Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError

v = SchemaValidator({
    'type': 'typed-dict',
    'fields': {
        'name': {
            'schema': {
                'type': 'str',
            },
        },
        'age': {
            'schema': {
                'type': 'int',
                'ge': 18,
            },
        },
        'is_developer': {
            'schema': {
                'type': 'default',
                'schema': {'type': 'bool'},
                'default': True,
            }
        },
    },
})

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [kind=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

Benchmarks overtime can be seen here.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not design for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.5.1.tar.gz (152.3 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.5.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.5.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.5.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.5.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-0.5.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.5.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (942.0 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.5.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.5.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.5.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.5.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-0.5.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.5.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (942.2 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.5.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.5.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.5.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.5.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-0.5.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.5.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (942.6 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.5.1-cp311-cp311-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.5.1-cp311-cp311-macosx_11_0_arm64.whl (860.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.5.1-cp310-none-win_amd64.whl (765.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.5.1-cp310-none-win32.whl (710.4 kB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.5.1-cp310-cp310-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.5.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.5.1-cp310-cp310-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.5.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.5.1-cp310-cp310-macosx_11_0_arm64.whl (860.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.5.1-cp310-cp310-macosx_10_7_x86_64.whl (941.3 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.5.1-cp39-none-win_amd64.whl (765.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.5.1-cp39-none-win32.whl (710.5 kB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.5.1-cp39-cp39-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.5.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.5.1-cp39-cp39-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.5.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.5.1-cp39-cp39-macosx_11_0_arm64.whl (860.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.5.1-cp39-cp39-macosx_10_7_x86_64.whl (941.5 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.5.1-cp38-none-win_amd64.whl (765.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.5.1-cp38-none-win32.whl (710.7 kB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.5.1-cp38-cp38-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.5.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.5.1-cp38-cp38-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.5.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.5.1-cp38-cp38-macosx_11_0_arm64.whl (860.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.5.1-cp38-cp38-macosx_10_7_x86_64.whl (941.5 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.5.1-cp37-none-win_amd64.whl (765.8 kB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.5.1-cp37-none-win32.whl (710.8 kB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.5.1-cp37-cp37m-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.5.1-cp37-cp37m-musllinux_1_1_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.5.1-cp37-cp37m-manylinux_2_24_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.5.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.5.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.5.1-cp37-cp37m-macosx_11_0_arm64.whl (860.3 kB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.5.1-cp37-cp37m-macosx_10_7_x86_64.whl (941.9 kB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.5.1.tar.gz.

File metadata

  • Download URL: pydantic_core-0.5.1.tar.gz
  • Upload date:
  • Size: 152.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for pydantic_core-0.5.1.tar.gz
Algorithm Hash digest
SHA256 f635067a776f60666699560664fb24b748e334a9008b125bc20ea8b71184ef9b
MD5 9ac31780763d758aa0e7ece3dcd3fa74
BLAKE2b-256 aaf707d3fe392113ac3526834e72b0c2500a42875f1261e9f75c9aa9867b193a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dd97e0290ff6008a63ec1a0aa142aa4ec4a9fbc69e64a153afa2bf9bdc87ab0d
MD5 b174ab634411e130822d8647d5d6d62c
BLAKE2b-256 f99a6474a4556a0e61340f813b067bd3770bd275841518b5dcfeafb80ae91f1f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 559027b40259a35be42885a70cb36277354dea69316f58bf6f6f6ce92a0fb6c5
MD5 91e970850c1c0a183143b1aedf3c714e
BLAKE2b-256 40b4a551a91ff39c50446b7c5cf141ec084483ad0e83735f330dc39b6fcd0aae

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2909eedc8d2f68f5216d2472a6c5d4c810eab299a0c67397bcf3b785c7acc3a
MD5 35bf767b261a86c7a4f179f723bbb1ed
BLAKE2b-256 871c24e6ad111f65b551dd470ec171f7394166dae15bbd4963cfd72d6a9e73c9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5fcf5dc0cb3228f18390618bbd94bc4298d696a0e5201022dd8cc4e800fb37b2
MD5 4b344e4d146c7f33a40eda941b3d162f
BLAKE2b-256 aeef35b0faaba8ee81dce9c8010db3e35d09cc349a37ed8343f80cb5ad9c8a88

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 3082bc2fb24c4cbe429587dedc4a8732ee3d7ec594d860d4aebb3e9e9419dd85
MD5 d3aa297260dee0ef62b8a39f3ddd96ed
BLAKE2b-256 66eb4a7eaab4e9202f5b3f3d1c108223d349d7238de047a302d2cf9f708fa3bd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 bc23cc3f97b9adba8fc97592a4bec36bef7d37c147743d27917e85d9afb330bc
MD5 282359cea7439e2eb37932edf072d638
BLAKE2b-256 845bf5d11c1b7cdd71a85344bf463c7876b295956516636866e526637b9818c8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b59496e427ba4bcd864d20914d600230b1a419deab900441a061ac268db90cd4
MD5 a18eeefa28961504024f03a1e100c70a
BLAKE2b-256 a7970da967ac07ede7f7ba6a5ef3d1bf0ab5264a3040a1467c950b6ef8d83b63

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d7e94d1a372689680c80c4e45676f843d918610d19fd567c403626913adc2134
MD5 634b86621393706240676f76ee0f6174
BLAKE2b-256 9081032c82647107aed04487ca9fa6df6446be1bddf2e86ff061e4c2f774ed65

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 36059dbc2abb16e43691097d3075d1ad7b76e14a369511b2277f5123dc5c87e4
MD5 bc21b1c736a0129c6ceabff4319315f7
BLAKE2b-256 22147325016ed32158dac39711f40dd701a0d7167e5000d346ad7312de00f660

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f84c4b621b5b5f450fae40b51734005cb92318767ef235d124fe8ae8c483d36b
MD5 8e9c5124d0328050db8fffe17e61c633
BLAKE2b-256 a1a92d15c5bb7c83583a81171f80c141cd304cca579801d16dfa5f803044d4e6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 df1724e9ea0430017333831b7c4473b2ffbabc8448c4f5be4b59ea71957dc133
MD5 06b76a20c9408feb5f7c5c2956ae0565
BLAKE2b-256 e4f0a4d0d0bc53c50426ca0467effba046cafd217a912aeeb1548d9ea13b99eb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 cf6eb4e925542db8c5abc902a9da2073b58b5839fcec389f3c7d2d59426ff5aa
MD5 a63d0d2ddd2651c0c4eff26d8b32f7ba
BLAKE2b-256 38a871eb315dad0238c2d5cc66fa9c9c5b42b60690a38d540a85b7a1512b73c3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 31f5266f6430f681383932663632ad0eb556706196b292ee95a5978769e4dd69
MD5 cf849f1b98dd789a50bdaf6ba4ee85af
BLAKE2b-256 1461ab70191c0075d238ec67b3946770a3da165bf4d0562c368df73b1e07c2a4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 07ac0996e15e0facf649e2a12b1684c23bcc9e3a752dcd3f5bdb531008124b8f
MD5 ded2379cfa006078977274e39d6dd577
BLAKE2b-256 68f625232d0a522beea6f6f0804d68408647d369994c999c4fd288bda40150c2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b5fe80fea26d4aad4b75cd755be10339d7c2dcd342cf763945c144ebab4fea9
MD5 0404c9377ee06c9706ddf268ec7fa57e
BLAKE2b-256 ce67ffcc6989d6e9c1b3c43670e5b73776d61a6d63b8413b27f913ce4e4f17f9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a39edb3b0138d6054378a0ca58e6c872006a06a7a9020ac78a2fa5d6319911c2
MD5 3de68f414aa8e31f96f5e01ae0a5af5c
BLAKE2b-256 72d2a4b1a96eae0e5adbc41a90c10eb0010ccc2907bf460156ba92f512720ae3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 71fde8d11a39768fd10f87fa46025e5f4d2ce8b283d33eb7782b4739c5eca822
MD5 1973ebce2f2c2485697a26f415ebdba0
BLAKE2b-256 2b59c2fc37c73569276702e17b4c459123aca2085358399d35301bc17a2dca32

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 eb19c025360c03d09e34b77c6eda5bcce03c6e433bc567b8ecb77effeaf4ff98
MD5 1c0c5d3e5c2e0355a3b121e0cc1304a8
BLAKE2b-256 98ec637251eb6bc996a47af739ffcaf0961b7ca0879179395b7bc4373f399514

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 b672d11b7c9aed43d1db470db578796a1bac296369efe3c5ce9d2fdf6b29f61b
MD5 d9e77f84f5332e8d4006042e3f7f48f2
BLAKE2b-256 5285dc3dc44ef0c45125be02468c825a88f97dad7757b3bd7780aee57b7e9282

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 42d69e8599d40f828347b271ac0d23df045ea2bf73eb47275bddf9bc254351b7
MD5 80efe356b449559517b5eb6dbe7c1290
BLAKE2b-256 bc8ecd8fdef70ff0e5bb3f29387f503a9eee34ef0dc7fb41311d6cfd9e35a71e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 44e0f840e068503001beabb217274a12176c1729897180c3c970dbb4555eabd1
MD5 b37a8cd7957f31b15926b484c5f4e610
BLAKE2b-256 0c0aac9868a383f24637b857c623c74aaa61d9f5422bc577a89bc5813a3e2ae2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 b3db7bea09958d09e3ba7bed3046e70739eb245d33cfdee56d8dc4e2265073a2
MD5 0ea0e34d1ef4600b86b1da2ad4cd7860
BLAKE2b-256 eb123d19ce642e6cb44055020ab0e0f468171e8359341d5109fc8aa07cc55a4e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 db57003ea2937c564a3764a0029aaed5aea4058c547a6eb4da4241e988646637
MD5 c056d8e66c0a2c85c0d0c082d9d6deb9
BLAKE2b-256 0295fbd61baaf2933c319f81c04fdc377920f4f185f62bdc1aeea036b0ca3253

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4c2d0efc9542ff6dd0839b35e3b8b851a9d6edd579ec626c6f875e3a522d7b96
MD5 b2c6f2a7ea15e9f24c9e6d8404a74e1c
BLAKE2b-256 8a471f031d36dfa0415420fc56ee88e1784a610bc41f8226e243a47c89736fb4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 97b63133e32cc86d066ce9af851b15d4debe4ad3d37da4db06577cfbb9686398
MD5 faa78fdd70b68b2c326edcd98f584f77
BLAKE2b-256 afa661e822d8d17ca899aea47fcf08105faa755ad0bdaad3392219892d15fbe4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a8c156fdda382d8cec294406d94a1b0005084fe767e09a1f3518da38119b2f83
MD5 e7ec6b75c0f912bfb2bb08e0454e640e
BLAKE2b-256 46a1fe7688b7196b3475584f003d6857871c5f31b6f9f58a1e0b644f17c6d9ac

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f42547656ff31db25a334dd2f66aecb3c616137fa118624cf2f167330c691ad9
MD5 a4cb41ebe48f6e44d7233eee1e771fff
BLAKE2b-256 b5aafeb5290b7f799029fdb135de1f986c5264b94c4960383a747b6fefa66c0f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f466e975fed1492e0f0b3c3f87f77bdfd3ddc1f02dd9b523e1c6e18039ce3bab
MD5 71b9031d2ab38234b5fcd9e9b88ad86e
BLAKE2b-256 aac77e07e9535ded656a052ff8b3fad91d5230c7c9a8eb28df68d57e51f0d0ff

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 af9049aea6cb58b435ab836ef8c252bff505143c5dfb006486bd8a72a18a3a7d
MD5 077e7b35e4d875786b584d0cdbfec93a
BLAKE2b-256 42841cd7e30e096b96fa03508269a7c8394f62f5ef15f54e1da25ee8e555a65a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 35e1555cc02d1e5df28ae8be2e61902a6c1a008476926dae9070174b032b3a78
MD5 602b9214bb3bdb51a05dc224b302333e
BLAKE2b-256 160395e7535d2b768a5800c1abc02feaea9f250ca3e434924587ce13cdd6c98d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 ab58facf52232c05761759971eda2d0a100ec921d712f3223a4520ad2fb7b7de
MD5 9b9621e0e8c8787ddb05efa1adfc4cb8
BLAKE2b-256 bbd2dd63170e578189bdbdbd0f4f030a966cb8a544571f962a03a7cbd8dab6be

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp39-none-win32.whl.

File metadata

  • Download URL: pydantic_core-0.5.1-cp39-none-win32.whl
  • Upload date:
  • Size: 710.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for pydantic_core-0.5.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 c275523d0c2b34cf7482b98ade2558e17a7197a640b785a434cfbe50f5cfe6db
MD5 c24b32105aba470c6129b5d4cee0a342
BLAKE2b-256 50e7f5d0b44cf87a8d64abb3f6482258f7ac04892d5df4b9cc992e28e1c0764d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 adec10abe6ef8ca33594d443f8abbac7090d55073ba00eae9b8cba912f9085d9
MD5 d24c9d3eb41ee966ba894f68cfe3dcd9
BLAKE2b-256 48a1340938429994f770f3b0fd2b141e4516cd5fe66daec6fb53756fb5726d5a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f06cf47ce6df265cd7ab5ae7c2fe13fbe6d4a651d32bb11bbf9d3d46a5178a25
MD5 ee6907fe2f519193466b74cc16cae129
BLAKE2b-256 c02bbbfe260a45778f0cb293d52a60e63818f0b03aef7d3b6a041b1969182afb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 1042b4c5c83d5f589e02e2e6367c06d5b7fae3abe03e0f9bf52563bb8a752665
MD5 d1e07b71c008cc814ca50234b888224a
BLAKE2b-256 bc8aeb5e1804a78c39a9f314741daadc090ab5eedac81a02b5d7c28f16a8f57c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 feae09646e32e2efd00b4cdb40d4e5990a4d0baf97c4834f88600bb92de3334b
MD5 58be61f3e72c452f44a0da560a628e31
BLAKE2b-256 8c68bddc9fe9cf3c5cb33d701d4504ae0d23a48e670d286fbb856aa3ee0b982b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4629dbe2e3c3a8b7cff5f2d36677fa1a30a19818fff38129d52c1cef4ef84351
MD5 4ac52d48782aec2be6351b2579653a1d
BLAKE2b-256 15cd6e1cda2ab865e4555fabe9f4e68599569897ad3b43cd6f1fbc180fa3fe48

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 dbad14e2d359280fb1e77ada3d5ac253c919f5d4d03f0cae0350853aa97b32b6
MD5 b3bf1bcb5ba7bccd027fe16fea8bebf5
BLAKE2b-256 d2f5194b2191145cb146e207154d230d68ebcc5978fdfde1c14a740444e1f79e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0a01841ddb328102e96ad053343919c4627d64db1777701035aa3187718b469f
MD5 d9c5670e62c8fe3b5af13cec8fdfcf67
BLAKE2b-256 a7114c59fc252662113f60cf66fe0a3f6b7b6e7fab2a8460071514a84db55356

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 14ef29757e4a54c8efce1f8cfc5879d77014b84b74f297df1d5c63dcceacb262
MD5 54fa5bc1be16f41cfe4ae0234cfdc653
BLAKE2b-256 d72b91b17c49e00421bf7855b72f31a9e5ebbc7e8f107b17c2189e036acb1646

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 695005b8c5a488d5a0bf048ea4ed2fa7112602b7ac7133ba4faf31d75c4037cf
MD5 f19a7e326e18cb9f01059af76fbf41ad
BLAKE2b-256 196887c75f15dc0a3e40e6b4d27b5114f5d5413f04e7e5b609cd3c0295a0cb98

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp38-none-win32.whl.

File metadata

  • Download URL: pydantic_core-0.5.1-cp38-none-win32.whl
  • Upload date:
  • Size: 710.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for pydantic_core-0.5.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 975dfe6316a76ce98eeef26aff186d075c8d26953e551f9e4e76de50b71b0c90
MD5 07ee8d378dbd2398f9005370344fe099
BLAKE2b-256 7c5e6b048ca88663c7420ab6e68f09a9ea9eb79986832c33253bf025c7e00a8f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a045b530d0dc1c297478e387301af258f14df88ac63a1585cf55a060858a2fe8
MD5 c00355e41e93f98c3eede591d841b28d
BLAKE2b-256 4912d9a434216dd813a8e30cf31140ccd7c30b3503306c70995c504b5a4a8c13

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8ee85746f388517202c3f0dfd591848151625013acaee20609d48fbbd4d8ea9a
MD5 7521afd19e09692097ac0c495a5d1f9b
BLAKE2b-256 4249675c5619619c55464064059f49518cb4b033cbeb33e56ede03ea3d0abbe7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 2ba13f34ad4cc7b17668841700057c78b3692017c967b55f2209c0ee4fb6f948
MD5 f806dbeeea2247d518834fc3093a566e
BLAKE2b-256 064dfe9699253862cc3d699eeb5b557facf1d443895412690914ea00b2a74033

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0107470bbc50701ee741694c773893f1ae8bfc518ffec0514b5be7462bb2abe9
MD5 cb776f9cceb9e671c631ec10e5437cea
BLAKE2b-256 699698c22e9ad133815e45f044b8aa90502fa42c2b6a3f97c0274c1e857a01b7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7dab05688902fa262abfea5f07eb3b3f14fa6f5e8b413b7d0f8b355e310967f5
MD5 cf5a2e8bc4dd3f0d2a5f619850e1c83a
BLAKE2b-256 fde21aa135849716d93f086e886770720383d8cf189a2a2ee1595ae05452e12f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 3ca36dafeb9b25c408477aa32f3af85d573e6acb44a2ef1937ab20afadb29b5d
MD5 ce9918ca859faa31a7ef3521ebb7e81f
BLAKE2b-256 a40b29965e5b2b580b73e1c7a34e082930d55a0dccef67f07855a8001daf1a3b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e61cafff7f8f2af8377bd76b1f822d624443e5a754a34c7d7b8888ac979c2df1
MD5 fb9dd090aea1027ca9073e7e2a8bf8fa
BLAKE2b-256 e92952f1622702ed79b0049da93eeedf74728e52c3e6a4e8c9b198e24e548ffa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 5a59cee4a4a6667f3fca62d0167e8f95e8b70605d06c850ee816cd14ac2c80f9
MD5 8d2f781a76582e5b93f792533e5976af
BLAKE2b-256 301ac55ee22c444d7a3c4ff3b700944e8d3781c64c4975c98d2182e55b23b280

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 98a88948b75a81d849b4bd80b19fe0843875ab97e29830d0a9fa412e9552f946
MD5 dbe04a5a1554ee6d9e177a8a51298657
BLAKE2b-256 1dab0ea842bea1cca1eeb0b8a6ed5c08aef731525ff7d390116a55761a021bf4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp37-none-win32.whl.

File metadata

  • Download URL: pydantic_core-0.5.1-cp37-none-win32.whl
  • Upload date:
  • Size: 710.8 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for pydantic_core-0.5.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 1000d117b51f7118e30c8d2cddc3cd6c9b1ac5d3c1d6ee0692474ece7989c49b
MD5 2ec9a49c2d6e800e5006251efa5f1103
BLAKE2b-256 9dc2eb222dc5920b1aad46131c7db739355c9ab9b598ce875cee5b358755bbf8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 43b5545e7e248be3502bd477b60f440bd7abc5188af4b51da60416f4fccf2a4b
MD5 8e040bd52865df98a694a6849fd95ff1
BLAKE2b-256 98a7aa9b04e79ff3a3eecccc25164030e7b47565531238df5a36ada0205bfd2b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0ca837f5ceaa81c0096df3f93b422c472e2caca0fdd8046d3913962abc35f932
MD5 2b8563653eca33f443efbd0fe18b8c16
BLAKE2b-256 856d309437405f49af086d989de0ec0bcec98ac6b28960bfe04eb31217e97c15

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 5edf13cdd02965b417ceec6311110f781e7306749a5095b6334448bdfb983467
MD5 7ef468c98655587a501bf668a7441690
BLAKE2b-256 a5c5586d0145bf47f9ac1b97661569a74fb4a8ed0763c013303311922df0e477

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d44ada6b6005fb9f88c803cca724116f685f8df6ca66e856663756cd37307412
MD5 5ef3a67e34f5115684c4669bafdda869
BLAKE2b-256 d20acd1036c0fd7aa02c876c92253b3d27af8457a7b6f88e0f79292a4bae6c59

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dcbba0d5f319d707bea02d62917ef6033a2772c2c2d89a29fd0230b823f4644b
MD5 64f8fac765f2a09e73ce43ec01924b14
BLAKE2b-256 e09f0c00ad17fc01a13c25b38ae3de9bb4171a589b18ad8fb3288a60067d22a5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 0830ba1bd30e8aeb87404bb1482c79a3e9ccb5726b045bcdfc394c0858b9109a
MD5 54be480ff6193a4af6254c7233c95fd6
BLAKE2b-256 0ee9edece0b1b1f9029e0db66502c2e9a1ee2857942d378171b9efa82f92574b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8ea01e7b239d21d71fb176dce34d5c8e661fd808869c7a67d44a47735216e46a
MD5 7090938e935f37e8dab2ea5f4a50ceef
BLAKE2b-256 a4b68160ca8190acfd23ec3f9cb590afb2e83ff68af2ee937796f52087b2e8df

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.5.1-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.5.1-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 84805b4a44e86dd3effacf390e9c230670a44d753416d3d2f5666d9cd21ab777
MD5 d5ec8ef45d228fe3edc4a88bda9c3dce
BLAKE2b-256 1a7fbcc97ad3f8be09c46897481de034721c2df24e0247ef6e5a1000f81def18

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page