Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic validation and serialization.

Pydantic-core is currently around 17x faster than pydantic V1. See tests/benchmarks/ for details.

Example of direct usage

NOTE: You should not need to use pydantic-core directly, instead use pydantic which which in turn uses pydantic-core.

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Getting Started

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at python/pydantic_core/_pydantic_core.pyi and python/pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-2.0.1.tar.gz (305.8 kB view details)

Uploaded Source

Built Distributions

pydantic_core-2.0.1-pp39-pypy39_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.0.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.0.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.0.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.0.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.0.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.0.1-pp38-pypy38_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.0.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.0.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.0.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.0.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.0.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.0.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.0.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.0.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.0.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.0.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.0.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.0.1-cp311-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-2.0.1-cp311-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-2.0.1-cp311-cp311-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-2.0.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-2.0.1-cp311-cp311-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-2.0.1-cp311-cp311-manylinux_2_24_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-2.0.1-cp311-cp311-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-2.0.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-2.0.1-cp311-cp311-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-2.0.1-cp311-cp311-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-2.0.1-cp310-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-2.0.1-cp310-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-2.0.1-cp310-cp310-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-2.0.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-2.0.1-cp310-cp310-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-2.0.1-cp310-cp310-manylinux_2_24_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-2.0.1-cp310-cp310-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-2.0.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-2.0.1-cp310-cp310-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-2.0.1-cp310-cp310-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-2.0.1-cp39-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-2.0.1-cp39-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-2.0.1-cp39-cp39-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-2.0.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-2.0.1-cp39-cp39-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-2.0.1-cp39-cp39-manylinux_2_24_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-2.0.1-cp39-cp39-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-2.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-2.0.1-cp39-cp39-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-2.0.1-cp39-cp39-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-2.0.1-cp38-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-2.0.1-cp38-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-2.0.1-cp38-cp38-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-2.0.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-2.0.1-cp38-cp38-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-2.0.1-cp38-cp38-manylinux_2_24_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-2.0.1-cp38-cp38-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-2.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-2.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-2.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-2.0.1-cp38-cp38-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-2.0.1-cp38-cp38-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-2.0.1-cp37-none-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-2.0.1-cp37-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-2.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-2.0.1-cp37-cp37m-musllinux_1_1_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-2.0.1-cp37-cp37m-manylinux_2_24_s390x.whl (2.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-2.0.1-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-2.0.1-cp37-cp37m-manylinux_2_24_armv7l.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-2.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-2.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-2.0.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-2.0.1-cp37-cp37m-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-2.0.1-cp37-cp37m-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-2.0.1.tar.gz.

File metadata

  • Download URL: pydantic_core-2.0.1.tar.gz
  • Upload date:
  • Size: 305.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.0.1.tar.gz
Algorithm Hash digest
SHA256 f9fffcb5507bff84a1312d1616406cad157806f105d78bd184d1e6b3b00e6417
MD5 e7fa0d43533e3ae1aa7304a8c40f83b6
BLAKE2b-256 22c30219aff361b6975724349a1894f0a6ef808d65b268e52a9c8b1efdf8758c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1672c8c36414c56adf704753b2d7e22e7528d7bd21cd357f24edeff76d4fd4ca
MD5 7a615280eccd4bd189591daabc8c29b2
BLAKE2b-256 7abd8062e640ca73d55c3887bc9a9ed50e3a251360ba63819856578688f024c4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0c8877d9e0bd128f103a1b0f02899aa7d4be1104eef5dc35e2b633042b64a2d1
MD5 9e333f7f4dbc44fc6790877efe9680ac
BLAKE2b-256 9aec495bb0c87ba678eed6a4780769069acb979bf54411897235620fdd63ab26

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b56f3758b82f26414a4dccd76f05c768df7bd2735e0ac43f3dfff2f5603d32a9
MD5 3258bd09e4253022a68082229307b594
BLAKE2b-256 df5542405666d8441c67d4744659f09524ecf8fa5e4997954c2f724e8fa06361

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 46bb28295082a22f3c7f5fa5546d669aed7eb43151ec0032e8c352c59f5e36af
MD5 2c75e0c7045269e20c3e8c8ae059261f
BLAKE2b-256 edf14507ea3a581d04f720ca74bfe141e9b078a5f397f5a027c57dbf20b19d05

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 176eb3ec03da4c36da7708d2398139e13d1130b3b3d1af4334a959f46278baa9
MD5 be92543247f8fd26d4b25a81c34e7258
BLAKE2b-256 e2d3074ef9664c3b4d6edc55d1b9b6056d018affebb4485cf0961e7722e647fc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e4b4c836100e5f07189b0aea8b4afae326f169bfdef91e86fd90a0d3c27f0c75
MD5 406540d0034f94a5326e1a117ee71705
BLAKE2b-256 07e0f18070b61316dbb1a93622c3491db38c3184f5f83447f83d9b403d3c0b1e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 7176ffa02c45d557cceb75f1290a2ddf53da680c6878aae54e69aafb21c52efd
MD5 876804f35c2e04101d3df1e5cbdf5921
BLAKE2b-256 0fed91aed3555c0f1f04cbcdfac2c9b655dea2b6e6d95dd25e6b8473bc042467

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1c318bd2bdaa88ec078dc7932e108a9c43caeabc84d2cf545081fb6a99ed1b90
MD5 02a05a6a10da19435612afcc26547c67
BLAKE2b-256 90e9a9132fe67a22e55fa55643837bc3fc00452ed8075ba8244c58377647fd93

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8945ba48644b45d4e66cc3e56b896e97fb1d7f166dd0ee1eb137bbfdf1285483
MD5 02ef7b71f4dc0a3bdda4fff7ddfb58a1
BLAKE2b-256 c846430dc299283445c62d7486358464f484620c520df831659ff29a968da518

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 cbbefd38ef80b37d056592c366a164a37b4e87b12f0aba23c35087d890fb31ba
MD5 c927cbfc6f47e3156272a004698cf80d
BLAKE2b-256 53a7bd68de3f95ec441cac6e1a9ab536b85048dfe4586ff9fc6f8ab48d91f5b4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0f90928ed48b91d93add357fb1e81cef729bffaff3ab88882b76549434b4574
MD5 7b2dd3c4112525c070de45fce9da5c45
BLAKE2b-256 a8d5cb921643bbc2708f9308c834bf2ca82abfc118b508db9e729851623a04c2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ef349e4ac794559c1538787a0fbce378a1beb991ef4f7707a6cde3156294259d
MD5 66b555d737e24dc2b3be4c7952f7f5ea
BLAKE2b-256 aed18dd9ce019bab0bf2bcefebb1bbd1d29549fa53f5bb26b631bcae47a57373

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c3f8fea22690c6c33c4d36d2236732da29da560f815cd9aba1d3b5ab59dcb214
MD5 19a57b1e798eda88ae4feb0a8d774d00
BLAKE2b-256 8f0bb48190800b5d18a7a70e8abd8ea210c5e06e0a6b1ccf29773ddccffdd34a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3a85fde791e6567f879b50b59f1740afc55333060d93548d6bbb46bf1b6a1b49
MD5 d5c83eaac23680dcb86425701172f224
BLAKE2b-256 36dc41451f9d3566f1ffd293a96414f2429c47116211bce406c7ae3590820310

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 88b56a4e7480f4f22fa2faefdb0a887d70420d9cd8cb160677e8abe46769e7b0
MD5 18e366dcf8a1a2dc994573f81c184455
BLAKE2b-256 54044b694518cbe8b35a370fb04f6d25bcb794432c566368934269b2a173b253

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5e4a918eeae2c566fdcad9ee89d8708a59dc5ec3d5083b61a886b19f82f69f5c
MD5 713d216d6d80f3aae8c47283e8d2fc60
BLAKE2b-256 381100ee42d0a0e0bc05f0048847a5da16fd7ba8683bd68c8170448b02043081

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 182a0e5ce9382a0a77aab8407ead303b6e310c673a46b18937fa1a90c22ccbc4
MD5 acc3ac2b4d15f9d716e50b663fc92ba9
BLAKE2b-256 7dddfcbf8595dc9be41ff5894a9c4a5669e557c995bdda9215a9daac51dfcb58

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5e90b99b6aa9fd6eee6d6f86921d38252c6e55c319dc6c5e411922d0dc173825
MD5 8480222b2c863a52b50c3d9722414823
BLAKE2b-256 5f064bf12fc50b3afce634f02c7018061ed6a1a2d3458eb7992e25aa647b63a9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b83e11a68936f80ee92ef1001bf6b9fedf0602396acc417b16a9c136a9b3b7bd
MD5 c5e286554d7216460142547f6104d3e5
BLAKE2b-256 dc0f46ca783706c689ca9d65cd03495f3b35836c52423162a87c7d532c1acd91

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e4785a8c5440e410394f88e30c3db862ed05841595311ddc969b3fde377f95ea
MD5 1bd4fe39aa553b14181d78f595bea255
BLAKE2b-256 1e4010f7082086cab8b514686888dc5a124b7fe903c35fdb3bd02680fd6746fd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 7a4fc3e8c788798739f4aa6772d994e4453a17dadb1b8eea4582a31cdfe683d2
MD5 7cb12ca5f976a0a67bf136096032fd11
BLAKE2b-256 9f57739d59da677c8288aa9bea9d7446ee72acd2bc37210f350668a498683eea

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 0872a1c52da4cfc494e23c83532c7fc1313de311a14334b7a58216a8dea828e0
MD5 68ab674e7c88d63a4452d0de0fb9fa99
BLAKE2b-256 03da4eb4406f908f670edb8927d5600000ba5272f8e32d8dca6f4cfb9076c89a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f9452d470012ee86a00a36f7673843038fd1a88661a28c72e65e7f3f084da8d8
MD5 a38c5be238219762cd21d0a4aa26de27
BLAKE2b-256 1cf4a725d5e9a4bef5d077726deb9c0c5eff03b046aa5019b0ec3dedcb3695b3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1c855ef11370eacff25556658fb7fa243e8c0bd4235fa20a0f473bded2ede252
MD5 65c6369d360638d074fa4d86cbd577b3
BLAKE2b-256 9eea8f59d0b8e5c4c020b4f0cb748d6741abfbc8bdf8e19cecf26a51b89cb42a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 b23ae8b27b6eff72909a9a88123ac28b746d95f25927ce67d3b0f3dabe099a0a
MD5 60567ebd0b7c8a3db7be33534fd7976c
BLAKE2b-256 8f292bb5d26c393f037bb713cf34d0f44f4c43f28662d68d82c9bb61bd33f92c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 ccb06e1667a9784a96e0fc2500b989b8afbe9ac68a39a3c806c056ee228eff3c
MD5 71b797629ff07dfe356a8471b0458367
BLAKE2b-256 6f09032e79fe1a80ff3a10ee2acd5541a1fab42a75fbcfc205142653102841b4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 e55fc76ce657208c0d7e21e2e96925993dd4063d5c5ee9227dcdf4e550c02a29
MD5 4f29d7d57cefc1d8e67778bb892d4533
BLAKE2b-256 41fe25ea8bb434dba64d04d7417e9fcc6ea74a49e37079d07d66492e9dc7be04

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc99af5be239961d718bbf8e4d6bd1caa6de556e44ed08eb5135cfbefc958728
MD5 d49af8578ea98bedcda8a898b7e6a53f
BLAKE2b-256 28ac357b6b8204fba43df5540f90b62e3855ee314166da062f213e67626a3358

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6cf3e484bc8e8c8a568d572a6619696d7e2e2aef214b0be503f0814f8bafca9f
MD5 96ccfdd8aa49178c083e4c58c33cb679
BLAKE2b-256 f51f8a4370f8146aef670341c8e7df41d3b7c70cdf38d23ff986c5e171f3a71a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 6387c2956baf16891e7bc20d864a769c0f9f61799d4895c8f493e2de8f7b88aa
MD5 3d99c108d1c39d98a55d71456faf1c1b
BLAKE2b-256 c93d6ed1e80a320521a6aea1d2026dffa8e99a45570213fc89d70a6bdb42d7ed

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab7eafb33fdc7aa8667634be58a3d1c8ed3fa8923c6bc5014657bf95b51b4a46
MD5 c1e3dd884770725d00f78502fcf77eef
BLAKE2b-256 707ce236f2a8799beac3c65519f1adfe9e319ef3fcf6b1fd00abbcc4ae0af1c3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 73c464afa0a959472045f242ef7cdaf6a38b76a6d7dfa1ef270de0967c04408d
MD5 b016c298c11565d74114cf481c93ca77
BLAKE2b-256 706727aef4510afa910da6836dc307554593e736ad0e23f0753453e27f4f53cc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 0fcdb43190588f6219709b43ffa679e562c0d4a44a50aafb6cc88978da4a84b7
MD5 82915926743eaf7013271ee889ed09b1
BLAKE2b-256 d8408d70b065fc789c4b4d389653a9e0dbb2356a9757939f990139e586e2e228

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 16977790d69bac6034baa2349326db2ff465ad346c53b8d54c3674e05b070af2
MD5 a8c5436ef53e240337ae945788da0e5a
BLAKE2b-256 5eff49bda188618f6a8e7acc5eeb2dc5232fe5e8a493da9ede39f8d09f73d6f1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 722aa193ba1f587226991a789a3f098235b5f04e85cf815af9e8ad823a5a85e1
MD5 1a739aedbff3b26953aa75ccdb298377
BLAKE2b-256 e164021d898e8fbc825cfb83e5f82b7fde5b4f27497d21bc88725961d331adb5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 76d5d18ef9065ecbf62d6ec82c45ddbb47174a7400eb780040a7ebdad1c0ead8
MD5 456d2a8fc5ecf91d46fae722519a209a
BLAKE2b-256 6c19d54a30f80b5441bf3dbde7e37ad810cdf9c6e02f29cd43f5daaf888903b2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 ac6a57d01c0b67563dd273f2b71e9aab643573b569a202bfff7dad502b0b8ee0
MD5 5085328d6fbf012c3e7984c3378c7766
BLAKE2b-256 ad3a48c226b2e282819508c9d8251671f3a09c98a45293568e9274306a2fb3ba

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 e2e9025e132761e7ea8dab448923ccd8839c60199e863a6348d7e8b1a674edd1
MD5 448a17337df149c08e43ee3bf1012782
BLAKE2b-256 f84a06d5a5e79895777dfd047cf1228c9bc99943b7eb74e8f6cd56c14b205baa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 ddbad540cba15b5262bd800bb6f0746a4ac719de0fe0a2acab8e0d50eb54ba9a
MD5 ccad737a003df71f077cdb5cf161f7c1
BLAKE2b-256 980260245ff3ecf915ef344550f5d9b438ece52e8f606b4ebb21ca8d9178904a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c656b8d4603af6744ed2f2c0be499790f0913a2186ef7214c88d47d42051ae4b
MD5 558b032a90cfc2193350b45be73da073
BLAKE2b-256 4329b0571c0fd0809f05be5b00bc0ac459cab91524f3379dba9100dd1240cfdd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0dd6bb98271519a309e96e927b52f8ca1323a99762bec87cda8fdaaa221e5cd
MD5 bfca71980836df3252a3ce9039f41976
BLAKE2b-256 4ea3cc8c90896b130383ff72c56867efc549c81517a5e8f8013c759c5ee03714

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 44c8cec1d74d74c29da59c86e8cd472851c85b44d75128096ef3751c5c87c204
MD5 04ef3042e7968d6c3c971fc8330c0d6c
BLAKE2b-256 e76b2577ba8afd4deadaf0d093b8663036c023f48fdb6f5ecff2849650266ecb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ae53240f9f92f634b73a3e5ee87b9ec8ac38d5bee96ea65034af58f48d489a65
MD5 afbdec6cf1cd9b8b5430e1d59b5d3619
BLAKE2b-256 c6abe4d3a67090f78595e5e4d2f23b486135017d83dc057c0d34decf5aafd12f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 92b01e166a3b69e8054308709acabec1bae65dae83ba6329f4fcc8448e170a06
MD5 4e1bcd861250655227477eb5ec4ec72c
BLAKE2b-256 ad508e82e5195e76d164edd2e89d59aa0815b4827ba58608536f406fec8218f0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 c5fef2dc7ed589ea83ac5ce526fcb8e8eb0ab79bfa67f958dafbda0a05ab3018
MD5 d7946be6216ccfa3e220a81e5444ac7d
BLAKE2b-256 d1884b15d82cf8d6fc84b29e2fe73ace1f27dfb17e0251c5ac2c5a7feef0ae07

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp39-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.0.1-cp39-none-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.0.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 4372e8fcb458aad1e155c04e663ff1840f36b859fb1422578372712a78866051
MD5 020c6aff25ea9c37170a77ccfa0e03d0
BLAKE2b-256 4cac6cf01e0fb13b03a7aceec5f13fcabc26bddf8c6693375aec94f5896df212

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c04aa22ded4baf29c3c1ec3b76d5264dd91794b974a737251fdd0827abcc2c78
MD5 1906d93cdc6c316eedaf4ae353451601
BLAKE2b-256 aa2117d6ae8b7f04913a75b46a5c4e7cd0e24f059688bed108e03266f9a58ba8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 88fc72e60d818924cb3d32948b682bcea0dadd0fd2efae9a4d0b7a55e310908a
MD5 2c81b679003361f6d0f6ef66b5e85c7d
BLAKE2b-256 8e683e62ed5d66d87061aca9380d20fcfc73341a87de472ae880e769ea85cfb2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 e0edd3c6762b3ff3fdbd90517a09808e5d67cce86d7c43ec6f5ca3f65bfe7fd9
MD5 1c92c6bffaeea80bbd5bc6f126b3d0a5
BLAKE2b-256 0d4a95aee8209eb4b4bb510a4a50d445e40f1ed6eb83c88a2ae4f3e49641219d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 958964a0ad0cea700b25037b21f5a2da38d19bddaa2f15ce36f51c048a9efe92
MD5 4728cc35843ce219f64f25dfccdcd1ff
BLAKE2b-256 73711bc83e845b1d903a976b3f79cf2d8ca7753341a2d193fe6f5aa877aac097

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 bb2daa4e3d4efbf2e2dedc1a7cea3e48ff12d0c95ab2011e7f731bdc97d16ed0
MD5 eb27b3994a78c47c24bf99bd960aa8aa
BLAKE2b-256 be0bfd46d5f4312abb100721c6be24e95e142621c617135d5c94fcb73c0a1b8a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7bd78c4f04794a8e527d32c8ec1a26682b35b5c9347bb6e3cc853ba1a43c72a5
MD5 bd0db8ce4b9ca63daf99c73b6dbe3033
BLAKE2b-256 e8e7f6a5fdac5bff0f7d1ebb95a6dff9eacced77e6c7083c4259b058359c90ba

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79225132aa1fe97a5e947da820b323d63372fb3475d94ff81ca6f91669717a01
MD5 a6d2c9a21174b21d4197cb812fd7b167
BLAKE2b-256 c8f389fa7bbf726e76ab0b84ea6317843cfea84d3d16c783a8312dac3f532667

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e76a9b0c2b2fb29a80764e106b1ea35c1b96a4e62e7ce7dde44f5df153fd5b66
MD5 89e923873e63404fb975135ad92564bd
BLAKE2b-256 19c2513c4a2ad5fe206948b73a35a91f8bb5f3356af79e344786c5dc3e1fa586

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9cf1ba93657cad863d23ecb09227665c0abe26c131acd24abb5edc6249a36a70
MD5 a58057be0ecf69f74d71192f1f828388
BLAKE2b-256 6c5bef21484dc211f1485db3d9dd2ce0fe88e460d6e70452f044107164a55806

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 aad8b177370002f73f08eafefa3d969d9c4498da6d67d8a43ffdeb4b4e560e1c
MD5 07d3fb8925c3569d6904c1402de3dd53
BLAKE2b-256 ce5d900cc418e040af6d5811bd61e8ae7c8c80d01dd057f13f3df484bf14b9f6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 0b154abef540a76bb2b7a641b3ae1e05e5c4b08eb9ad6c27a217b3c64ffcda0b
MD5 9fb8b249bf118f6d39047252d737ca0d
BLAKE2b-256 ec60fbbda77fead670b0fe5308724e590d052f6cc5f0b8a3749cd08caae05c18

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp38-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.0.1-cp38-none-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.0.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 d6e21da7f7e3935b24bfd17d7c3eefe4c1edca380edaec854a8593796d8d96f1
MD5 c1b3e64a4d30f82ba6cba8f947f1201f
BLAKE2b-256 57420844b783aabd271fa0eb7ad01c9c80bb1400c17db65d708f644e440c36e0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fa5a3d49ddbeaa80bb2a8927b90e9cdd43373616ba0b7b7a74a3ae33b5c9640c
MD5 ad85ac40683e556fd600f4d24a3a619e
BLAKE2b-256 2526c0fbb5234caa9cbbc1735fc2f9a7132cb466d21d742049b03f45bea35f2e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8ca5a743af642700fc69dc64e0b964dd7499dcabb399e5cc2223fbc9cb33965d
MD5 fd2f6c393d98a1aa0ee849332d893857
BLAKE2b-256 fa8f8e6c6c3b011d719d95974a5c31db1a71a78fabe2edbb60e4093bec74c6c4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 10736490eacc426d681ae6f00f1d8ce01fc77c45086a597e829c3eed127179b1
MD5 01db04529f99e5fc3701b7143e96cfa7
BLAKE2b-256 56c839ef0a5ae1332a19683e0ed512936e5eb55ac05a794baaac7dc17549372b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 71cf43912edeae476f47d16520e48bddbf9af0ebdd98961c38ca8944f4f22b9d
MD5 2dfc8f0b7bb0c98e9d035d1ee55c90ba
BLAKE2b-256 287d3fa2f5aa891eaa940db71a620f1175f255d08e51857d15673ccf61851e09

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 659f22427d653769d1b4c672fd2daf53e639a5a93b0dd6fc0b37ef822a6e77d7
MD5 23a019603ca4ff3d09fd86941edf4c2c
BLAKE2b-256 1a093dc41d881750ad5c4917f7852af1cd2883d079474e01e86f20b35fb816a1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 adbfc6c7ddd1cca6efe62a0292cae7cf2d05c9ebb139d0da10b0d44346e253c7
MD5 8ce91e8222261e29b00ab1392e0c0283
BLAKE2b-256 f178a13530cc390698f2e26f0b2dda200cc0f3e49d885d925943b4bd520df250

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8927c166f20e3933cc9a9a68701acc8de22ee54b70d8c4044ad461b043b3cf9b
MD5 e0cafce6b4116955feda723633ee1be3
BLAKE2b-256 9aa96f5590a411afae971435d735f7444ece5e383f323f69371a3bea8e0d1696

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 5f3158cb4cda580f3b063b03257c7f5c2d9e66f9c2a93466c76056f7c4d5a3b7
MD5 e1366c0d3ffb199833cfdfe6dba6482a
BLAKE2b-256 5d14a80e0b544543b36ed029295c827fa575196fef9aadc22e2087ca113c6772

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 adc2efaf0c45135214dff4d18d4aaf2b692249cb369f921fe0fde3a13cf7ddad
MD5 71a65c904d31f58a0cb7d3333d69ab5c
BLAKE2b-256 8b3a95502ca0026292be94d087b6ad8feb03ccfdfb87fe731af0b2fcf8749693

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 9ee1c2d0cf5c92faf722ff366814859c764c82b30af7f91b9b1950e15efecb9e
MD5 b4972986f7b6281efca73ac3b2d98d6e
BLAKE2b-256 d934f6322a44316e98e317d73a42565fd97d1bd32ea8297dfa749137dec02ae2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 1bb6d1057c054056614aefeced05299d3590acf76768538b34ebec9cbbf26953
MD5 26262e96d14f63f2ed7c0f6d0de3e160
BLAKE2b-256 c4e6db8f03cafa139dfed17bcd3a37a870a175df8640ad9e36d73275682af795

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp37-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.0.1-cp37-none-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.0.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 a7d0de538719feda5cabf19c63cc17345df6a0ab579b95518925d2b25276daaf
MD5 7f250821e80c08ef472dd7e40d56a9a6
BLAKE2b-256 cddb88ed232cbe5b287406b3be1125869b4555476e4feed366fc2f5627a16f7e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c8e53bae6e58a8ff8e93f9a77440cfe8fc017bb9a8430dc03beb6bdd648572d2
MD5 df94cbda3ce158c5ce8d8130642a0fdc
BLAKE2b-256 75990467c41d7b9d0067bc6a6338a79c2010b9b3b86001fd3a30694a657181f3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a1dd1b182fde9f95f1cc28964612fb1b180fdd3ca2cac881c108db29906b2e01
MD5 6a4362e3423ee2ad4047e72bc9d84ff2
BLAKE2b-256 ddabbf54e1bddd63668e26a5d170430a4c06ae8ad100610148839648d5b272b1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 ff015389ae4ca6869a2fdd16c21ee1ce7c134503f2148efd46db643ce27ca520
MD5 353c7bf302bc30d7933706d89500008b
BLAKE2b-256 619651b380e9fb880fedc8d37a165813d5a0389810ea4e5c7157e950d6aabdc9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 03d12c44decb122d5feede5408cc6c67e506b64016ce4b59c825d1a8c90f288a
MD5 c27c0a2a911a42f8901bdb192a35e445
BLAKE2b-256 d8811964eee883493c5754636562d1301a03afec6c12fa27523e2811ee344045

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 89123ab11a23fa9c332655933350dc231945ca6b1148c1e1960aad0a5a6de1c0
MD5 2d0cc99f29c4eb6df90b5c2f7859aab5
BLAKE2b-256 7b086a517c5126671d312fe36de6ccb7cc2971a8585dd6bdb1773400c3e0163f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 007cdcee7e1a40951768d0d250e566b603e25d0fa8b8302901e38560bc9badf9
MD5 6d0b0964f1589b2dd575c28bf878e3e1
BLAKE2b-256 04c3fa342d8f795266c776706086ae527faeadf831ea882b830f6520057466ca

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7727a4fcb93572d4e521b028f1c64f1eda2da49d506b1a6208576faa9e0acd64
MD5 c8ac8923a1b4c68e9fa2dff0fd8df53f
BLAKE2b-256 1956e7d041c67d44fd0abd22fa1f0096a216e434f09a54809cc1c10d92aabf51

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 8daded5c64811da4bdc7d6792afa10328bff5c3514536f69457596d4a2646b49
MD5 e6fd2a18fadc3dc90643241766fd14ac
BLAKE2b-256 7098fc9f4189977ad080b7e7a1134db67caec7890f7b84543d2986499a808202

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4eda2b350b02293c7060f2371ad3ce7b00342bd61c8654d2ba374bd10c6b6b66
MD5 e80fff333ce00c25aa43a42b407e7018
BLAKE2b-256 26cf99119e09c068446c308adfeb3365597b3526395c975ba666dc7181173cd6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.0.1-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.0.1-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ddb23eaf427dbbde41b543d98a0c4a7aeb73bf649e3faa75b94a2fd882a669ba
MD5 6b0a0c97c6946d7ed109db5c99067f0f
BLAKE2b-256 8b68243e8ecc2a48f67d897eaf304dfe903f7dda3012ce809ecef803d4da5234

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page