cf1d89cc9778191ecf52dccab9ac5b61edba4f65ef8
MD5 416c0b2413e856d54d6eb4960c5238e1
BLAKE2b-256 3d0c40986e714eab51a28be4d1c139c73c25ab764ec79fc0050bc4404fb9dbb9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 9b6043d4635ca973fa66f95cad83be3338275972d41deb81cd09d16d0020c4ee
MD5 2268cf08a2d13013c3e9b73712e735fd
BLAKE2b-256 a6801673ebce42e7025c32e3df4acc2c4178ba0e8a1d9174c0c1412c07b15b12

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dd414ad0457636cdf210dac0368ee77ba80b16129925227d84e75400840c2db2
MD5 7320c271ef4ac342b17041180eac6183
BLAKE2b-256 9afd8fed3170f77402af15273d089ccb6e763749c2aa58fd387240e46ec2d85f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b0106367c1b9095691d72a28382c5b5d6b5bc23636070cddb7ef38c046cadba9
MD5 914000790584dd0de40f6131f844a944
BLAKE2b-256 8a5d0e423595fa3ef4c31613ea031f73b05b54debe52aef94d9ea0c4df499d18

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a41e0591578d68fd74c65c806227e4062f0d81d20c2b3c02cbb1d9d3324045c8
MD5 5943e8f3069253f8d498be9ff51b5dec
BLAKE2b-256 79de78a1412ceb5e1667106b55d31302eb30fb951224e3e97342ded68810ae9f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b15a49811438709b4689ac5f840ca962e06d0128978910d0c87cafc0a60d5c87
MD5 f6af7306114ae670966ccf467adb3b9e
BLAKE2b-256 d0affec5568a3e1ec975106def4dbab3e7cf0ca64b25e7e6dd28141db5170714

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f7235ae019fad23e73f5ee2bd5c88a960fcc580312f2eeef7fbf373750b0508d
MD5 4bc8c98e4950558a6fbac449d6fd68e1
BLAKE2b-256 b55cc5b245aacfe33a447f1c856af087134c1378d55754d4168a44a01384c0a4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a2b44177781ed046f2c7dc1921390b70a6e42f3110fb9fb0234b3d86fe17113a
MD5 5c5ec756f5587b37610e36cf32d4a350
BLAKE2b-256 148ebab4ac7e3eff98d8f71842881ac121cdbe92ffd808afc7f44ef6eb383c0f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 76e649f34cb7938dde3245de6b70b896d10bf3259086bc895573239436daf8c5
MD5 3fad3c963d15539c6c2bf4352ac105bc
BLAKE2b-256 a14eb6a40d5dc1e846245c8071a43d482b9c028d4038eb3385ec3706c5e63c97

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cd52dcd0f0b75d62f275d11a43bb3b7a033b1ee12b5e8ac36fa5faff51ffbfd9
MD5 ace697360313d5616a30f8a4e747f90d
BLAKE2b-256 aa7d1c2e0e2dbdb2b7e3bf3b6cd597fab03c502feb7cff0420c6e6d0123b3519

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 68afa4820ec30521d2668c5844dab84e2a4eb94d186411087e62a2af2c9ab4c7
MD5 a5c45dca2f2651fb581cdc58d54ebbd3
BLAKE2b-256 dec9c3a74f0b83f9f0e1bcd160ce97aca257f6c529588369a0f613edab91a261

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1427af8915faa060825523e74ca4205b172513db4290e902cc5e7dbeefc093bb
MD5 a2a2ba2a7aae1204aebf0ec3c3828ed1
BLAKE2b-256 72b87a8950a5458ff01fd60e0a2a6bd8a7eeb761505713edea7779118d7e0478

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4174bde5bd33b9c4876a72f8edf443a099f60838eef38cd50647c42269055632
MD5 279ddba2e96b5fba414e6339b161ac1b
BLAKE2b-256 a5987eb26465553707e9c95fd47a432a2a8ca2fb17b64e8f4c83f71008d4bf41

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 95375cca233f21b8c6ea17a18a6547ddd10b2d6a165b32514d6f7d8e28699900
MD5 1b188275493d252bb670b1bef5e53805
BLAKE2b-256 223373864318976b45f2abfbe008b8c2540479438f4a7d09d16086693327c23a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a3abd787603ad838bfc0ff2e5d4cf98d3a3c506c98a393cbf3ec47ee4e567e81
MD5 595ba72b14d37f0bf433032b760b528d
BLAKE2b-256 e2adfeef3b4f166bd44175f1742ed1725918c8180bf4ae0f7ae7a4441563acda

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 643e489a88a1896831d48b119984e0498f905f7eb9915f6d68e2201a37d7d025
MD5 fc176fa521658e0a1c0548152aa2d102
BLAKE2b-256 8ebdd6886a1fd87cd0776a9e4d7db3dfefd661cbd60ef7ea1a87c96e05e4a2f1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4c222cb1e094a548f07239174a961256438493002281e506597d650ff1521baa
MD5 f03ff96cfe3bc55d6a4381b7dec529e6
BLAKE2b-256 c7a9b6e5e61d567a3fac48ed0fa46269d877af7c9366f1746074661353bdb74c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c9e2a11e6dcc5882e3b7da55f57a8588ad02ca12bf6d65b0ce5c1acc51c5d85
MD5 54594588acfae28407d4883ad64cab44
BLAKE2b-256 8f136a8dfe91c7a1195e4fe3bba101add6be2581d1f684f0f1c083837788b4aa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e49f6f06c0fe09d0e65b9905e3fde1a526ca135d0c00cec21c09e2f57e2510e8
MD5 acd14b64225f8d11b3e28a6b0f2879c1
BLAKE2b-256 f5e55ab8c66d440679412cf722534c1d40d477850351ec94f8d6eec760691285

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 dd3b6c6594925a19c77a2352db75ae338316a35b6ec6b2a657f644b6bdf4433b
MD5 c42f6a172a63b2c18bf0375af62998ac
BLAKE2b-256 49d13fee68235ecc13a67d04f7a20d3cf1d5609f248e618476614eb46440dd46

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 1a76cc66fef4ed3ec0fd9779302f5b1d2da4c64a6128c38f35923496edf3d833
MD5 3967e1613a254ca759a556feccc40d71
BLAKE2b-256 ae4f7d976fd729fbe47133a7f656edc75b22baa8b36fb0e95a030adf970d88d3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 29f7a5ba64cba3588d0ebefc5b81bb88c54cbce0f5b62b2ac3869108970094ad
MD5 9e4921a1aa8b4b286ff91ede10df2826
BLAKE2b-256 675cfc788ceeaa60c8543056f42a53f5c7fc38129bcfe17ea04d3c465b82a015

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 4f7f0d21643f1eb790077909373533137950d54d908d8025e00974c9e320e2cc
MD5 5a64ce9c65103187a4188d5441788136
BLAKE2b-256 0f9c6f3a836bc8c286215ac9aca8ac9f2821afc9fe3c76782f9d5b452b7201be

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cd80e1b86c753eeb1e20c1b5575a03aad254ce615ed8d1fa7fb8273b22e5d2da
MD5 ed6591048b6fd7cd95dc538896710726
BLAKE2b-256 43466e723aaa6d60bebc98fc01f0186218a88a03a6036904059e895e32bb230c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0b3fcbae115d42732ac59ce4da97c3f37ed6310172dd6f2c5f40ca3fdc92dfc4
MD5 2fc9704fd74ba15d1b58c70b3d42fe1a
BLAKE2b-256 81cc24576278b6dd70b2bda96c8bcf46a27bfd76cd00d5cc92d7d128ad10de15

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 08a5f6c2ea6e74ece3999128b780f509bf560970eabf495511f9d222f45bc568
MD5 95a436d5ae44f0e468126ef264686a98
BLAKE2b-256 08f7c2e3e097f4c52031c09e7c12e6fc148531ad5ca57b7db27f7f5cad2a83d7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 75b14a50674b43e3cbeaa6b6b83f7964bc6e256cc8cd8797a8494bcce048e4c4
MD5 29bcdefd6ef25a20857430a70ef14f61
BLAKE2b-256 b05f99470d5a46526e87ad95f07a27803cf02be6da4dc65b2b64e96ef1773a9f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 56bea7d41e02045d4e3046d061d298ef89d2985a4c61ae664471c9fa5ca5a308
MD5 a0e47ca057f106c5ef87eb2dfc149daf
BLAKE2b-256 a2592cd27470320b286640b8846c590caf8bf51487de3f6e8b9272fc10c4881f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 24437c85cbdbdeb9e051bbe2d84aa0d5bc6aa3e5c3383cc955abd2f10347ece6
MD5 f93bb3f2b55434dda9be2bb015bb1679
BLAKE2b-256 7207c62cfa708b8150226fdc7d684a752bbf21db6dae246988c8f68ec96cf545

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0f0c578be6a467f63c43f738a1eaeb161782745e9fd3b134b675c7f12a50f679
MD5 b65d4fb32e871a550d8fadad4925ff76
BLAKE2b-256 470bb494945a8627ae711d0535adaf59c80b8629f73d2e56e4ff5bed977ab7f3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 a4cc56ffaeb1d3bf0f80862bbc039fe1156edeb4ab5c178072434dc730b49098
MD5 9f47a542e5d20775abfb0d1f5f5922a5
BLAKE2b-256 edec6e8ae9386b3df4aeb70b0e1b4a4d9c29378733942e14af059d8195874f78

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e2a22944a5a22e6ea82ee341e27fcd258ef656fc4e430f0614b6ca93cebfab02
MD5 329afab4c13725a99be221e66794aef2
BLAKE2b-256 0b5cf7a0f2fe5960bea25517749def4195a45f94d3770555370a3edfa2877fe4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 288413b80a2d4d3d028259dbda3f61c150731d70ce00963bdb31855b5569ce27
MD5 83a10952530cab3b74c89c1ddd8f844d
BLAKE2b-256 807f222ad88318f564336a19dfae9333f398d3798a74f1ea3ea81bd5edb21470

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 0e8d64b8419a4514024c92c0d0630d4ff6577eb1a22609bdf6a7773d340853c3
MD5 f5869d30cfe3ae07144d8011a682ead9
BLAKE2b-256 c6720fb8104be513c347c59c22516fda87850f389702c5ebe1e7f768df7aceb3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 61138276a9a9ccf0682afed69d5da6807f5049d7dff19bb7ba9094fd1dc18595
MD5 aad4e9de7c1938b5ba7534e228ea70bc
BLAKE2b-256 cc50fb60cbe99e44710c2ba9ccdbbf773fe51571e5e368a4e81341b22055f48d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0ed88040af1bcffcbb2294a89a8af68ce2020ab2a13e647f20452fac2ce48c3b
MD5 ffa067971d41199ecd933209fc38db4b
BLAKE2b-256 5d62c7a27287b8c163680629a099c36b6ef4c9066fc8575c1e2e8ea73da9ae1a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a4d782d570e0940cae8fdacef9c574f7bebb95a20f2b5ee554bbaae5c4717b4a
MD5 d1d3c83f44822a455523c148f1ede4e5
BLAKE2b-256 ae12072f886c14a2ac179ebc762e673749f6821d69cfda07d713bcff809ba8a9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 02260733b3512ac922cffc778ab9e109ccb15617b4270a525443304e0c3931d1
MD5 bc7f54df631a620a7a64801ae4f7ebc6
BLAKE2b-256 5737e06b3ae2ed0b7df4774a97255964f19edcc24781b727258efc952d890c00

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 0c95a7fc408663a00705b42187f9dc462b1a6124545bf1ef0042cf1967f13038
MD5 a21eb6877f65aa9616ba0f15b30c0bc2
BLAKE2b-256 8121392e085d3b7f4775fae31eb3e9feb7649b9cdeb007e9b5e2d4267aecccda

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 6e0b96d74a3b58b92af1ef1a1f3f3636c8af1c2d202a32e103d68ea67b86e705
MD5 c8741d36884e77b4abcf4530ddb488eb
BLAKE2b-256 65e1351a1af8ba90854dd178ea4db384350e6e177bfbf4a7edac827e6c997dc5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e83713a4ecb9a77686e70df3054bbee27725a1a870c2b70036ee1fc19c75debf
MD5 b99d78f9712634f0b57ccb6ad94200b0
BLAKE2b-256 6e4cdcf558902fb070cd967ca285ee14c75133b81942f7fccbc98e46ef9e4c7e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 54f0c82655ce6a7822f2630fced74c962da34f773970f3095d0c8313fa43e847
MD5 76e8132c3c34f1a291b65bb9c5576958
BLAKE2b-256 2273746b803ca8dc1412b93c44ac358ff9b3350ef678850aa5ec0405c561903f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 86ec3be271d5d2a5a5a725678e1ac2ce19a4d260ae792516f01f19115711eb89
MD5 f9fa43dbd8f4acffdd0e55efd2ef0f7f
BLAKE2b-256 c4b092cf0c0f48c3a50d09c53aebb6c9aabda1a586bc4277bcbb866132affda6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c6e2af2f305795d145c5e945a1d4f0a3d92f08a7f2546a38fb861b6606c863da
MD5 72ece42144783d4cb5a61cfb0a0c5863
BLAKE2b-256 885b68a45bf0d6ead34ca32595c73641eaeac25d836cd4cf646ffb7d58c4d5d2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 9d84e4d5d95ecc95ae066f583489f7d648fdb61352187306aa9b9f599b4c3e81
MD5 f059b91c905067e8cbf276edd9397e36
BLAKE2b-256 84362cab774380fe0206389452e3d3d951e5e6921a74d85dff7436208df8fe95

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 5dbbabef462c7be68840d8035a94191dd87d7c4b25548aed090a1ffdb2627d6d
MD5 4029ce6ad8f22a75ff2c5907a42fc699
BLAKE2b-256 623998de1faaf3eabefe9da9f913a1d2b0673f57f153ae79f4c7a6f6be24fec9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 ef6ab5a72e0683b48b92a401910fe03ff7ed0d7f5488d387f09cee35d1eefee6
MD5 182b207d1531430865ec59b3b52cf996
BLAKE2b-256 6afd5ba8627b05bd4d696e38847132932deef669e172460463985ad4899f0ca8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6dace9847891acae92f10866dd5effff3b5e8609fb761a062a4957da4df78338
MD5 e374faac8a31f0f1efff22e2d81ec98a
BLAKE2b-256 de5adebb3a56e23c7b8f4ed8b736857f7ee5cf19faf9fbd84e5d6f0d95a21a87

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3a6f33580723edefdd6749ffab1361ebc2d0c8ec430e57ed3833f71194aca8f5
MD5 3ee9e3912cfacfc8fc644abcd994ab61
BLAKE2b-256 682b9543b81018994b40a15656372dbb95d86e279c6c2b465716098f031474ce

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 e4a978c19e3c67d9084684e7be45632deec8ededb9d10ff8d56a242e890320bb
MD5 a07df8b1227c2bec017ca09cad9dfa7c
BLAKE2b-256 1493ee28489f5a6c12bde82e3e4c5b3bc4e017eb97f120e55143b1958f308215

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 143cd673c2874e7cba3a074c8d693094a51b80c65c8aea5b850761c0b8ef11e1
MD5 55be770c88768732246ee54240e00358
BLAKE2b-256 6f04f427da18f261d4dad9073e628ac82639cfc30ee98a26d501f5303ff9ca89

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 904fbcd51aa3885d5f1a34ef7c5beab94208790551037c99a2ed9432d5a13223
MD5 a1e8a39814c483e5ed7443155b7cf84a
BLAKE2b-256 282a5dcb734312c846e0323f4e64db689185d209211f3516d51a4a53b0082028

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5dee15220ca6a41cee480925130149856b211e997f4c65edd394b0637561d67a
MD5 8bef79aaa58586ecb88f3ecb68ac11a2
BLAKE2b-256 a07ebe48286eb8b7ecf27faa36f37f68c94ebc60cf33c8eef6d4e1ed1580a1ab

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d9bc0f70a6eaaaaba46217a041f7586864ece09dbf1d46063cc98e4025a6aec
MD5 f080d49e697c97b3a8ce4206691cf426
BLAKE2b-256 28c46b0d007a549c9bc07291222ac3dce1e1c3d3ea8d40ab428505cf124a6412

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ef1b375902406e49ab9ef3ac37208d1b21c9ed6d3cc2c106ab01c815ec1598fe
MD5 b896e1086b994ec6bab2f4d5da8e721d
BLAKE2b-256 dfe9bec81fb0502335eea922cd3678b9b27a5478af12b904715ae533f9879207

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d925a5fe10901da09c8e4a7a51b3ba5a765f09abec62a2f50cc1cd9432c1d72a
MD5 9e6ab4f0ecfa8af2ec2cb344ef3ffc6a
BLAKE2b-256 808b3139c10cb64fd71c904b39a07eea3a0ee4a303aa22f69580eea48e6cc09e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 14308e5afe1acf0bd9617d99aa508450957aaa5b5c00e7fda0178f9ed397158e
MD5 be68dc8a03693758b0399a2d9b4a426c
BLAKE2b-256 549cb4c4ad61f0e4a6c674427774d3f8c9d641556ae940c08500effa5e209500

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 c55684906d72359772e1e35bf289f2286f82fe0e29600dc08e8e324235784296
MD5 9b302a8197bfb93ddd9e62754db1c49f
BLAKE2b-256 22af41f646dfa49df81b3647d627b13ad94aa792281f05a574473add22ab460b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 a079aeca4083c2da9017f2209699585d9961c658a4204ddc16a45f150d148e1e
MD5 9431af51949ac5770b0ddaafd061be25
BLAKE2b-256 18290604a4089235542124766e1b4ccc05916440964ef7b44c2ddb814651332f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ef62c981171a1e6316c77a854946793a2f30864b613ecab44b7cc3370d968b79
MD5 aed1398f4fbd71981c7b800bc18a7b6e
BLAKE2b-256 aad29b54b155e50b31fe0d2e63f9312b6dde90ce2119cd24a7dbb245c65f1294

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 521ea070f4b5fde9cc72384861de07d187df56646d9a2560bd5ba0adb8c16348
MD5 7fedb719014273ac0c44ca9f1751f9f2
BLAKE2b-256 6963af3a1d24f94ee43831bcc5783a3127781fb196610591fc3db330dfb6d7ed

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 35a240969539dc868d1aab87fb491d1ab210f0dbb7e904ed89c085b9b5d91731
MD5 d7f4fdaa3d936ee432373ca5d6fad1a5
BLAKE2b-256 906d91f13c145aa297194e0cd42d479d79263176a37ef7cf4e3906e41804ef70

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 91fffa90945942b68bba58e330b323bcc4f8abb4418baf231d959746f79e6084
MD5 ecd8b41b636528b53c9f883986229576
BLAKE2b-256 6e07dab3fa20bb6b87d89fb5c8af4c0b60a360583879230660ed560bd61fcc71

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 4abd1090d22d31df2c597f2cf685a8fdad6a416c1a157ec2d84f5c7ca585d879
MD5 dfb7545bffeaae2b90dff12fd9002a51
BLAKE2b-256 48b8ed8d93e3bd4b91a8825a9e29c6a76415ef367161a2f1b90ae1fe6febe3d1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 215990713a9efc5f7298f2b90f42a428ca34b83508991becf525a498fbe1eab7
MD5 336c350bf6d2336bebd5c9a2b7ff0de6
BLAKE2b-256 977ac540ef7e19d1aa71e84b762f3a97dd4bed52c0c9ba10df575149e0cf8030

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bd3183cbd42cb1950db2895015105e8ba5f53675ee1f226db6f25122591aadbe
MD5 f6018a2bf36ea247c578879136fc5c00
BLAKE2b-256 278d64b30290397629ed2a181b9f6c60299c9898ce77bc7974a07a17702de38c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e06c04ea70a5d1c3b433d41ce4efca899bd05c00968597339d03150eaea59228
MD5 ad4bd3a8a386ddf828c1f704e18f0406
BLAKE2b-256 5dbd25212bffbdfbca760b50f7d49ab4780ef8c229cb6113dcf2053d05a004e4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f919c59b5b36226a440bbff5d72918e4a584f761b4ca701e26fd6ccee1e88d2c
MD5 2317a5583460fc31444deb87c7bf7470
BLAKE2b-256 d01c3eae058a3dc55ecfdd9853ee5f0d28fe8f2d309237fe3aa9719cdd66ed18

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a4799ae49cbe925ecf66126ebaa65265c17b8273648686b25be2667dcf8bb47b
MD5 ad94dafdff8c069ecdeda3efa3545108
BLAKE2b-256 604adc48077493c5ba3673ce5b76f4279c3e0e8d535b6cbbe012aecab7d9d83e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 446ef489a322cbac7aae3d9bc6c98c94e1aa64014e4e45e61a476fb38f254549
MD5 87d97577906589e6b5efde7d88d2ce75
BLAKE2b-256 aff5653c7176c4d85fa10f72486e89cf871e79fe3313229214add25e53a70639

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp37-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 a821e40d9cf3f76a7b7db46df8a77cff075e17a281fa05383654d520909149f6
MD5 892a2c5039c85f62a6eeaee571fa01a8
BLAKE2b-256 6583593ab2fb6e380db7a81b2da15963c253f140f613f64a4b1ff336a1c848f2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f678b39cb1ddef6ddbd44aea51b4151f283e1ac3a42f661ed6d95d91777c6d0a
MD5 ec298b00a037359bec0fbe690c39b1aa
BLAKE2b-256 2fc5a900ff34f1c4b98668e66e4d9c270e3c171c1a8caef88791d38f5de00816

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 42b41e04695941d8e2fc04aac3493fb6dff103ea945e38d9ce44b5a790c6805f
MD5 4f9f79c0281dc69cb01553a9cfc19731
BLAKE2b-256 1912afb5f1a95dcb9967e473afe147c8da457112ba99345ac3573935fcfe5fc8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 c62d8764a5efe6ef559b952b4c32cd491c87141528fe0fef8ab9fa8ab4c7b326
MD5 ada39de873cd0e3a358aa1fd56bb2c52
BLAKE2b-256 9107a477e86620632ddff85a04ac90a527a87ecd64ebc910629d2f00f50f14d4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 849f845a5ead7948baab4bbd05875ab140c7fd7e6df5d717500bdbcdac6d67e4
MD5 e5af2ae21ccd439c44bbb90c3ad4e750
BLAKE2b-256 cd9246c3518fa899c9fffbbd08b6c6e31cbd5ea3c93a752640c004c8ba12e4d9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 fcf4fc1030391082a83b4e1a32d09d8494d097d7ef66cfc264879b5fcddb1ad9
MD5 a3851d40f955ae756841bb45e8c5dfbe
BLAKE2b-256 2a2b08d569f7ecf80100e4dc31d4610e0517556bf8670790a17513b72c7892f6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cec299a5a7e7771a827089aaf6b60f76d26c2e591163abaf856d5b8aef69db0a
MD5 6da690659a836b02b8452fd9c488f711
BLAKE2b-256 a9627ea3c09a957da3fdc1d37b7629764dee217cb9c33ce51d00db554ce60628

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 59238ebd21f74262ce98672375245ed83d30fd30316c3a281918fe26c94fe008
MD5 934158767e4401c92f48a7695052f0ca
BLAKE2b-256 264f81d4070353d24d98aabf94359927efeeca0ea7243776971364ecd3062f2c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ad6ab1017088e39a2088fc5410fd2a86a1a15d8df571fb0b338b4b87442779db
MD5 88e4a447721d5b2d7e84f2c89f2c493f
BLAKE2b-256 93ba00208a2529b2b8b67e107a1d9c8385f8098a7e080242e9baab366c12b4a4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0fc83d98ddce243c9eebac4df858e8d75352c58fbe7420c938d5eef9cb9247c3
MD5 caef3769e60e740698774edd3ae4e8b6
BLAKE2b-256 9cd99e72bcc311b2882c1b2bf1b98ce47d1557024b31ae5cde7171a8764d3a8b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.41.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.41.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ef71d2c15adaef8f32dfac5771fac19cfb325c1586e28c19eaac78e9dbf1f386
MD5 bda90f46e83616b796054e69c7941962
BLAKE2b-256 bc47b42df256a2b3e4be7f38d3556eacfa3745127b5af2a8bad441aef7883361

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page