Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic.

The package is currently a work in progress and subject to significant change.

There is, as yet, no integration with pydantic, so schemas can only be defined via dictionaries.

The plan is for pydantic to adopt pydantic-core in v2 and to generate the schema definition from type hints in pydantic, then create a SchemaValidator upon model creation.

pydantic-core will be a separate package, required by pydantic.

The public interface to pydantic shouldn't change too much as a result of this switch (though I intend to clean up quite a lot in the public API in v2 as well).

Example of usage:

from pydantic_core import SchemaValidator, ValidationError

v = SchemaValidator({
    'type': 'typed-dict',
    'fields': {
        'name': {
            'schema': {
                'type': 'str',
            },
        },
        'age': {
            'schema': {
                'type': 'int',
                'ge': 18,
            },
        },
        'is_developer': {
            'schema': {
                'type': 'default',
                'schema': {'type': 'bool'},
                'default': True,
            }
        },
    },
})

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Pydantic-core is currently around 17x faster than pydantic standard. See tests/benchmarks/ for details.

Benchmarks overtime can be seen here.

This relative performance will be less impressive for small models but could be significantly move impressive for deeply nested models.

The improvement will decrease slightly when we have to create a class instance after validation, but shouldn't change more.

The aim is to remain 10x faster than current pydantic for common use cases.

Getting Started

While pydantic-core is not yet released and not designed for direct use, you can still try it.

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at pydantic_core/_pydantic_core.pyi and pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Why not JSONSchema?

Looking at the above schema passed to SchemaValidator it would seem reasonable to ask "why not use JSONSchema?".

And if we could use JSONSchema, why not use an existing rust library to do validation?

In fact, in the very early commits to pydantic-core, I did try to use JSONSchema, however I quickly realized it wouldn't work.

JSONSchema does not match the schema for pydantic that closely:

  • there are lots of extra checks which pydantic wants to do and aren't covered by JSONSchema
  • there are configurations which are possible in JSONSchema but are hard or impossible to imagine in pydantic
  • pydantic has the concept of parsing or coercion at it's core, JSONSchema doesn't - it assumes you either accept or reject the input, never change it
  • There are whole classes of problem pydantic has to deal with (like python class instance validation) which JSONSchema has no idea about since it's dedicated to JSON

Even if we could use JSONSchema, it wouldn't help much since rust JSONSchema validators expect to know the schema at compile time, pydantic-core has no knowledge of the schema until SchemaValidator is initialised.

Still, it wouldn't be that hard to implement a conversion layer (either in python or rust) to convert JSONSchema to "pydantic schema" and thereby achieve partial JSONSchema validation.

Project details


Release history Release notifications | RSS feed

This version

0.7.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-0.7.0.tar.gz (159.5 kB view details)

Uploaded Source

Built Distributions

pydantic_core-0.7.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.7.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.7.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.7.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.7.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.1 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.7.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.7.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.7.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.7.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.7.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.1 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.7.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-0.7.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-0.7.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-0.7.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-0.7.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.1 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-0.7.0-cp311-none-win_amd64.whl (924.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-0.7.0-cp311-none-win32.whl (867.9 kB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-0.7.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-0.7.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-0.7.0-cp311-cp311-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-0.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-0.7.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-0.7.0-cp311-cp311-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-0.7.0-cp311-cp311-macosx_10_7_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-0.7.0-cp310-none-win_amd64.whl (924.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-0.7.0-cp310-none-win32.whl (867.9 kB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-0.7.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-0.7.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-0.7.0-cp310-cp310-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-0.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-0.7.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-0.7.0-cp310-cp310-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-0.7.0-cp310-cp310-macosx_10_7_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-0.7.0-cp39-none-win_amd64.whl (924.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-0.7.0-cp39-none-win32.whl (868.0 kB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-0.7.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-0.7.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-0.7.0-cp39-cp39-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-0.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-0.7.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-0.7.0-cp39-cp39-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-0.7.0-cp39-cp39-macosx_10_7_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-0.7.0-cp38-none-win_amd64.whl (924.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-0.7.0-cp38-none-win32.whl (868.0 kB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-0.7.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-0.7.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-0.7.0-cp38-cp38-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-0.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-0.7.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-0.7.0-cp38-cp38-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-0.7.0-cp38-cp38-macosx_10_7_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-0.7.0-cp37-none-win_amd64.whl (924.4 kB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-0.7.0-cp37-none-win32.whl (868.1 kB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-0.7.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-0.7.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-0.7.0-cp37-cp37m-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-0.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-0.7.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-0.7.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-0.7.0-cp37-cp37m-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-0.7.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-0.7.0.tar.gz.

File metadata

  • Download URL: pydantic_core-0.7.0.tar.gz
  • Upload date:
  • Size: 159.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for pydantic_core-0.7.0.tar.gz
Algorithm Hash digest
SHA256 fb5156849518873930e9b031c4fceff21c139501c7eaee8ad249ed60edddcf56
MD5 2eca7f9417bf1f1ee2d365e93f88235c
BLAKE2b-256 b73f57f191e9685f69201aba865aff693ab1224db18ec9869a322c49709bae13

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2611432bdff6a213b78c832b8bef1d2c0f100ae1c4e36ff04ee58847e9b4455d
MD5 d9386ef57359113396ea53f2c1457b51
BLAKE2b-256 025c173ecf864f60e378f6b7d1c3d1c7cfae8795a622908188ce80244baee9f4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f4e3e07b98b5c1e476e826c64bd301069912c7ef8866f3b3a3b2900f70dcc3c8
MD5 c23f4df26c8613246a9ee63654ff872b
BLAKE2b-256 79296fdbf726164712832b8653843af444360df26f4e5b9490feb7b53703e583

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e5f717f77f2169ecbaf2caa039a14c647e88d9edfddbf51658216cb975097911
MD5 4db6f98cfba0932d0f9d2f8ad136ce32
BLAKE2b-256 3d67d025a509f302e57fca213bff3a51eadb386ce70403a33f1ac71310dd1456

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2dec28535b6346452b51e39a7cd99f61c810e6e5b4f8e59ba6353f05b060cca7
MD5 c6001ce3ff4d04095ffdd4fd40825c2f
BLAKE2b-256 adb58ef606f335dd7981cceb87040330699105a92482fca873fedf40f415c6a8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 670a586c7332910029bb2cc574db8d55e515744ee7700d68fc9411686cb501e6
MD5 7b9c092c6ad270f546359cdefb0b1575
BLAKE2b-256 7c31593c2658b388d175c066ff7c8115474e93dc8e5fe2a1832cc160d851e2b8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 12f7c59ed7aad828565e1b8858e480b284b2f2c786f8f3c99e642837ec387d6c
MD5 1138f503272ce947589a825770b8e914
BLAKE2b-256 112abba0912482700b6cbe3a443402413a2d330a96af182e17fb27c645b18697

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 74897d7ca7c423aaeed947b53a65fb86c7b6234c964ac19c172bc55f7f3ca879
MD5 106373414d266af7c261fee8d753844b
BLAKE2b-256 baa1bd1b9b9085f11a2be31a0ec75a0450a25cbd6bd42dc1b9245f48d6985b31

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3aaafb7e6cd9056148555b820952e2890ec21c55ab884f04fd164b259bc4b855
MD5 29206ff6b1b376f9eb91ef8383561c77
BLAKE2b-256 e83b887b343d064e2fa902c9a3153d59e376c7a68df4ca99bd4dc2d83cd2ff29

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6960c8df4f117c6d6e8e79937bd8891621972ac51df60fa7f217dfbd20737b42
MD5 26b5b7be21a5e2181c94ec0947038129
BLAKE2b-256 1ee7c14175b25c957b56772270ad1e9d3db1412388c953f3f72c5ff843865629

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a7f5a17c58977d2f9290a9cdd644b766059c51598f9ee8473e5b3ed1129e683c
MD5 54905c22f221d39f24dee0d80f3ae5bc
BLAKE2b-256 8745ecac5c29e30c4eb11ae89cebf7861d1e0ddfcdf0a292f047f137bd7e6005

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 6267042e070717f01574d837831388eb04e69541278995c70b5866cfb02d4a86
MD5 085d24c469b2278cf3ed42de6042a9da
BLAKE2b-256 e70342cf19bf3485817079dfc26c96d8fd2bf2d1574d1359151d4cc29da1b1ca

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 5bd362dc0a8907de4ab47bc352a541587f2a007f3d6640d71bfef751be72b2c0
MD5 d4617bb51b4b992b9a6cc357c09adb41
BLAKE2b-256 0ec420e39a8297f2b00a2ff9269394028194f1650b0ce6e4fbd20026e852a033

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6bf929f49e9ea663f08ab38cb7571ae05afd6c1e5c0b7d8aecea6a618dbc6171
MD5 bf608ad1414365d8117a9f928831f61f
BLAKE2b-256 1c4c6c89aadb577663ad66330b82de7fd90405a06f2b05da38cda7c88bf8bba9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e90959bc2e4c850b0a115097853a674aa23bbe8617e6ac3f81447fc4db059ed4
MD5 ed27f3d7f6343930f7e4a342e314504a
BLAKE2b-256 931241f2709e12062c953e5f91ba79e0b9263eb58c5e398684af772a0ed07ed2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7cd8f8d19d86a144fbe7644cdb68eef5358dc4e26de04c9e26f40a62c97fdcdf
MD5 e22793d0847a4b00b6dffd284584497e
BLAKE2b-256 108aaaf2fe7fc5527fee3d8847f64bf625c0ac7bdc474d53f347d4a73548b8a6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3870510d98f6bb123a61251f3a30d184dfd423dd9aa46e79eb64d9f8d1d2cfac
MD5 5aeaa0f81ec3f568cc950699b7d2546d
BLAKE2b-256 47737d5dc20c2890d4ff552fe54b3718e83488d5b2ba2de4335670052799c629

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 af855ad1267423901b8e9eff401387cd813a680f64e077dcfe20f6e57b69ab40
MD5 173fae994b11750534a1e186ad53a30c
BLAKE2b-256 ffdc0afa9b2e32621f85fa0f5db2aab24593972daf2b479098e178b06e5273b6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 b06896edb4a4b7a5a3e056ca9f37fe87104ac08a03c39596e1a91a8b59700bfd
MD5 b1016320ba703b420af976e3c0009683
BLAKE2b-256 3283c99d2e146e9cf7b1bf2e64cd66e89cc19a12c14175ddcf1321699e490788

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 6ad6c61fd0408125582e5bf53a3b40d635a58e88fa3c44859a16108d09de35d8
MD5 fe9925ba0e57668c00dba70660c35925
BLAKE2b-256 3354a476b8b71f81540a28279ee29e4a3680002f01df116a61b3ceb8712263a0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 1b63760cb4c57c45e4571d8dd40e5c346db5cc4c55a9bdbc19126981c5c6fb87
MD5 46c68a07e2e9adf637df7ed10baac2b7
BLAKE2b-256 a9f49730728fc12734aa828763db6a5c5970c3e741c082a859cc9efd58fffff2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 87eea1c252b9a1aa9d5642e32e8a6f97bfb23a76ee06b14a5d54a5602cc47879
MD5 6524208e2ea9eca2fcaaeef3ffd23add
BLAKE2b-256 4145560529e2102cdc5c6c96c947d6f9a21829aa218cc279ff116d815cad5dcb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 6d3cdc3c4fe34cbdcdac75a98c3c24b30a029f4ba16ed4938c77ba32e2299176
MD5 2a110096cbea9a640652ed35a56b61d2
BLAKE2b-256 9f90af85a684acd57082092c82fa6b5ced5160893d3876c44e07ad18373bb9d1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 5e2424b8e0c33d53eb77dfafd15ea5fe41e34617798847b91e3380015de3484d
MD5 b8a24727465f778a70e5c67d496e0ecc
BLAKE2b-256 07383f74955f82b2fbe344d98c3874f90a60a1142a55ee607326bda21db2684c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f8b179e249962970428006d510f37f0def130e6ac575a97a4aae18243a01031e
MD5 225ed1cf397c3d205e17b5d2ad0c5ed8
BLAKE2b-256 5548dcde7576198f2168837373932b2c52253f2823ab89d9f96738a2023ffaf9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3917dce9c15750c44f3a73fa0e3f8b0e2703f63d9aa5c47d5cda677ba5c77fa2
MD5 8c93f31de37b14341c04cc17059fdfcc
BLAKE2b-256 d368a2dfcf190e57c810aaf59f206083822bfffb3d8427833636f654cae64263

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 48a1d52362baf337ccfd8d5b2f81253d864218389154578f2cfe4d8da156d58a
MD5 e53fa91503fdbc58ea3cf136a60f677a
BLAKE2b-256 cc8903b456965f4502bfa81e319381c5649feebad77ba28e34ca3d261668f5a8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9f90381203c6fd7637cbe366f78fa544c2a23df1430debdd764bdbdf28e7b85c
MD5 a7a80216b6ef8f2f3f30e926cf579b49
BLAKE2b-256 fd473e590624c5857c48a9977ad963d30ed54028d40805457caa9dfe30f37736

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 983b150d706946e7aa8d8ea90a1ce5495a9c417b0be386c8a4d6a30c26a11505
MD5 e1e70124b2918314b5b903e3275bb240
BLAKE2b-256 90ab0f48a0195cf37978a05cff675c5bbe4086e8150c8e109b39e592439bcb25

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 4c2390a2aaea0c5ef37a8e89c73c5d8dea3999d6fd447aa14201ed2756ab1118
MD5 9c5d761681cf850b487e7b05d62bcae8
BLAKE2b-256 7520ec23ab8708a9c2bf1654ebf03d4c10685b03c7ecbc0c1e46813c39d35831

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 f5b0a0f2ff75d526bc6f8959226c80615116733e35718d8b18564f3635c435f5
MD5 f3b514249d7793d4b0f8eccfec8c9102
BLAKE2b-256 208dd3338ffc5987def04a65a0dc38352dbb2f2dd181811f24911f20c0aed56c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d140de2280d4f40f84779ecd0f453fee1117deb8c62076f22d411abce8247fc4
MD5 4495f7a4c673915ed3388a5edeb8fc4a
BLAKE2b-256 363ae8ca773e8188f6dce19c7a7224446c4cd646fc5537e53d5638feb4bd4f47

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5080e05407fe61ab3f383f8247a6345c15e94ec2581ade2b80e6c19e5202a2f8
MD5 466ff3a7321ef255220cb568fdf37439
BLAKE2b-256 cfd0384f132d9e06b79b6c213b170da5eab9e9c23012366b2e4490cdfb562f6a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 bfa36a569afb5bcf3c793dc5824265f9f9db11400dc515e5ca237bcc541edc96
MD5 e4a89d731cc686f44d51b0c55a5f9cb4
BLAKE2b-256 a5847ec3342dbca87202d22bd6164a28cf2aed4e847c08d89d5bcf89ccb12e81

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fbbc45610d9978fbb478f7e1bfcb9db60ad03a8c89e5dbc9c8243668ff50b54b
MD5 002657de0047af7005cfc45c4ba58fbc
BLAKE2b-256 016712f08f4ca077e1e91cf63e6ea3a67899a0d8cc158551a766bce74db5971a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5877a3511a1b1099345b8fe8f96826bfb28576766d6152706fa83c273d8193b4
MD5 d559eb179b99a7a107df0be59a69e284
BLAKE2b-256 46c643c5f62616c0260338fbbca0229c825b1760b672cd8df00f051a8b9383b9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7eadfb8730ad2ff41aaa6dc665b50e53b6f379bc75a8c3df189a5478aab58c1e
MD5 2839629250807803ab7eb93699587002
BLAKE2b-256 a87252d5247f14f1cb1d35e9b00931412fc71120033aae7901ba3f0cb9682036

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1a181027230d595f5090c171b65083630467f1cb05379e172c4fa90230547523
MD5 ffcf4014d1d57121994a989d0d580e9b
BLAKE2b-256 9f52424d6392c188e75ce0e7fd22326f10b5a1b657ea6a12efb049ed81063440

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d4fca54626be9de54a844c9991e9d32a24ee4d4392b27a957459537e6e95f4c0
MD5 ead2b171c35e1d5c4359359555a7546a
BLAKE2b-256 df2d88b1c33c0f16788907a54e533bd77d6aa060847269b69ce71bfdd1f4d7a0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 c287e33f82c26ac0bc03db7a2f07ae36538676ea7ad9baf9617b7501c16797b0
MD5 9b87945d7dffc357963e2794549b464e
BLAKE2b-256 85b76456700f5f34e04065413c9025e3c1edb392bec39c56eac226043ee40c23

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp39-none-win32.whl.

File metadata

  • Download URL: pydantic_core-0.7.0-cp39-none-win32.whl
  • Upload date:
  • Size: 868.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for pydantic_core-0.7.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 e5aea3afbe083fc8a1a43c547640af797847347d90e01810bbaf7a4398f0cc6f
MD5 6ae720958d3c7f3f405eb0b33d320fac
BLAKE2b-256 63668acfe87289b43fbce14d1a02d60f231fb5250211d148fb208e6a3ad343ca

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2c5b394316897a8303e6f008297703ab9d6905e833e823ef908d341c47b367b9
MD5 ff50d3d8a841a645d1a545cd2ce8253b
BLAKE2b-256 1ed9b4da2ff79dc31acd1a4627c8bbe66a2b954accac8d7b91363586ece8812a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 47e06956c588a3757fbe7a78beb950e748d85db0076eb7418dde0c0bbc9227f5
MD5 9bbf70b87e4719c14f372712c5d4cb72
BLAKE2b-256 cec5378d35b0e2d06ff829cba1c9ba7b20ed5581a6fd827d84f13872ad8b6e4a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 00f12bde33e02b1157d8a54c7c69584d4c925d5c7f2ae5803b9dbb0bcf08085a
MD5 5d16a10883b64b844c78155fcb0473d3
BLAKE2b-256 f7318b11cd8b8a786d6e74749cef49fb5c044880acb30592d0216d4265c1e6d0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d218fab982f74813ffee4f93df52ddf986a90ce295e266c876b61418315a7514
MD5 e61933b319068bcb489191d0236754ee
BLAKE2b-256 0143736b3e82fd7a5743f868667dbd1e7ffc74d090dedfa9f30ec2b68c4655a6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09a2911d3e010822a9dab3140a6aeb6e61fa491d7627fc785fd6d80c5888a150
MD5 8f435a32085ece074af7a2cb0b21b690
BLAKE2b-256 b079ca74d32a65b50013e336db09517763a465b188e29d48e76c20f662bb6c74

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b335d4f6e379a4ca14268b390c0bb774c791c0c876cde94a828a4741f8246898
MD5 6c980d2f9abd0b4ca0fc1e0d77bef78f
BLAKE2b-256 65fb1f6fac16fa614f5d532ca7ba65f47adb95c6bc884dcfec64653979cee8e1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fdeb3a72f79827fc3c397b040c707d7f2629d474bfe4a2744f766795ae24a830
MD5 93beee9ae2b63dda8b36a9f4e9d0c306
BLAKE2b-256 da10647fed6d68debc4db12e2a18129ae48504b1f995e960a1577d69329da086

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 023e3021c8c435a971bd0e3459487d3dbc58eb830b21462f22578677984759cb
MD5 362ca34f4e56b4ae46dc5630e1142d5d
BLAKE2b-256 ca8edee9dead5a948bcbc84b6f8d3826c3e709a80621cb2f44db878f08a11680

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 d5b4857f8b4b9b7e162e83db7e94dee840b1a833a5f65474100a4406e7b129aa
MD5 61a2b84ce25b97438df791da627b4623
BLAKE2b-256 44b485b66f9c51cfab2d3a28ed113c2855cdbd6c93d12fa8f42b6e6676f14918

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp38-none-win32.whl.

File metadata

  • Download URL: pydantic_core-0.7.0-cp38-none-win32.whl
  • Upload date:
  • Size: 868.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for pydantic_core-0.7.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 929e17d696eee331697762f98ead606ffeb0c04dec67b8ef8061dbf13838dad4
MD5 3df130b37afa8d8bbe22ef17f73a3985
BLAKE2b-256 977915dbb372355fc9baa5e69397369fd7c8ad0bb8387a1198ae577be8b90e14

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c2478eb2988e87a3a0828fabb8fadd8dfb47bc1a954db22282b38ab4ba23461e
MD5 e7b83d4b79efbdfccd28ef27557b048f
BLAKE2b-256 0b174f7a375c883b595805857c5c01bb729440a511fb7409a0d36a7bb5160404

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e9b065de9fab93366daadf8f05af7ba98471892285b7ccb84d6e98807b68a39e
MD5 aa6f33d6c8aa535d69e83cd81b18f8d4
BLAKE2b-256 6758738913ebac93b0e492d82fae96069cf62a6695c25a2ad3712986af7cda66

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 5c4192e40592aa32268503a628308c089fa9b96474848ef4b4e9095b0ff6564f
MD5 a022ad6b623d8cbe91998799cca96355
BLAKE2b-256 de6014b3faa6a1037ddb5870843475e405647c060c4ac060c3dc3c719e7fb6ab

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d39dcae651765e6d0d3cde0395a8b76415fbb8476d75e137dd641ea256e5528
MD5 45c06abbb3469b2939366830ab453c9e
BLAKE2b-256 6280c978931cd9345459c5ef322de2e0977849aaf52ac790b2b16e3df546e89a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 76777100a75306aeeee6ac62f6a5c3a70971a9c0835f9bcc0834e176f90c1485
MD5 1515d558a54aa7493711b0a5000fbf31
BLAKE2b-256 af22d1c34fe609d2b2861c6cc20ac467b150b5faa370567e6fd212e42e48bcf1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 a82314d6d0874c53c439abd980d04d3ec4518036af66cba9cc7ba6e8543182eb
MD5 96abe9dd55d05e2afe0ac68388df5db3
BLAKE2b-256 c360421fe895a145754a7237aeef021fe79d87352eb210dff6158948ef091d4f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 abe144a7d0a396caad5f97c8ba78986ad665732c046a8a5016a2a8b1b001208b
MD5 effca49cc5ae39e70a172342285583a9
BLAKE2b-256 2ca34b60f549911dddfbcf4a1f58354ff947e0b5207dda342cdbbb6f0c34eec7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 5e9e0e8e7e9dcf9e0da9187e33d2786fb05a16e0c593d37e8e0310064769513b
MD5 79e89dc81ba9164e6ab215cefc478f6c
BLAKE2b-256 3a6a17e14681f08f1914fea7a941167d98876505010851238e28e4a2cc42476e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 67be7f51fb25a339f4b648f86f4b20ef6243b76bb33ea4810578de7124204285
MD5 69990908bb907f622b3da3678740c343
BLAKE2b-256 d7768260abf162b075abdede7542fd9ba8f160ca36e17a4cac8e0d6a91c116b8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp37-none-win32.whl.

File metadata

  • Download URL: pydantic_core-0.7.0-cp37-none-win32.whl
  • Upload date:
  • Size: 868.1 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for pydantic_core-0.7.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 257e8052ee78350d0d048d901e38982e7161474b80bba238fe734fb09ca6cbd3
MD5 050efc5c6e75aa01e0cf1aef06d51f46
BLAKE2b-256 47881d848ea7d1af15cbcd3dec31d6ca4e5c2c5f7b76d5c763a890e235c462da

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8f926e2f16ebb885d10774806a718bc40cb3e0c4493b5f927cd5035fc7ecd7f9
MD5 de6989c803c0d1d573b6b93a283fca1c
BLAKE2b-256 c009a655bc3a31bbf9c0ed768c4261b6f29e5638064d05f032c3456f8e3aad70

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 fc322b2bdfcd9a381d81bf77715e0d61e391d6cabf111cc5e81ba729a9a907ce
MD5 901e3b280000d48b4be2626177b5ba24
BLAKE2b-256 35cc3d9a9b08a6e29ef14297fe2c41eddca19baa81dc365d1699735da65a1291

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 da6f8500a3d60a6052b99c403ad2d90a13c8aa27ffd32aafc321bb966e2972a2
MD5 cbedbf2e303c008f50082ed5577f8d25
BLAKE2b-256 822291ea2cfdcde22afa6e367d224e3fada66c7ea33a3eed104daa41b20383e8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9654eb36fe9452c3cc751b8f05d13a0ae3ed397e883e275e8afe754b0c27823a
MD5 0a5bf70f6d47a9d9b088fecfd8ff423f
BLAKE2b-256 a1d095927dd7e1bc1ae9d0ad72b34e10bb69dcaabffc0244227c8d0d85ffc7a5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b13d612a541dc1d83990da2dfe99dd544c8546b22f2cd3009fdfe906a052cba8
MD5 ec1363d5d8078ec4e9691d73c92acc67
BLAKE2b-256 749f310283ed0568384d81811b1ca9e4160d692c10fbd1a759b65818c700b51a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 d36af49b684dea610375d0688f26a9a551d3d448beba1d6eb72fefb2414267d2
MD5 93f09925afcf0eb2aa84376c79b88bd8
BLAKE2b-256 36bbc46b44f60d2ca391b9e4f34da91bd1182744bd720a709434278fb4680be3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3ef5070ecf03bdc98d42d7bf3245a048581b8416a37e428641294c4e20e3066c
MD5 07a26f06f36db648d7e3f9fdcc2a52df
BLAKE2b-256 b9a8d4f0fc0d839872d0f6cfc0743b4825ce53fcacc34c593cc273221d90708e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-0.7.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-0.7.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e5f2d179d33c982c9985c5ee1694cd0aa5da42c489281923729a0fec0926c516
MD5 451ae7dc8a311f6f7e723fdfaf2cd9d6
BLAKE2b-256 afcd9ade3b4760bd283dff1d6e019aab77f0e682708a3605f916e47f0fb90933

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page