Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic validation and serialization.

Pydantic-core is currently around 17x faster than pydantic V1. See tests/benchmarks/ for details.

Example of direct usage

NOTE: You should not need to use pydantic-core directly; instead, use pydantic, which in turn uses pydantic-core.

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Getting Started

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at python/pydantic_core/_pydantic_core.pyi and python/pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Releasing

  1. Bump package version locally. Do not just edit Cargo.toml on Github, you need both Cargo.toml and Cargo.lock to be updated.
  2. Make a PR for the version bump and merge it.
  3. Go to https://github.com/pydantic/pydantic-core/releases and click "Draft a new release"
  4. In the "Choose a tag" dropdown enter the new tag v<the.new.version> and select "Create new tag on publish" when the option appears.
  5. Enter the release title in the form "v<the.new.version> "
  6. Click Generate release notes button
  7. Click Publish release
  8. Go to https://github.com/pydantic/pydantic-core/actions and ensure that all build for release are done successfully.
  9. Go to https://pypi-hypernode.com/project/pydantic-core/ and ensure that the latest release is published.
  10. Done 🎉

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-2.3.1.tar.gz (313.7 kB view details)

Uploaded Source

Built Distributions

pydantic_core-2.3.1-pp310-pypy310_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.3.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.3.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.3.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.3.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.3.1-pp310-pypy310_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.3.1-pp39-pypy39_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.3.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.3.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.3.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.3.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.3.1-pp38-pypy38_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.3.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.3.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.3.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.3.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.3.1-pp37-pypy37_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.3.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.3.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.3.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.3.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.3.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.3.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.3.1-cp312-none-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

pydantic_core-2.3.1-cp312-none-win32.whl (1.5 MB view details)

Uploaded CPython 3.12 Windows x86

pydantic_core-2.3.1-cp312-cp312-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pydantic_core-2.3.1-cp312-cp312-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pydantic_core-2.3.1-cp312-cp312-manylinux_2_24_s390x.whl (2.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.24+ s390x

pydantic_core-2.3.1-cp312-cp312-manylinux_2_24_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.24+ ppc64le

pydantic_core-2.3.1-cp312-cp312-manylinux_2_24_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.24+ ARMv7l

pydantic_core-2.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pydantic_core-2.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pydantic_core-2.3.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

pydantic_core-2.3.1-cp312-cp312-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pydantic_core-2.3.1-cp312-cp312-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 macOS 10.7+ x86-64

pydantic_core-2.3.1-cp311-none-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-2.3.1-cp311-none-win32.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-2.3.1-cp311-cp311-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-2.3.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-2.3.1-cp311-cp311-manylinux_2_24_s390x.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-2.3.1-cp311-cp311-manylinux_2_24_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-2.3.1-cp311-cp311-manylinux_2_24_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-2.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-2.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-2.3.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-2.3.1-cp311-cp311-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-2.3.1-cp311-cp311-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-2.3.1-cp310-none-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-2.3.1-cp310-none-win32.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-2.3.1-cp310-cp310-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-2.3.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-2.3.1-cp310-cp310-manylinux_2_24_s390x.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-2.3.1-cp310-cp310-manylinux_2_24_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-2.3.1-cp310-cp310-manylinux_2_24_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-2.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-2.3.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-2.3.1-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-2.3.1-cp310-cp310-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-2.3.1-cp39-none-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-2.3.1-cp39-none-win32.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-2.3.1-cp39-cp39-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-2.3.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-2.3.1-cp39-cp39-manylinux_2_24_s390x.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-2.3.1-cp39-cp39-manylinux_2_24_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-2.3.1-cp39-cp39-manylinux_2_24_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-2.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-2.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-2.3.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-2.3.1-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-2.3.1-cp39-cp39-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-2.3.1-cp38-none-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-2.3.1-cp38-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-2.3.1-cp38-cp38-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-2.3.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-2.3.1-cp38-cp38-manylinux_2_24_s390x.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-2.3.1-cp38-cp38-manylinux_2_24_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-2.3.1-cp38-cp38-manylinux_2_24_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-2.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-2.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-2.3.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-2.3.1-cp38-cp38-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-2.3.1-cp38-cp38-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-2.3.1-cp37-none-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-2.3.1-cp37-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-2.3.1-cp37-cp37m-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-2.3.1-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-2.3.1-cp37-cp37m-manylinux_2_24_s390x.whl (2.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-2.3.1-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-2.3.1-cp37-cp37m-manylinux_2_24_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-2.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-2.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-2.3.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-2.3.1-cp37-cp37m-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-2.3.1-cp37-cp37m-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-2.3.1.tar.gz.

File metadata

  • Download URL: pydantic_core-2.3.1.tar.gz
  • Upload date:
  • Size: 313.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.3.1.tar.gz
Algorithm Hash digest
SHA256 6a72455f9b360f41d5b343efe666a68e2f313a1f1f7c454d96485038afc3fd30
MD5 b3d6b2103c715dc019f4e6579c013ac7
BLAKE2b-256 0ea82398262d9e54a8d266770433dfd881372083cb31ace3897f304e34e5d476

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 587b844986286f85cceeef72302ce96e73f695c9eafce293bdeffb0677897f6d
MD5 ce189c55fbed412a37bc263267613d43
BLAKE2b-256 a0ac27c6dda91e63f0105bd39bfda34959422396a85e3c9110bab817cc6985eb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8533c9084b9ecd2f1f2097a7cf8cc83b7cc11efc00c34087f5e087ce65bf3b9d
MD5 23dc5071cea1e80cbc7d5c4998627b5b
BLAKE2b-256 cb555e3ccf0e0b539ba5d2297a65073a6c27afca8a43419bdfd40acf607a5192

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f9802b9d858250c6d89c9e2fc791d9d07a6e845f54485551a78ac75b9955cc6a
MD5 3291f6f626640144d2f45beb6dfeb0f7
BLAKE2b-256 ae5fe1142680488b33f9eef26e3fba86b205d1b086ae5f022af8a080b5efbaf9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e0148d8a2c66ce56594df0fbf664980b3e088f8095127b24518bc33a99fd360c
MD5 1b48f743b84a944b68c3f939c3d2cf26
BLAKE2b-256 6162cc3a415af60245a5f483d8bc0ee20c00278a1ad56dee80f27ac2cc5bc0bd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 52701da191e3c7cb06bbf9896c512a816ee980059dc89cfbcbd3529a8bbe2c8c
MD5 8a068ba482f530470381576cc46c8dc9
BLAKE2b-256 536fd65e11a77dd027bd38c4510519c693839dd6846394c2301b650e1947f771

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 dfc6311542599c2f527a942beb363415901f49f18a33c299364b9ab16e0bffaa
MD5 aa792d29137b5b70c84582a13c0f4e6f
BLAKE2b-256 f1c8054a47be9d059758281fc4345933f868288b7db669e0a988a827d6173212

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp310-pypy310_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp310-pypy310_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 95cf6812b88ab454f80b7d06b73360db95652dc11fa938397655859cef0668f6
MD5 e37b9bcceeed6766e63bbf04e4e8fb1f
BLAKE2b-256 165454f2f07b3828c719e767962c9508540bee332e35bea43f5a3f0b8f1593bd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 16ed6070cdf049c70dc8d391a7a362f92c49163159607fb53cbe79a7f7a93948
MD5 29f0d763216a27077d174597fe700e83
BLAKE2b-256 065506b489476e0c1c8b570c7f5beff9a315effdfabab1c1946f98576cd83e16

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 afa2161e4e050e23c6530c35467757429bbe38d98b7f968324ee77682133994b
MD5 f0b0a163b48dc02869ac224e1cb2cff1
BLAKE2b-256 2631ac819a7547778ef35bfbd1633174191b74cb3984c66a14cef3f0a98f57c2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 593a0bb4f179077e3edcc72a7f87b9e376198bfa23bc3a2749a4cdbf63aa2194
MD5 4a227706fc74c33f8201016bc82306a5
BLAKE2b-256 fdd57e206d4971b12e7cf73ac716870de9824fc9f5ce0362c48f0724dda3f490

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 34df102a4a560e22d89687c6cd40d05fd49a843121f96b2b38505999a7281dac
MD5 a25dd53adbf4d9661d1623cf729f7b04
BLAKE2b-256 61987f274577578c7fe73b4656eaaf51f08a6c87deb8a181aefec4e349827f37

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9d88ecbbb39f2c90a4f8edff86936ed41e7fe6b3cd0b4a46952daddb9cc70272
MD5 25deee10d0b63ca6ebe8e171613bd04d
BLAKE2b-256 a899ff7d4034dea554a052b5908db528bc2f9e3bb44ceb674f18f7f22603314f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 0e55e86d0d8e0965bc40c3d432cdf66aa90c8b8b03f8a0825f56444080c22a3f
MD5 012fae06845efa8268fc11e0717ebe1b
BLAKE2b-256 fb5c1b0ea73a86c18407a75feba18bcd13476b5f1db3cc37aea633575d8d7201

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 860642bd66bf458353f405881bb38abbc2fffba6c1d27bd25939cdd40a266f39
MD5 4a148d78e7c87c1fcd520fc02d47c7f0
BLAKE2b-256 eb33e9cc28bb3de64098f3adb23de4f3d51c705de50eb649c06384fad782aa5b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d012296efe07a539e99e565933baef50b926bdda95090e9de06108709840a8ea
MD5 d0cf6246fbf1ee0847de4f415e634b20
BLAKE2b-256 6915a9f8b7ef78f192dbde904513c0719fbc97dd2197d2a68b930f09d2209a3b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2dc1adf91204180ffbc92fedaccd73adce6ab250462690a5eeced0b6a5bfa39a
MD5 778787119ba97ca720877a0da3544378
BLAKE2b-256 1e74ed1a9d15a5177cb153c822d6687be030c9c5476cb9815e889e32683154b8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c254fe88cdac94c11dafaf6e5bebe837236d936cd816f15b140f0d7804ec9ab7
MD5 9213a044578c6d52988e4a36a97f3fd6
BLAKE2b-256 69abde3aee8ce6745432adee929e8090a925d5aad11c2b33c3ff0c849c35e164

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 896ae3c1335ee86c4ecac06c2a261dc03e2c86330c852c2568578c0b4c24ff54
MD5 1d0cdc27b8c532acf94e382432b79702
BLAKE2b-256 2a6bf38c37f5ed9144bb71f1514b8e96bba2e06c4a4aaa822e5bf9cbf7ab28da

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c74cc5e024e9447f2ad7ca5dafa8501e75ec9355f5ed7f3324b8fd93d8f3f0c7
MD5 80d512f74b6bc808f030bba6625ec0a0
BLAKE2b-256 68fd01c4380aa32d3397a1592012fcae86bd63f0b149c9348300002141c07908

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9b84bf06a20ec7f7e2678ab57541ad6eef171d2e38492f424cabf850ad20f149
MD5 fd02908bf5c5e60337f95b56591191f4
BLAKE2b-256 1728776a0f5a0a0b19c6e07841ff7c2de29ef9b4f497e645dbb1b28c013153e6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d7212ef599639d1c3f8f44d8e404a64212279042ffc94cf5616434fbdc751bd5
MD5 7867641f191e4963429a09a73785912c
BLAKE2b-256 89e4d1ba8eec69149efd8d61fc97ee858e00c988b5aa3d353eefe59eaf3735f5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 78f5bda9918383d1e22cfba0f02d996b86eb36cdf2a2ec32530bff80d641fb62
MD5 cf76cbf19280dae6f3b17cff32ea64ea
BLAKE2b-256 feea1592b7dcb3863c07738d62b15081e2d31ceafd829836fb64852a2a7c00ac

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6ea2e3e5a3a2c5b900b03176b0c4679823050249121b69ae7132f7302b887969
MD5 9aeb32cfe62538c7838d583c129ea1dd
BLAKE2b-256 a2aed4be8dbf973ef6d0bcf2ff05a0b523c9d07c6cb8a59f297aefccf5a4327a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bfded602a3f5078cf7a6eb4aa628a9efdfbb6100682b218c6a16f1d7fae86b53
MD5 62bacecd4312fdee860b5df81a8a1bbb
BLAKE2b-256 e1a3cfe59a3b27c0e028fb602ab4fbfee245ca3bba0dd50f569a015cc30bd8e5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c0b9306349161f9382fba1a391f5a1652c1f79c6d855c81427786e6c9853a134
MD5 0c91b8546f114af79eeb0252ff2cdfcd
BLAKE2b-256 cc0606b073b6633916a10e64f7c78eb63bf5b29d01e86884605805887f846811

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 96bc0b02ff6fc837938aeedcc59856a17b0011d19b93fede5e4c0c44d62ad20c
MD5 f6fbedb8e03d206f41d57cd14ec22806
BLAKE2b-256 4e0f1d5eeffecb6623283e08e3b40ce1a7df78633d767472e785458ddc13cc52

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 567443c7d6c101ac50848a60057ae9b0589aed70538d4326b128ac9dcbfe255f
MD5 ba99b6aaf367d016b57af38c42c553b9
BLAKE2b-256 cb5168d5b660c5920867545124c6f558b02a9b34151929804c5a90df3eea4a97

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 1d645b9550b9dcf8480817be66e6d6e9dda586b75f56991fa2094f83c4c14bd6
MD5 019a92ee93162f99147703881af475db
BLAKE2b-256 324cd929d2ec8d067605cec86fbafb1dd7bd8c18dec5aa8027b041a5eb0e1bd7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 6eb305af97e9413d22ff95073b5d549945055bbb4702b938879013705fb44d15
MD5 a94f9f1b4211ec3d1bd14f080ec514da
BLAKE2b-256 70796252220ff6c49a0a2d40b4d20940923b2427cab59f2b1d55bf26aa255a9c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp312-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp312-none-win32.whl
Algorithm Hash digest
SHA256 fbffac26e3c3471a961b07c47490f05208c43a75f6079db9b76810de9922b369
MD5 e23e7622a251beb61c1dc1ae768e9b14
BLAKE2b-256 5c21e5e01df2c53766f2753efbf2258147b36578cf73120a7df8b45ee52253a6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9d17a74443b0a0d7701a71eb7189e76c5c986ff8d2496a433c7d158586637c9a
MD5 cdefb71a706979627c1e409ad90511f2
BLAKE2b-256 7b8258d2aae54d99a374ea5809a86bb2107d8ce8ff4d0a5e440832644a4003dd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 df4e72c102901e183fc779146e33c04b48048079b2ffcef14398a4d2fa9429c3
MD5 53ea52f3aed128629ba53df3cba111dc
BLAKE2b-256 5e6842a5f848088c3979941d924e8e9ba686f9a8ec16e6fdee4c9a0f922b4423

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp312-cp312-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp312-cp312-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 cc07ee6e1947c6570bf1d0a92b8d5185dbc86160e3ab28850b97fed9fff4a217
MD5 8c19b09a5f9e7b832e2d891ab4f32dfb
BLAKE2b-256 01e624237b4ac4a37fdecc0151e1b75a23770a5d3bf99ed181f2003f4ade027d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp312-cp312-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp312-cp312-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 644dc16b03c2e07af56eaf285a229adbb9086827eccc1aa82e8a25d6820a389f
MD5 7eca0afd47be95504c2490cadd95ab63
BLAKE2b-256 26f74833161e2ca3a202d3ac331fff755445e98ca1c6b99ff2d63dd717f1d017

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp312-cp312-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp312-cp312-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 be7d2a07dab466e58b2f4c0fa7041bf83bf986c7de49984746ac621495050e66
MD5 c04f26e6b25778bd6e13c92b9300849a
BLAKE2b-256 f8ce6299df46c61250e4da081789e3bf28bdaa8c928d3cedd01a1fe2e102c693

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40716029e69450252e235ac9f5f776f8c11e3fc3f9ea6b641b1c1f7d789c8f4c
MD5 b642c58bbcdc483d5c3f079e9107029c
BLAKE2b-256 dd6cf882b90b15f27608a18836734203127eb21574249250e52ec207bac57d15

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1d97f14077f27144f0ee49f021b992a9ee7204bd9c6292ff8131cbeebf3de230
MD5 32c14162e02f3ba07f9ff652f12401d2
BLAKE2b-256 5a3abfb998ff3f0802ee586d52359b86b1052edad548fa069df1e41a97b5e31c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 18a2541ae51df9b24dfa363b1e581adc9dde7c3cedce65a664e6db1fa8aa218e
MD5 ffc7e01abbbcd39bb4574ba1ba632840
BLAKE2b-256 7a6241191cc0cdd22d4351489bcf435e9495b239931869da11aa3ded188160e8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 99db1ce77ad80181534b899d615a317265360f4704da5921b5736a681e0cca3e
MD5 0e608d45816d142ded3f19854f2d0dae
BLAKE2b-256 1603aa123c894857075a30e51496fdbd9df5f22ac7c61299a7db31d7835a6c2d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp312-cp312-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp312-cp312-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 20c8660fd36bec4d6283d278fa25c1e12f210a9ec171f29bf9fdb71b64120548
MD5 bfbcacaa15cb8e5c4260d05b4443000f
BLAKE2b-256 59f70562014dd91f3dfbf03b47e23ebde9f15e2893fcb1b70c040b42f8c2516d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 f739f76b8107197aec01ff82dfbdcdcc8b49ea6f7c0295446572b6f1179720e6
MD5 e3d823f8489459782d149bce9748c425
BLAKE2b-256 e77a13b0b220ca5998ca953d8a7754db074b925917b88791d9ab383c0ae3fc15

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 ca51b58991382b6bd80b8b497806cbf592ca779aea18b91bf92980b388a3fa4d
MD5 c6c893a45ac5551fa2af5d078f3a745c
BLAKE2b-256 02033dbdc6995328bc4d008440dcee0748e7a4f1a4f7c87b00e0cb8f06066d88

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1fe0d60bc78cc32771c70417e3bb79f34d9ed0f4a75fe9ed26a4f581efda06df
MD5 3befeb796f81444b25d2178241f3f468
BLAKE2b-256 923119d07c8bff1d3090a3c912b875052903108b5df00ad78864ed8c9bb55183

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f1f28aa4f766889ac27b738990565b0c809c34c2bacea5a436a682b2f86f3d54
MD5 04b1e98a1f4b4d1a373cc787b3b244e9
BLAKE2b-256 9840b80ecf691a5c673dc5938ebe983a0eb8aa785b4c809fda5b5222f31136c9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 89a0b4a78e5c2258c47d910e3eec67331eb4618001c462aceb7efb281fc49fe8
MD5 979262d34f6cc5daa758a9c3d8576a72
BLAKE2b-256 c60d3ace9cbcb4db18750c4c230bd1791ef61eea8e296b776bbc34a3840f9557

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 c096313210257723c911c7305912b7bc22633bd56cdd7e047b39c6ba44dc9fdf
MD5 77495c943e42f6841905afc9a6c197a7
BLAKE2b-256 e632f77b7e8189428124859f3ac88aed18e7e9f90e5723aad19c2b1a5539a16a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 a3e694520f632e837358b87033bbe1008366129eeb445da4e2e8343a34c865af
MD5 38e14236d82214abc6b35fdad333fcb9
BLAKE2b-256 ae9475abf6e3f2e93ce2026e13ec2b9d23a848050108f123e1da826c73a22358

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad95adc8944184dab4a265a747f08b7538813eb258cced3e089e2ebfebcc29e6
MD5 4b64392379ba35e76209a0d3f843ff81
BLAKE2b-256 e5d469b11ad43c56d0a6decc1dcaf24ac6da6824fbb8f8a4f9fde1da78f02847

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 decebf28c673506cfee25ce33e75eaafd8adfb2d376317dcd7f9fa29d9bf5370
MD5 49f5b81d3f36ad7417887d523634c6fd
BLAKE2b-256 9c14fd181519167f1f782cf002cf251242a75de40787d46cc3a02730c127f37a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 6aa6fa99e05678d30952569fd3be82ff58c6fab7b875c20c75e35e00e919d111
MD5 54a576ad9252953bf3cc7e1f22575784
BLAKE2b-256 6f5e55d3ed9b0a34fe7cebb27ec51a89a0844fd719d49b2ffe60abc18b63e7ce

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dc3a6ef2802e5258ed9b1c558a656a270950aa2028c7f9b207d4672f747732c1
MD5 71245a6d0f8b58c824ae7773bcc037aa
BLAKE2b-256 4f09eb8fb9790ceb8a5cfd014dfa4ca50cdc58dc4f487d88334083a58242821a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 24fcd99b9933e26fed0cd350645b4b65ead56a164d155c080d259030394b8625
MD5 ca1cc23b6a070810ad21c67590282110
BLAKE2b-256 fc35d9313547960f01f565dcd03bdc72f3b4b3573da239c000295d2df6804449

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 75dce6a355951bc9a42e0cd51d028f68d5919b6c6f02f07e44c3e305479ba431
MD5 70dfb7ee25e1c71148553b77ab392615
BLAKE2b-256 8e8ea4050dc30592d97dfc52e1980a47c83610e1639d4d3387da0820d5cabaee

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 e4c035addccf94045dae7c8e1c59d83dcc4fbc747c1d57ad7ec6f5e06489a9e3
MD5 91fbce2836fb49087b7d4aa82645c830
BLAKE2b-256 848b666cff4b6e92f4b71b0077d3b4d7dd57ce176d9d1b5897aa1db26cd1e593

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e0088424862f72800d07ee163bf4d3f17a170996a71b53bd49e350cc68744d1e
MD5 d02e511fd557ecc4a9783a5295a2d510
BLAKE2b-256 c54fa4405634b3d5cfbae401a28c90ec7f3d542bf43e704a3d7608be0e36174c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 029afac0c37d09c54a141d9726d5e0360cf102dbb12c9a558e0b51dbc6c8f69e
MD5 9f90118d0b75d388177ecee686eae3f0
BLAKE2b-256 da33e81aee0ac899507c2044a5620dc6b36dc4158a949e8e7fe701ef094276e0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 8b8b503d3fdd7e35fce52e1cbaab259be0baac5c165089dba6d39666cbdcbdac
MD5 db428736257051daf2c0a4597f6ce66e
BLAKE2b-256 59979210a1ccd60bd193729d85649a695a559738b8644fbdb10fe2d6704aac33

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 ba0d7fcf82bbe9c4ee9b0e61aa533481dfb7551b304de2da6ae9b1367a4cfd96
MD5 e273dd34432aeb5dcde24a919b77c8db
BLAKE2b-256 1fbe83b4e28301cd45dd5d44e9b9703a5537f4e6c271c48c1fb3dfa265fbfcb5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 246e5b3fc7c9170aef4bcf0f2dd44d135958d0d0e03706a6838a9bcdd71d9617
MD5 4ea9c92b7b41a3d3de37a4f307bcdf93
BLAKE2b-256 5fda1d2501cbd131fec12f6d280768f0b7966d88d7c218a5efaad847a1e98c10

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cd6bc7468dad30e82ad1c5b3f014099773bcf9ac8ddf62d8c24e4e4939b4a6be
MD5 cb3b3637ff2b68ea3c6e8b7a72b1d352
BLAKE2b-256 7985c56d6f29916b3cbd02e276529e0505105122be06c20dccadb0cedfa548af

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 608a6f550fa7947ccdd83d955166ba4d1ede21b227d00811bc4b49f6dd7d1364
MD5 0b45707b6430c17edc329fbf1af5632c
BLAKE2b-256 8579e389dcd9540801a126b7c49f22e4a1a5ba7985e7324a14b2f69086eb03b5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 754f3aa87bc1a9c1969db07ce9b7957fffb33cd0ba6814dd6a8e6e82a61595c3
MD5 ff114531333fee5a4810824dbc7ead4d
BLAKE2b-256 ccb4c932787e539a734c2e33408b24a46364dc46e0defa1ca6281f5de3043808

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 96d916737eb331c50a0fb22dd6879c6a8f481a1f8d8ab1128a9b412f7f501f29
MD5 894057c4b80c0520eec68df016ec66a7
BLAKE2b-256 7646de94bd47e539ea3a9d89c4a2b607106d6a61a972f9db2076d59e20eb6948

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 09cf1f5fc67734e197b7d44c520fdf57392fb52bfb22bb97d76db1483d63ebd7
MD5 0d612d1b6da09235b403b1cf51ed1824
BLAKE2b-256 b14d8d86439c93504e62d4f8bde383aef005f5945101840ade598ebf0018f843

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 8d99d7de6c62a5c44e9f154145a1740f163196f6ef12a3b444197b817eb3774c
MD5 ac3707c12b090c5495c3c89cd6e08ec6
BLAKE2b-256 94635ffb61e5ea55deac5dd0875c168620eed258c64396a20010bbad09a3bc39

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp39-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.3.1-cp39-none-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.3.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 7c126d7186981b1e7e45fe0eccd0c78639f022eb486dad60a20176acbbf50e46
MD5 e5ecc3da072938f61cc7f718431a3c33
BLAKE2b-256 3e33229fdf844c9692ee601b78ad481794755ec347717c543818518144f0e0be

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7cbda3ebbc787a51f251b0937861c3b325d89b7bc8e483a916bbdcf2d33bea4e
MD5 2710a3093651582ec9fc8fd0add15564
BLAKE2b-256 48ed4f8751fbd05475be3e7be052c2904cb9bed2c5820301c47057942083172d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f4c3d216ddb7773d2fe5e084f75cae8b48d2bf6a789e16ce2e11f7815f17c398
MD5 ff7f28b801c78d1cbca5de99d752e810
BLAKE2b-256 4d85f0e735320dcccca03741346e0b1f5216abee817f1c4a1c0fc01e9740e2bb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 cb0e95d0b21b145f083587196a7e593bc34442bb80a069833866d910c0462594
MD5 1bfe72ab857adc8459ef732ac5819efb
BLAKE2b-256 a0507ccd3a1944a1867cf7a250b24fde870d4950b09189eb74b130c1962a1683

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 fbb92b7b3c8fb1875d20a9cf7439530df96fcad91c29a1ff6b8082a309c2b756
MD5 8637b7e1ca609d7bb685d88e077fe2bc
BLAKE2b-256 3e2c0dbe0e5d1641406bff8485521f9efd11ba690d26769c815541a982f3dabc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 5a0da4d9b2b5bcc62afc5823b8446b8c97198267afc849749971ba3fce8a3f8f
MD5 921e2f83a5fb32dfa77601117685c413
BLAKE2b-256 8695cf37bb9c0be8d6b27a2f71b688e9857cf816ca9d9cb8afbab5d78dff91e7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa07f9f8bc6f2828ceafb3861d2973f72e5251e71b4bff1aeb07b28bd0cfed9a
MD5 fa466e5e27ec289fb46b0ae045fee873
BLAKE2b-256 8398629e643813f8ddfc11337e5a2811fc1f8ae5ce60801972e5bbb60f8f0c31

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 66139ea8119c47512538e5dcdc8e28a2d935ad586c3d5d4b548e928e03c22706
MD5 1f41992a779233a74ac1f1316bebf75d
BLAKE2b-256 085e7322cb12d9faacd22671f1b4f1585b8e4ffb130aef0ad7251d1bb79aab4b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 775a65b9787975470852b67cd0a0da2b340e3ed1e6fb2b2af0df2152230e9c4b
MD5 b38c4e7d32df8469615dd9316d2dfd42
BLAKE2b-256 23beb94257957993538bc8cf88df02049daa620c2d7395d7b4cfbc9338e85e2e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 31c69799f725df8f4316a7bab438dbe571412bf817584ffdbae6d6353b02e0bd
MD5 aa4ad0652684703ac093618ed49d3068
BLAKE2b-256 3fb74f8dfcfd84fe608aa298bd5aba67c1da59b8c921c912f0c12be7d1d43538

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 68a362a22ec18e11af42c278e5adf02a9a381bc755a90fe672138d311580c873
MD5 a0d0c3f596d25bc0977577dc17e4a841
BLAKE2b-256 4f7c3590b3af072ab2cf272aa9c63a097b1d5aa27672ae07b45e9e149dc34e10

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 a34e15b8ffdfa558eaf858fc5c9bf6d51bdb0bb1f3c5697078cfe845058ea1d2
MD5 d90f37d3794005f578832006c3c08139
BLAKE2b-256 cd77e1f75c0b8b6b045e50cc091916c9a411a6474b87ca050711c91f6cc09df6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp38-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.3.1-cp38-none-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.3.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 7495676c4c90557e77dc7e27d64c3501c805a812b61ecd7556f619366a303146
MD5 25a3a331381875fa1c8ccdae09fa7b01
BLAKE2b-256 ea59af6c368ff70fc27e2956196bb7aadea047e0646dbf29ce4fc1b70cb313b4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a99110d37eda02d7cb1c6ec60ee7feebb1e4ffdfc949e499965718f0d13404b1
MD5 31dff06b3146a4dee5d17a79bbb98be5
BLAKE2b-256 a8496c2d515585b34ac23a6650cc10c9064bf46cb8ad803a44d37efeb1a3f33a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 72ae6c63adc0c1db79d1f9d9ac03f1b82367d84feaf394c8e9dda11425a20481
MD5 d28bc3d880e866471fc17e479e1ec469
BLAKE2b-256 9c4b09b0cffe823446da77fd178ea56f7ac19ccd823b56239a4aef273b8e321c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 a8bfedd26a3eed69ea55a5079c90afe7b2208315a50b34edca646bcb0e64bdea
MD5 490095bbd4ed1b57dcdfb9791762769e
BLAKE2b-256 95cd8fc850ff07b343e1bfc1592feeee23028a52eb532ca7f80a6c8c5fce6026

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 ebd1e02cf07d6fdb4f06392dac8e93172d7e81971494e11ead4f0690b50aad61
MD5 06bf10b4ca2da0a42ad3ffd25548771f
BLAKE2b-256 144a8b00844469935c3ee1c599470c4832fd0cb6d241ac39b3b2b4178ca84814

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 39cce773c145a3c9c5c367a3fe0bc56a4bb47e808788328560438bc07656cae8
MD5 dfd3851ad5aa4713d40eb58bf20cc771
BLAKE2b-256 03f5a781ea8744bb93806d4bdeb9cb77677594a58f90ed68d342704537c75f04

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 211835934d8ac69c15703535f2e94dcfbb80664fd54664079cc0179b4140b733
MD5 1b8f754a78167ee29ff60c56b1abd778
BLAKE2b-256 707be2d7caf46073ee502640ece2cf76c443ff7d5360194ef17a2fe2764e607a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 da0994855f319458dc91eef53fcd551e275550a9594703e68cf0befb5ad67977
MD5 700fb890d7578ee2e16a9201edad81b1
BLAKE2b-256 c9cfc1dc1cdea7685b8bca0d51796b3486fd131f3f8567614f7c18c64a8881e2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7248cd0f65b95a85db0343cfa7dd437d167ec44c4e0ae189b514079e29581b5c
MD5 60848e577c8a24d3cd57d74d55ad3db5
BLAKE2b-256 135f1e63c242dabd072dd5daea374a220f595dbcc1003babd3b9d1045965cc97

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3149944239143de91741537fb1818afb64d08e8d833c03ea0467201ad388716b
MD5 953adcbfaf3ed271f82eba606c31b176
BLAKE2b-256 7277727137e551b0b10b71154e7ef4e0fa3a78ca6e589b327e74b951ddb200e6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 cd8ea0c6b28bbfb450796ca7dfe3e7d5716a8c80a3f1ac201390ccec9c4f2463
MD5 766336a2ea201a82652ffe5a8383fdf0
BLAKE2b-256 2c30c7e31191e79166d4058c0dc86fa45f361b9cf3a2c574d5635cf25e55f137

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 99286a180d53a15ffb5c6d9702a30d1d0ec5e6d0f1cea93b315a6853ebc2432f
MD5 53ab7f91f55281346321df9f4b818c8d
BLAKE2b-256 278001d7061ed94e32aa3cb0dcc60c548bc5b63811ac7669da7649e2c45b140a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp37-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.3.1-cp37-none-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.3.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 114f4754bcd8c1bebc5b45e3a7ca1d95f9d193afee378672bc0017dc64348dc6
MD5 fafe538efaebd89823fea64cba43e709
BLAKE2b-256 3477b9b2ce159ea8577f5206c4b0d7acd8881938da966b6ddaecd07d2f9041ca

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f37f948b14f081f2ec2feb65959084ef7b958cf32d3da2d5e04eaa72f8124765
MD5 16b6f3fba7edcbc865137064afcf06f4
BLAKE2b-256 db56d08c1fa3ba4c1e7376f290a65c3ac5194ff78dbeed90136a5337b661e973

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 484fdd1a2964b337e5c0d282eec494bf7a17837a6744460da62c7d8d5bf03c89
MD5 09c5895fe1f21b1ddba10ca3db79044b
BLAKE2b-256 e8d023a86d48e567df24670bdfe4f722c416ef29591355023549a6a3c67748a5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 821d5ab97e6d02d0ecf1aa72775daf6630c5031840c6db7fb7974f476e751fe3
MD5 44359fa04e380fb2c67f2b74e6780e76
BLAKE2b-256 0078f00698ae368ce3ecbbd68faa4c31403d954db1f26291443728e8547b6602

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 90697deb505cb0fee8539a247972b5f510e6f0e640922f9e202dc409e591837a
MD5 c0679a4e117667be38620813036af868
BLAKE2b-256 c45127650fbae4717274594b1b25aaeb1209610bc30003aedea84263142e68c2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 0fbb013ef5530d9f284b9894429296b65a2f6b5d377269e3df14bb00e51e7f98
MD5 c074fdc67e4404c3508cc15770b870c4
BLAKE2b-256 fa710e376416530efd918ab2ffc5524c5f6deecd5d627cb4345a694fcec85fef

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb2dee0df1e5472012d78585fa678119eb37e93b06e453884f8c1146c58889b8
MD5 7c5cfa3b6d38c3f89bee75a132ebf44c
BLAKE2b-256 92167c1c75e052ec69a68dc14004f779b808cb8b6132d90d40eb38976b3951a0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 964afc0c797568fea3d3720b9bf68084e5526fa5991e0b5d8e8ec8d22cb97600
MD5 f8d93f8c9e4596c066e69487beff052f
BLAKE2b-256 6b9af843dbb5789dc4b8b7e89f3d9851487714af486b4fb5e89b21f0e1fc3a65

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c7b44c6c86a26b94e9255ed9752f365d0383dd478b4fe5b9c79710359daf56c9
MD5 1e1908aa3cdc046806252dd7dd2a3787
BLAKE2b-256 68ff40eebbc7ac1cbefe64b731567153bd87d26c3e4cbfeff7a1dedf29ecd9ae

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 12a12c8c3372a526248ea40f9e789fc0a64a4588d542163d249a28d075b1cc0e
MD5 3fc064746013016e22361d36bbb45686
BLAKE2b-256 219d938c4ccdde8beb43d03f651a43df413ae0ecf72290936d0241a590c7dbe8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.3.1-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.3.1-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3002e5bde56fc598d79e8ccd5949fed4781090c09560e01907579cedc284656a
MD5 fa1dffd0f2526d2d88594c488d8bd0a2
BLAKE2b-256 35f6b2dc422231ae4ce85153a9a3096873f3d8bd1e6cb85392ba772e42d0516f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page