Skip to main content

Core functionality for Pydantic validation and serialization

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic validation and serialization.

Pydantic-core is currently around 17x faster than pydantic V1. See tests/benchmarks/ for details.

Example of direct usage

NOTE: You should not need to use pydantic-core directly; instead, use pydantic, which in turn uses pydantic-core.

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Getting Started

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.8+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at python/pydantic_core/_pydantic_core.pyi and python/pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Profiling

It's possible to profile the code using the flamegraph utility from flamegraph-rs. (Tested on Linux.) You can install this with cargo install flamegraph.

Run make build-profiling to install a release build with debugging symbols included (needed for profiling).

Once that is built, you can profile pytest benchmarks with (e.g.):

flamegraph -- pytest tests/benchmarks/test_micro_benchmarks.py -k test_list_of_ints_core_py --benchmark-enable

The flamegraph command will produce an interactive SVG at flamegraph.svg.

Releasing

  1. Bump package version locally. Do not just edit Cargo.toml on Github, you need both Cargo.toml and Cargo.lock to be updated.
  2. Make a PR for the version bump and merge it.
  3. Go to https://github.com/pydantic/pydantic-core/releases and click "Draft a new release"
  4. In the "Choose a tag" dropdown enter the new tag v<the.new.version> and select "Create new tag on publish" when the option appears.
  5. Enter the release title in the form "v<the.new.version> "
  6. Click Generate release notes button
  7. Click Publish release
  8. Go to https://github.com/pydantic/pydantic-core/actions and ensure that all build for release are done successfully.
  9. Go to https://pypi-hypernode.com/project/pydantic-core/ and ensure that the latest release is published.
  10. Done 🎉

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-2.18.3.tar.gz (384.5 kB view details)

Uploaded Source

Built Distributions

pydantic_core-2.18.3-pp310-pypy310_pp73-win_amd64.whl (1.9 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.18.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.18.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.18.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.18.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.18.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

pydantic_core-2.18.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl (1.8 MB view details)

Uploaded PyPy macOS 10.12+ x86-64

pydantic_core-2.18.3-pp39-pypy39_pp73-win_amd64.whl (1.9 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.18.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.18.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.18.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.18.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.18.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

pydantic_core-2.18.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl (1.8 MB view details)

Uploaded PyPy macOS 10.12+ x86-64

pydantic_core-2.18.3-cp312-none-win_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows ARM64

pydantic_core-2.18.3-cp312-none-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

pydantic_core-2.18.3-cp312-none-win32.whl (1.7 MB view details)

Uploaded CPython 3.12 Windows x86

pydantic_core-2.18.3-cp312-cp312-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pydantic_core-2.18.3-cp312-cp312-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pydantic_core-2.18.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pydantic_core-2.18.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

pydantic_core-2.18.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.18.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.18.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pydantic_core-2.18.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

pydantic_core-2.18.3-cp312-cp312-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pydantic_core-2.18.3-cp312-cp312-macosx_10_12_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

pydantic_core-2.18.3-cp311-none-win_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows ARM64

pydantic_core-2.18.3-cp311-none-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-2.18.3-cp311-none-win32.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-2.18.3-cp311-cp311-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-2.18.3-cp311-cp311-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-2.18.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-2.18.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

pydantic_core-2.18.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.18.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.18.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-2.18.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-2.18.3-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-2.18.3-cp311-cp311-macosx_10_12_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

pydantic_core-2.18.3-cp310-none-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-2.18.3-cp310-none-win32.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-2.18.3-cp310-cp310-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-2.18.3-cp310-cp310-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-2.18.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-2.18.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

pydantic_core-2.18.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.18.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.18.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-2.18.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-2.18.3-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-2.18.3-cp310-cp310-macosx_10_12_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

pydantic_core-2.18.3-cp39-none-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-2.18.3-cp39-none-win32.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-2.18.3-cp39-cp39-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-2.18.3-cp39-cp39-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-2.18.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-2.18.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

pydantic_core-2.18.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.18.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.18.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-2.18.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-2.18.3-cp39-cp39-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-2.18.3-cp39-cp39-macosx_10_12_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

pydantic_core-2.18.3-cp38-none-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-2.18.3-cp38-none-win32.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-2.18.3-cp38-cp38-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-2.18.3-cp38-cp38-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-2.18.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-2.18.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

pydantic_core-2.18.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.18.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.18.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-2.18.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-2.18.3-cp38-cp38-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-2.18.3-cp38-cp38-macosx_10_12_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

File details

Details for the file pydantic_core-2.18.3.tar.gz.

File metadata

  • Download URL: pydantic_core-2.18.3.tar.gz
  • Upload date:
  • Size: 384.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.14

File hashes

Hashes for pydantic_core-2.18.3.tar.gz
Algorithm Hash digest
SHA256 432e999088d85c8f36b9a3f769a8e2b57aabd817bbb729a90d1fe7f18f6f1f39
MD5 29a33ac05bd35f9478ffb21c0c06a640
BLAKE2b-256 38756da10bfa9a317884a7b4bf0c42297aca72391ad69eb51b974bded53fddc0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c0037a92cf0c580ed14e10953cdd26528e8796307bb8bb312dc65f71547df04d
MD5 595218c8f39e625c345338aab84d377c
BLAKE2b-256 afd11c18f8e215930665e65597dd677937595355057f631bf4b9110aa6f88f79

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 82f2718430098bcdf60402136c845e4126a189959d103900ebabb6774a5d9fdb
MD5 d9f814919f7e6b6851ecfd53c2a4c42c
BLAKE2b-256 5067ff5701b8f54842f9485d2b27455a4911d99b662ceb44ca81e5e26c9421a9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 cd4a032bb65cc132cae1fe3e52877daecc2097965cd3914e44fbd12b00dae7c5
MD5 203a2e2540639534706dac0d6bad73f6
BLAKE2b-256 fe8532c6733055194d624b1a03c1ae6fee4121c1ecac99d87a63a9911eac7d65

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d33ce258e4e6e6038f2b9e8b8a631d17d017567db43483314993b3ca345dcbbb
MD5 965701241682b78327a49bb4fe5941e7
BLAKE2b-256 acca0fd2e3849cd6b87b08fa9676dec86bf33c6c9fbc80af2247b0120dbfae80

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d531076bdfb65af593326ffd567e6ab3da145020dafb9187a1d131064a55f97c
MD5 55cae4eb8da8fc2f202e5125fc572ca4
BLAKE2b-256 3064b6a46b84f1237511aaeb8e73b3b357bdb34f63c958b92a483c7abdfe6b73

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 1f9cd7f5635b719939019be9bda47ecb56e165e51dd26c9a217a433e3d0d59a9
MD5 0e78dbac9aa29a9d7ee2edbc07035a86
BLAKE2b-256 3292eab2738a19fea14f55314eca5e31d85e0680daa1d439d9a4485ba808faf2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 df11fa992e9f576473038510d66dd305bcd51d7dd508c163a8c8fe148454e059
MD5 f62d215fa99e487db95ba67838986f73
BLAKE2b-256 a5e6a3775ca64d41a9cfd2ff57f1322e5e9cec12809f87c58f09d3c4d468d6db

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 77319771a026f7c7d29c6ebc623de889e9563b7087911b46fd06c044a12aa5e9
MD5 d9e2781c8efd9cb0cd48b1047307f56b
BLAKE2b-256 7f6b7bb6e75d4cb9aacca9683cb491b194e94146c6a304de5857a13e3dc0e094

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 ff58f379345603d940e461eae474b6bbb6dab66ed9a851ecd3cb3709bf4dcf6a
MD5 3a918996d5f773818547e0407b9955f9
BLAKE2b-256 ab6ca69c84c0c39d4bff77e0fec5ead29f3fd0b59c9d6c414e9aa1ed5d45ca32

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7e6382ce89a92bc1d0c0c5edd51e931432202b9080dc921d8d003e616402efd1
MD5 ba983606a049fd69a4c06deb5f37fc76
BLAKE2b-256 84c81aedf49ca4326c85d76d986ce1cd25fe2f0ad355ee9419d39cfc77ca3d59

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 616221a6d473c5b9aa83fa8982745441f6a4a62a66436be9445c65f241b86c94
MD5 5b1cce540880ee764eb65835d42b7911
BLAKE2b-256 7a116017fdaeca3e929e7bddf26d6cad0dc3a7f2e3bfef1819b2f994a71f0cd8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ecce4b2360aa3f008da3327d652e74a0e743908eac306198b47e1c58b03dd2b
MD5 6ca6b5163835d9b61cd1bf5edbb743ad
BLAKE2b-256 617d2e3eed251a13a5e9e636f43b12f26b5d79a8498bbc1dc8f22335385b400a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b367a73a414bbb08507da102dc2cde0fa7afe57d09b3240ce82a16d608a7679c
MD5 73a38d2f1426acded114df6a98fef6a2
BLAKE2b-256 94827f2d6263b818527b954d96c49207209424adbc5b99fd6fab473f39fc30c1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 bd4435b8d83f0c9561a2a9585b1de78f1abb17cb0cef5f39bf6a4b47d19bafe3
MD5 84615044d5fa730243a22a2b91b73886
BLAKE2b-256 3a41818508f8edd68c60b26f4ac58ea62c7f4e5efe268a7801ce37cfb758f922

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a62e437d687cc148381bdd5f51e3e81f5b20a735c55f690c5be94e05da2b0d5c
MD5 927323afb008a46464300d02aeacaf88
BLAKE2b-256 70651c55743fa3e3b6c44ff7297bb38f295336797c6e7d9c3c1bf3eb273511ad

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 b95a0972fac2b1ff3c94629fc9081b16371dad870959f1408cc33b2f78ad347a
MD5 f8b8ca39d4ea3e991e289e88d73d7686
BLAKE2b-256 1acbac643f58cb1a820a0f594918dfab745863945d9c46f989c6e108b3b9b72a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp312-none-win_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp312-none-win_arm64.whl
Algorithm Hash digest
SHA256 7a20dded653e516a4655f4c98e97ccafb13753987434fe7cf044aa25f5b7d417
MD5 8e62858c71c33f1c4358adb2f69ce561
BLAKE2b-256 4df4285df83eb0c4a8c710bf002b342a114fcd9e388946a0a35dc06f687f865d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 2c8333f6e934733483c7eddffdb094c143b9463d2af7e6bd85ebcb2d4a1b82c6
MD5 9f67428dd2840f4fe64408a0498d4e05
BLAKE2b-256 e35c477dac00c0d6d34921fec2507ae6aea2cd7c84072eab1dca5bcbbf86c4a2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp312-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp312-none-win32.whl
Algorithm Hash digest
SHA256 ffecbb5edb7f5ffae13599aec33b735e9e4c7676ca1633c60f2c606beb17efc5
MD5 8069762f715a4a09ecdc1e549847ee14
BLAKE2b-256 1d4ba925d2ada3d8a554a362c29f1b0f60cb82db7e791e43e91a6f6bc093dacd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a4e651e47d981c1b701dcc74ab8fec5a60a5b004650416b4abbef13db23bc7be
MD5 a7647be953d0a1f676eef212dd80e414
BLAKE2b-256 9cefade132a1d5a6f5bceee347b06a3853d63730d508c6e91dbd83ec44c4361e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 60e4c625e6f7155d7d0dcac151edf5858102bc61bf959d04469ca6ee4e8381bd
MD5 eff51f34e8fad8a332aea25904bb61b8
BLAKE2b-256 dab62e0a0a51b8fe047d985a7ee1b328d8d8fbef5be54c4870bbe21d2cb846de

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 24b214b7ee3bd3b865e963dbed0f8bc5375f49449d70e8d407b567af3222aae4
MD5 d2861e1b264cd6715142a0d32f3cf20e
BLAKE2b-256 c29fe2f17d24aee5406a8e8e57784fa737abde9ac538d18028b523268796bcce

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7fdd362f6a586e681ff86550b2379e532fee63c52def1c666887956748eaa326
MD5 63359b88aecd0ce6cce550aa3ff1e053
BLAKE2b-256 7ebbf01be2f91439f155f8b522259ef92099383d3d6e8df559caa26b8d21dd43

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ba905d184f62e7ddbb7a5a751d8a5c805463511c7b08d1aca4a3e8c11f2e5048
MD5 d9d3e30d9c3e0418c45fc1369d701fd3
BLAKE2b-256 0c202e7da2f5cbc6f1849c6bad4ea04e8e763512f4af6250972c35d354b59ab1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 6a36f78674cbddc165abab0df961b5f96b14461d05feec5e1f78da58808b97e7
MD5 6b0efb87ae511f1e4a6591cdd666c00e
BLAKE2b-256 f60ad5a1765b5000f56ee3a9659658aed4f978bb85b45bb01c0f921f2a70b511

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e862823be114387257dacbfa7d78547165a85d7add33b446ca4f4fae92c7ff5c
MD5 bb422ac71c7fe24b7d06a60480b15ab5
BLAKE2b-256 20a84c6eb74f4b421e9ea62e2bea42683b58ed2d43376895ecc5c376f3cc1630

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 691018785779766127f531674fa82bb368df5b36b461622b12e176c18e119022
MD5 4afbcc65b62acc0bfa2c892059786cae
BLAKE2b-256 59c25597c61f62cef54cd3f183db5980bf7b3ee7aeb9bd9ab3458d275af33bd7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0bee9bb305a562f8b9271855afb6ce00223f545de3d68560b3c1649c7c5295e9
MD5 de5d2f2a4dfedd1ae90922f96894612e
BLAKE2b-256 94bce5d1938f36cad75525e923ecfef6f544970d4f14800716728ea5555fc574

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f0928cde2ae416a2d1ebe6dee324709c6f73e93494d8c7aea92df99aab1fc40f
MD5 fc3e0d6be2151fcffc1720cf6fff9fe5
BLAKE2b-256 77723ce28b58f3d9c9a8bb59984d810be3eabba4455e92de806a4edacd4e5c0b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp311-none-win_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp311-none-win_arm64.whl
Algorithm Hash digest
SHA256 3fc1c7f67f34c6c2ef9c213e0f2a351797cda98249d9ca56a70ce4ebcaba45f4
MD5 c3ecf1cc32202f02126e87003b6fb3c6
BLAKE2b-256 fc9030f4755a09691f4efebc93e86c98e696e8a109db5a5b36f1d0d94311eac1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 58ff8631dbab6c7c982e6425da8347108449321f61fe427c52ddfadd66642af7
MD5 eb8bdeee1c1436dd5d60f76373ea2442
BLAKE2b-256 d2c7e01cb2017c4b7b274258694f73e8bbbb0988a28b49802e569d1d9bfd51cb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp311-none-win32.whl
Algorithm Hash digest
SHA256 fec02527e1e03257aa25b1a4dcbe697b40a22f1229f5d026503e8b7ff6d2eda7
MD5 5dd82a099f84703b36c6a7b486041acc
BLAKE2b-256 9d9fd3d655c8e09eb87a5eecbb5d442205c56c9dd9acd49670386c29c430f5ea

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9128089da8f4fe73f7a91973895ebf2502539d627891a14034e45fb9e707e26d
MD5 ad20f89606ed9f55f3412970c8fb6dc1
BLAKE2b-256 85966f37b40651b3e43a3c9d0cf8419b333d1f0edc20f70171a9aa52a44d45c8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 aaee40f25bba38132e655ffa3d1998a6d576ba7cf81deff8bfa189fb43fd2bbe
MD5 154567f41b7b4f87bcfcb874d499835f
BLAKE2b-256 442eebdc3f4deb3e3bbf14f0da00394dd07074cfb2ea1431024ed0fc64be3e9c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd7df92f28d351bb9f12470f4c533cf03d1b52ec5a6e5c58c65b183055a60106
MD5 0a953d11eb108e7417fe15aa8f8c63da
BLAKE2b-256 086b391098a7f0863b5e54c60244c069acfca969af56af4eb7cf52e08b009560

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6afd5c867a74c4d314c557b5ea9520183fadfbd1df4c2d6e09fd0d990ce412cd
MD5 79455a2df61b871b349be4fdd1e78897
BLAKE2b-256 4978daf71cbf3b3bc1605bc750b37c5e70dff985b676fd66ac7427b8fb730dc7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 73038d66614d2e5cde30435b5afdced2b473b4c77d4ca3a8624dd3e41a9c19be
MD5 46a9ecfb7a9f70f0d31fdafafd55fe66
BLAKE2b-256 4183db99c69d1f3bf71b0771d7233ac65722ba24ebc39b76b4f168da735726e0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 2f7ef5f0ebb77ba24c9970da18b771711edc5feaf00c10b18461e0f5f5949231
MD5 ac3aba91a603b2b45d1e5170fb240751
BLAKE2b-256 f72783d6903b1eb5ac5db67acf7be1b397c962acba1bbb27bc4fa6af4b4e82bb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c0d9ff283cd3459fa0bf9b0256a2b6f01ac1ff9ffb034e24457b9035f75587cb
MD5 3799f4831a923ad62c5d32b859ce98ad
BLAKE2b-256 9aa55c1d98cdba8e6b2fda1975dcdb59cd608257eee69637deca22389ca16a54

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 80aea0ffeb1049336043d07799eace1c9602519fb3192916ff525b0287b2b1e4
MD5 8882eff26b3ad9a9b48b1284bf79e19f
BLAKE2b-256 41f5cf4a616568dddd85c71bf8b4bdc492c41c1af6eb9b0fc87e8835fd63447c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b8e20e15d18bf7dbb453be78a2d858f946f5cdf06c5072453dace00ab652e2b2
MD5 c526e2a2de53af1f774a8e872cbfe826
BLAKE2b-256 0c84a14457b3cb1ec1f5d1567395abe11ab420dd76733bc79dd0124a874e9eac

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 b9ebe8231726c49518b16b237b9fe0d7d361dd221302af511a83d4ada01183ab
MD5 04104948fa552fb04ce521b9f9d6b8a0
BLAKE2b-256 4acf2847167bab3e7676ba6f0b49963ba04112b1e4281d8c70e302c2fd29e08c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 45e4ffbae34f7ae30d0047697e724e534a7ec0a82ef9994b7913a412c21462a0
MD5 a178db9d962b3eb12176f5722f66e832
BLAKE2b-256 e26785ee8a54220139159b14088dd40f4d43e60822f8d64bb2a5b9b04d673bd2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp310-none-win32.whl
Algorithm Hash digest
SHA256 9f9e04afebd3ed8c15d67a564ed0a34b54e52136c6d40d14c5547b238390e779
MD5 4b4946b34613815b3d36a97cbb7d3417
BLAKE2b-256 a3e30b53c3b8e71be2db70eb7bfb6811bd6d093aa41fdb1ccc9f7ea18b40287b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 98ed737567d8f2ecd54f7c8d4f8572ca7c7921ede93a2e52939416170d357812
MD5 bde65476278e22628fd522a2e67dc1a6
BLAKE2b-256 793405139583ecef8b5a0f5be8105b6b001016e054bcf63ac96a03790c4a790d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 17954d784bf8abfc0ec2a633108207ebc4fa2df1a0e4c0c3ccbaa9bb01d2c426
MD5 295cd2aee844314128049973e3af4596
BLAKE2b-256 351b63c24026c6207b5aa5cd749af319891b5ac3139e2b5dd789bf4a9e95085e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c6ac9ffccc9d2e69d9fba841441d4259cb668ac180e51b30d3632cd7abca2b9b
MD5 d5cb4194c9bf09376f39659488e7dcb9
BLAKE2b-256 a027aeade6d7b2f2bcc8fc835bdf6aa705f6f34508da380f170e13cd37477dd4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3d3e42bb54e7e9d72c13ce112e02eb1b3b55681ee948d748842171201a03a98a
MD5 440b18678971e749303442714b622284
BLAKE2b-256 974422afcd3b8650e157c87d20b73f8a27c25f4f0f240bdc9eb5248bbcdc6f30

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 855ec66589c68aa367d989da5c4755bb74ee92ccad4fdb6af942c3612c067e34
MD5 8f25141aa8f245d42b05573900797c22
BLAKE2b-256 292313b0fb2419b6d21e5f0b7292e6c09720e913b068a441df32cf8cbbc16133

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 e2e253af04ceaebde8eb201eb3f3e3e7e390f2d275a88300d6a1959d710539e2
MD5 2ea6a8030e173574cc8493d881eb321a
BLAKE2b-256 94eace0d90ff9a623e0fe8916bfd89b5fa49b2193493965e7a7787459c1ccb7c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 544a9a75622357076efb6b311983ff190fbfb3c12fc3a853122b34d3d358126c
MD5 867acf45b05d2fb28716dbc75adae817
BLAKE2b-256 971f0d18bac0a38f8f407c219d1b558e959efc94297c1f23810dba64a64624cc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c56eca1686539fa0c9bda992e7bd6a37583f20083c37590413381acfc5f192d6
MD5 f8bc10988936d762a95412f81098b66b
BLAKE2b-256 b10ea8a462fade9a9a533a9379da246e3fe7d9383c5203b6f6862a54284ea744

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 37b40c05ced1ba4218b14986fe6f283d22e1ae2ff4c8e28881a70fb81fbfcda7
MD5 d95dacb93871b191c582b22cb1d10103
BLAKE2b-256 7d3d1640253d1da28910b02b00bf6af4a80f1de27f561879128f76bbacb8436d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 744697428fcdec6be5670460b578161d1ffe34743a5c15656be7ea82b008197c
MD5 2c18a3c74a135d29f7f7b67b2d2bb559
BLAKE2b-256 82ff61c330412137b46a55b2269d0a49fd8b90e29fb57b72760b8e09b49db896

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 4afa5f5973e8572b5c0dcb4e2d4fda7890e7cd63329bd5cc3263a25c92ef0026
MD5 0e1088c7064dcead2c432ab6b367da86
BLAKE2b-256 cc68839fccfb923b7ca63fcf4982bf54ca184ec93c262c2b85f771a65d2a9597

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp39-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp39-none-win32.whl
Algorithm Hash digest
SHA256 f9c08cabff68704a1b4667d33f534d544b8a07b8e5d039c37067fceb18789e78
MD5 d0ceb94ff856f5a2ff46375b1003d576
BLAKE2b-256 33d873eafc01eb516e5b1dcee175a4fbe858ffe92ef63ff3d66b2056063f4128

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 666e45cf071669fde468886654742fa10b0e74cd0fa0430a46ba6056b24fb0af
MD5 0725c72925eb098e1fc291ee05053f21
BLAKE2b-256 53af72d09f23adb8951b3c68402de0e44c8a81b4d58776b5f22e4e93d7419708

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 41dbdcb0c7252b58fa931fec47937edb422c9cb22528f41cb8963665c372caf6
MD5 376f710825e9d0ce2f82117008fe2f5c
BLAKE2b-256 786985fad6d0175016de5026afaab77c0d8046be5242038cd9e9f9c25a8d748c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1a8376fef60790152564b0eab376b3e23dd6e54f29d84aad46f7b264ecca943
MD5 88e78cfa4cddf5e47bc4dce48b22c00e
BLAKE2b-256 d9cb01b7a63a384686e53658b1f9dd2101afb07fb6738f6c97d4cf67603dc8d3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 929c24e9dea3990bc8bcd27c5f2d3916c0c86f5511d2caa69e0d5290115344a9
MD5 c93d89e2566810614682cab875278f35
BLAKE2b-256 7f8b854bb0d7d4958e890ee53b0a369aa35c85f67a832a99bbc3187bfa07b714

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6b32c2a1f8032570842257e4c19288eba9a2bba4712af542327de9a1204faff8
MD5 db7a8112b066b00ae6c62945faf091db
BLAKE2b-256 a95d19ae389015992c2fef07abf364a4970f6dec51f57b7f6fc20ed44c3c320d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 5560dda746c44b48bf82b3d191d74fe8efc5686a9ef18e69bdabccbbb9ad9442
MD5 55b40ab940c74c0058d725a16116d3b8
BLAKE2b-256 966e586b69a992dad730d3f820ef297e17c79c47159959957b355f5de75bd055

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e201935d282707394f3668380e41ccf25b5794d1b131cdd96b07f615a33ca4b1
MD5 ef2bb580e391a2bad89a42706e930cf4
BLAKE2b-256 f1130065c19073e8308e53629b982b49ce17e1aca74d927fc8cc7a51df98a6a2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 dccf3ef1400390ddd1fb55bf0632209d39140552d068ee5ac45553b556780e06
MD5 1211cd5d7b04ba6bcd57698877b1ff2c
BLAKE2b-256 0a3daba68c8832826a5dfa57a6f6e81b5f11fddfc00d68becba6ea0b6ec487b8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c826870b277143e701c9ccf34ebc33ddb4d072612683a044e7cce2d52f6c3fef
MD5 fb8b942218e791d5ec701158aac2bcc2
BLAKE2b-256 02451e179ab8e867dd230af25532ff9802abc3a66d0967565da26e359d18b9f4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 304378b7bf92206036c8ddd83a2ba7b7d1a5b425acafff637172a3aa72ad7083
MD5 e1cb3cbb8994ae3de109811a8ca2220b
BLAKE2b-256 1a9523e2c5010171d0e06b13ef1d04603e1afcac522f2363366d487323c0f04b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 200ad4e3133cb99ed82342a101a5abf3d924722e71cd581cc113fe828f727fbc
MD5 c46349107110a392b86f6d13744e4b33
BLAKE2b-256 c76ae84f843fe4285f0cd204caadb3b1949830aa5d8949f461981d02e1632d78

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp38-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp38-none-win32.whl
Algorithm Hash digest
SHA256 9a46795b1f3beb167eaee91736d5d17ac3a994bf2215a996aed825a45f897558
MD5 46cf87653326eb38cd8c07cdca7e972f
BLAKE2b-256 61c51015888b1d0ec9163222d85b3ee0f015e6df96127d6aa9c910a802ce2055

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 adf952c3f4100e203cbaf8e0c907c835d3e28f9041474e52b651761dc248a3c0
MD5 40c001baf3bc7245c855d4973ad7c9ac
BLAKE2b-256 ea55715e28bc6c0dfb127abc3755e07b650d0d2db340f33cda2b7adc6c792ffa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 67bc078025d70ec5aefe6200ef094576c9d86bd36982df1301c758a9fff7d7f4
MD5 35282712c1af9a7b5239bc8473fb405b
BLAKE2b-256 9cce85c88338fc24a2dc798c106d3897d0a98b44d104dc58059359199460d0c2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a64faeedfd8254f05f5cf6fc755023a7e1606af3959cfc1a9285744cc711044
MD5 4c843e332f3229f089cb30a7257f1844
BLAKE2b-256 9e5f4fdbfee7f3f8f6e93de1319ebea18cb82e986496823813ce9c8810d252bd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 370059b7883485c9edb9655355ff46d912f4b03b009d929220d9294c7fd9fd60
MD5 5e2f666795e27704fdb109193f584a3b
BLAKE2b-256 52c2c8858cd63ab9a7811f8405c8c160217be1ada651821f21eb3bb973682f9d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 63081a49dddc6124754b32a3774331467bfc3d2bd5ff8f10df36a95602560361
MD5 266b357413ea06e680816bd16e88a436
BLAKE2b-256 d213e017dc5be1cbe53b422143080f1a9d99066ea0dc87fc28b9c65050e79c64

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 70cf099197d6b98953468461d753563b28e73cf1eade2ffe069675d2657ed1d5
MD5 a584ec7671b2894eb0e7ec0f596c2e7a
BLAKE2b-256 6bae6efb18240ce22b0f6bda93fbf3d209fc5758c081504d8d407268a620e32b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6e59fca51ffbdd1638b3856779342ed69bcecb8484c1d4b8bdb237d0eb5a45e2
MD5 1609607afcfcd3f0140eea485dec331d
BLAKE2b-256 8dbc159112146407fb61aea8133eba8d2788df2d49b2f890269f31943ef464ce

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 19d2e725de0f90d8671f89e420d36c3dd97639b98145e42fcc0e1f6d492a46dc
MD5 692649f0e558c29e74c4494961975f92
BLAKE2b-256 eb5ae95c77b87cfcf947037067d880b7cfa282bb88dd146e43240d09076eac52

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2c44efdd3b6125419c28821590d7ec891c9cb0dff33a7a78d9d5c8b6f66b9702
MD5 a4ca57dc527010a714d3ad34da6fccf9
BLAKE2b-256 a02801f088bd9bcf7f4ede7d3ab9135a10adc72772ceb9f29bb75f3894a940dc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.18.3-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.18.3-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 eecf63195be644b0396f972c82598cd15693550f0ff236dcf7ab92e2eb6d3522
MD5 228fac3b4bd93ec0213128112040f860
BLAKE2b-256 4a55c230069c79d77441cb9a079f3859530451a2fe148560943fff44f046c520

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page