Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic validation and serialization.

Pydantic-core is currently around 17x faster than pydantic V1. See tests/benchmarks/ for details.

Example of direct usage

NOTE: You should not need to use pydantic-core directly; instead, use pydantic, which in turn uses pydantic-core.

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Getting Started

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at python/pydantic_core/_pydantic_core.pyi and python/pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Profiling

It's possible to profile the code using the flamegraph utility from flamegraph-rs. (Tested on Linux.) You can install this with cargo install flamegraph.

Run make build-profiling to install a release build with debugging symbols included (needed for profiling).

Once that is built, you can profile pytest benchmarks with (e.g.):

flamegraph -- pytest tests/benchmarks/test_micro_benchmarks.py -k test_list_of_ints_core_py --benchmark-enable

The flamegraph command will produce an interactive SVG at flamegraph.svg.

Releasing

  1. Bump package version locally. Do not just edit Cargo.toml on Github, you need both Cargo.toml and Cargo.lock to be updated.
  2. Make a PR for the version bump and merge it.
  3. Go to https://github.com/pydantic/pydantic-core/releases and click "Draft a new release"
  4. In the "Choose a tag" dropdown enter the new tag v<the.new.version> and select "Create new tag on publish" when the option appears.
  5. Enter the release title in the form "v<the.new.version> "
  6. Click Generate release notes button
  7. Click Publish release
  8. Go to https://github.com/pydantic/pydantic-core/actions and ensure that all build for release are done successfully.
  9. Go to https://pypi-hypernode.com/project/pydantic-core/ and ensure that the latest release is published.
  10. Done 🎉

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-2.5.0.tar.gz (329.5 kB view details)

Uploaded Source

Built Distributions

pydantic_core-2.5.0-pp310-pypy310_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.5.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.5.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.5.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.5.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.5.0-pp310-pypy310_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.5.0-pp39-pypy39_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.5.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.5.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.5.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.5.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.5.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.5.0-pp38-pypy38_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.5.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.5.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.5.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.5.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.5.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.5.0-pp37-pypy37_pp73-win_amd64.whl (1.9 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.5.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.5.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.5.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.5.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.5.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.5.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.5.0-cp312-none-win_arm64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows ARM64

pydantic_core-2.5.0-cp312-none-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

pydantic_core-2.5.0-cp312-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86

pydantic_core-2.5.0-cp312-cp312-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pydantic_core-2.5.0-cp312-cp312-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pydantic_core-2.5.0-cp312-cp312-manylinux_2_24_s390x.whl (2.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.24+ s390x

pydantic_core-2.5.0-cp312-cp312-manylinux_2_24_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.24+ ppc64le

pydantic_core-2.5.0-cp312-cp312-manylinux_2_24_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.24+ ARMv7l

pydantic_core-2.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pydantic_core-2.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pydantic_core-2.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

pydantic_core-2.5.0-cp312-cp312-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pydantic_core-2.5.0-cp312-cp312-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 macOS 10.7+ x86-64

pydantic_core-2.5.0-cp311-none-win_arm64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows ARM64

pydantic_core-2.5.0-cp311-none-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-2.5.0-cp311-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-2.5.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-2.5.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-2.5.0-cp311-cp311-manylinux_2_24_s390x.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ s390x

pydantic_core-2.5.0-cp311-cp311-manylinux_2_24_ppc64le.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ppc64le

pydantic_core-2.5.0-cp311-cp311-manylinux_2_24_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARMv7l

pydantic_core-2.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-2.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-2.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-2.5.0-cp311-cp311-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-2.5.0-cp311-cp311-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-2.5.0-cp310-none-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-2.5.0-cp310-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-2.5.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-2.5.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-2.5.0-cp310-cp310-manylinux_2_24_s390x.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ s390x

pydantic_core-2.5.0-cp310-cp310-manylinux_2_24_ppc64le.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ppc64le

pydantic_core-2.5.0-cp310-cp310-manylinux_2_24_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARMv7l

pydantic_core-2.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-2.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-2.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-2.5.0-cp310-cp310-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-2.5.0-cp310-cp310-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-2.5.0-cp39-none-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-2.5.0-cp39-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-2.5.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-2.5.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-2.5.0-cp39-cp39-manylinux_2_24_s390x.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ s390x

pydantic_core-2.5.0-cp39-cp39-manylinux_2_24_ppc64le.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ppc64le

pydantic_core-2.5.0-cp39-cp39-manylinux_2_24_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARMv7l

pydantic_core-2.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-2.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-2.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-2.5.0-cp39-cp39-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-2.5.0-cp39-cp39-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-2.5.0-cp38-none-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-2.5.0-cp38-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-2.5.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-2.5.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-2.5.0-cp38-cp38-manylinux_2_24_s390x.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ s390x

pydantic_core-2.5.0-cp38-cp38-manylinux_2_24_ppc64le.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ppc64le

pydantic_core-2.5.0-cp38-cp38-manylinux_2_24_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARMv7l

pydantic_core-2.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-2.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-2.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-2.5.0-cp38-cp38-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-2.5.0-cp38-cp38-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-2.5.0-cp37-none-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-2.5.0-cp37-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-2.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-2.5.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-2.5.0-cp37-cp37m-manylinux_2_24_s390x.whl (2.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ s390x

pydantic_core-2.5.0-cp37-cp37m-manylinux_2_24_ppc64le.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ppc64le

pydantic_core-2.5.0-cp37-cp37m-manylinux_2_24_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ ARMv7l

pydantic_core-2.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-2.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-2.5.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-2.5.0-cp37-cp37m-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-2.5.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-2.5.0.tar.gz.

File metadata

  • Download URL: pydantic_core-2.5.0.tar.gz
  • Upload date:
  • Size: 329.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.5.0.tar.gz
Algorithm Hash digest
SHA256 0b2f24ceec2ef97b4cc7beac17bc02a5262a3b0aa2c2772ca054b75878047bf5
MD5 2bda32351df7e287adf090e12b2417f7
BLAKE2b-256 8c74e07c447a47ad0ab0fa27db95c53503263983382c94159abdc8a29367e65e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 8b66072de046149a465a45cff45922dd38bca86384d9cc17c9a9c0fc7b0e4fab
MD5 46f62a70768e3b4af20214de98d14ca9
BLAKE2b-256 87e141e2ca137d0cac9d4278e2ccddeb646d8c5b81245b0c5f744cec2bf2b87f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d6f00c644a032397d298518f67f95cfd2ca951d7ff211d3f96cea8e82ca1e49c
MD5 d62f572f15a3ae4588afb9d2f7c86751
BLAKE2b-256 d784568199f45da21d70ec0a03124213ccb7444503441854623845643eaf2794

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 29070426a823d0351bd50728a8d7780e139ff708ddd079a7dd49babf38f5e16e
MD5 5a0ac5cb5ae9c4996653a7495b2dd174
BLAKE2b-256 a163ac9c948c58822468173d3c404fc3209243f51912f319598fd64d41bebd00

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c32cbafbe8a28b4ed6fbd20bae7e8256bfccf18d2cbe4bcb360cd4e82f39576e
MD5 b68b5a3d0fa367f8d0b0ae11a18fcc5a
BLAKE2b-256 ad853a6e66a3a0f7481462d1e6084f3636c6a207a3aa78a31cbcd7fb78d37d3a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b20e4ef433e9be2aa923b3b3b9c9f89b5fa8ce164b9e1feef941632e53214f04
MD5 736f896171a0ea7c513c0ce808045e69
BLAKE2b-256 78e1a593e84eaa34f4f4cce0eefe656b7089ff02a9ad5b3616e44796951a044d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c7662077323f6e03ca16792a3072faea50ac38c3bac4b4b7a5041aa62addedc4
MD5 9599f8334476e7bf4bedb77cd38ae414
BLAKE2b-256 e701845592e7779282b70c4a5db055aaed11a97e7d488a865bdec01dd4536c38

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp310-pypy310_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp310-pypy310_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f48e3d4f3f9d08a8b1b0f6893f8d5ac71c5ad9d520c76eefe761128f0b90c1eb
MD5 03087980ff19c689545150c205eecd2b
BLAKE2b-256 688eca274b36cfabf9bc3d3d664887bc458aee3dbaad131d60a500cfdfeb0d59

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1e48ccd1fef7c503ed1280edb47d57206dbdf13068e75f95dc678667e650d781
MD5 177a3a1a74a26c4e5260ef6bf3979e65
BLAKE2b-256 34f31738fa86fc14542275d4b5135d9a031ecc06eb1004b513e1178b4b485176

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 240abf6580b1108e60c3a2a52f0703a8106f317da95b2b50ba15705888eaded9
MD5 2c4ed58d49a3b65fa9b491c1a39de662
BLAKE2b-256 85dbd2a3616835c5bb9a8a2a44f6dcf50a8139c78854635f772e3d07700411e3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d4dd43c6185df4beedc0c63decaf9b059c3dbd789f282a55989f57eaa39fb82f
MD5 3401cc447470dae12e34bf6bd7b62154
BLAKE2b-256 1b2c123fcc651243e05078c971b2008e71d1cff64e4fb8e1992827849667ef4b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c0d7f92c2fef5e2e550db8e3cf934fde3b16b1d751f189d4371e107b9bdd498f
MD5 b86415c6b7c9c9155f55c9d21ccd3eeb
BLAKE2b-256 c42e7e33a702e7b17606beba7fd010b9315a1045f0d4ae30122df58854fccbaf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b3d666d2a1114aab3138545b6de1338c4c87d52f9af342b83e05af0f667e65f0
MD5 818ab363afe66480b307487e0cc2a11d
BLAKE2b-256 2515e25121673087d3613a260be42592b915e2eb7ecdc5dfd778e246b61602af

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 d99cb5aa42fb0699c4fcf6210b7ff0caabae2d805832bdf8b8b706aa90e06719
MD5 ad01147b25376d9d111218d2dae65cd6
BLAKE2b-256 9eb51f3f75dc1f225c288382062491e3f42402781bb49daaa2a4786d31b2da6c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 b154f86e0d608e4889d4d4c3b0188cca88885957fd035958325907fb93162bfe
MD5 b1530f826fe6455fdf58cf9566511158
BLAKE2b-256 11c282773a8253747b31bda2efdc43206b54efb73a3c12c47c48fe89ce5b650d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 27983962c34c055a334f8cd350837f4158cc17903bbd9202bc1b2e715c549e52
MD5 1e72dd91561d566479a20b011e00f9d2
BLAKE2b-256 405b871bea56031e3c129a5ee8353afdd0861701db2f37b45aa7633a5f412ebc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1ac24bc1de6ca15efa73757b1ba5fffd430f6e479b67733813ef8698a77ed0ad
MD5 0502b475c3e8f01a0927fb069c2c7358
BLAKE2b-256 cbf78886455d434517ca13f36356087361e2d9c2ea9a72bf55b290b170fcae3c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c9bb62f038c8ccf1759da2c793ba276c8c44ce9cd2b34a6918c06c880666e3cb
MD5 a6c9eb6487e7935a5d0091833fa7d3a6
BLAKE2b-256 7b816fb8442c4071a36688446529fff3aa9f7f8e8494eb9587f3bdb063ddbcdc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dc8cb2c3ee7549368963fb0f29c66ad12af1dd661ba2701447fffb54686ebc1d
MD5 145f972a53811e51ea31681f9342d99c
BLAKE2b-256 003ea5feca90f54946f5cd93aa0e76dc728de58baa20f7ccabea4fd946bd3232

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3564e8ea902716b0aab190a799ac71345ff60bc6236b8dd19554007ffc8e3897
MD5 452dd564bf8f4e07f3131351ab5bcadb
BLAKE2b-256 20e16b749c63399f9d4796e14e7171f9a80fd679f94bbc01129413c20c6cbe8b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 1fad68017370558148ce5d0cbed9316a689b774e5ef7026f5a27ce1d92e86c75
MD5 ea390fc758e48efc67469093463911fa
BLAKE2b-256 a624fbdf3c3e8b015851a9116c977a706acbd176dea1fc01e1c651b3d710a0fd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 091df4921153271e4adf7402dfa3c5f911e6a19202daf3cff24d5c47fa4f9f24
MD5 b217922c5355a7c55732c8bd269da789
BLAKE2b-256 445ef803246c8f0e65a7e9ee3fbfd582dd0ce35b6e3f3e83bc327ffd6f89e227

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5d8af448b4e244a1cd2c5d3bc717dd41df106d7153176767f540a4adc97106ae
MD5 9b8c249effe690c53806144a14478668
BLAKE2b-256 2aa07c7287532df2239fdaa6e8edb2e70f6a11e836988f427bf236d49d5e6680

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bb56edcf901db2a6ff024094e83fec1246223dbd1ddf2877c5d21c14e4026de0
MD5 bcf2c7ed0f790b8ab226c978cc18d25e
BLAKE2b-256 0bf3ce077f4e09a12aae393288724b68a749731746428f301de266815b28bbd1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 6212520dba592addcaa1b8e26179065508ca0dec246ee2f8e23f3bfcf3ebd9b4
MD5 025efd714f983f69ed006f0fd094b716
BLAKE2b-256 25cdcc21447e209f3677dfb82dfd1848fb1781dcc584805704adaafbc6ce47fa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0044cf5e20e25da4896a58089ef0cd05aaae0e5782215fa7e7930d5ff9d6404a
MD5 593615771f555e42a6e28cb554911316
BLAKE2b-256 894d7209846e9eebe28424d49a3edfb1585701bb4153104e045c516c33b88731

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8fc23609b7ac2938fd20fc2b786cd87250261a1377f48c873fbc54734d7ca3d0
MD5 b2945bced13b7edf55198183680a3d1d
BLAKE2b-256 3aa15bec3f25d554968f4edb5ecc7c79aaa60aea686ce27d76de6fab8657f028

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 330216c894f224011523918cef0d7764573737afcef2e3868acc9b904cb1164e
MD5 02b30e488c3a825d7c41f34cd5cddee6
BLAKE2b-256 b540345ecdc13f3938874a271554dd138ed650a8eba1a287f89791c782881dc5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 bd2c38832f092e4fac25dc706069659661c63769d4acb0f130fb091e37feb3ba
MD5 5655ef0ff876e5573830c6445cdf74ff
BLAKE2b-256 420c948ced37df29335db7b374378d3ba314ba702fc356c88f6cde29b3fb044e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp312-none-win_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp312-none-win_arm64.whl
Algorithm Hash digest
SHA256 eca442586f65603961ba524bb81d899d054f88deea87a96d0bf521b56e584b0e
MD5 6bf01b485b7c8f2911ea891e5818413d
BLAKE2b-256 9686ed3797b995dc8742cf956165c2e77d48775150d84f721e06f295a97ab559

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 d49f7855fce1a6f7f2f7617355ed9e30799c0cd18fe3fe9add9a32d0738ede88
MD5 3c48e914f105e4e0192798dbb335eaa3
BLAKE2b-256 ec7da8965e2c215d847db3e678a67c078bfd8dfc3024505de48dd8fa508936c7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp312-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp312-none-win32.whl
Algorithm Hash digest
SHA256 2a59bde3f22d1a0845990f29d54a4dc666bab5f35c1d2d775e7d2cdab36957eb
MD5 95a54d12b37555ecb61fe91cf126dcb2
BLAKE2b-256 e4260c2184a96909c4b3b1667f576eaaea3be0dd13bf852ba0d196833dfe3700

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9498623c10fee26badda012d681e325e2375bafef785d8018979336656e008ac
MD5 97e8a06d494875813781cabb86cd66e0
BLAKE2b-256 8bb0365a5fec1de40ff35b42e2944b073a6ade734895c1322817b3dcff3c8bcb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 cd2a85c1549872f1a9fb54dbfe9ca7dc810784ea1f96fd2dcee1620fa01b0cd3
MD5 0c717caa6d307ab5c9d83f33fda9b7d0
BLAKE2b-256 beac17e0826a2d2ba7cdb229ec8d828aee68c8166badacedb34f17de5c355b59

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp312-cp312-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp312-cp312-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 3a1cbc56fe2e339a978fcfd9d07abb488b2e7ca120fd8307ac28a38558641830
MD5 6b74649ce73292f8d4bc83b2f69ffa93
BLAKE2b-256 1c5077be4540b816eda2c62421a3366a1aeee708c7711a559a3ca3de896ae36a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp312-cp312-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp312-cp312-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 eedcbbebb77df9f3ff1e71d317026961bd08998af0adcca327e5701965e1c31a
MD5 c6861ca0d19070ec25f3a4403a41a3f8
BLAKE2b-256 bb0565b284047c9132c797df59ef11c0dbe366d98326cf685926f097871e729b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp312-cp312-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp312-cp312-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 b9b215122b346126b22a8835c4ed86ccc56bca748a14b368aab7c60701c000b3
MD5 88cc247a827837aaaf12c2c5bdb3b4dc
BLAKE2b-256 a9951709eb162911f522b39768b6e322526c56cedc2f5e07ab8fa3a7c237acee

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 50889cac349db83da45c238e81c09124cd50e5545448e7a167fedc0ebf763b10
MD5 3f0b904f9203f62cf3306ed9721232e5
BLAKE2b-256 572a53cbac0936fafca6a46f9dd969de789cda7a97a9d12cdb20b86e7c708899

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 830c5a3a9d544cb15100e92834e6b3a486aca4a2f18462d436bb9a6462494414
MD5 f36db143bffcc82cf57267c910b99493
BLAKE2b-256 5624efb73b72813e0b74cb37b76d38e73c29304efaab2f386ab7f41e84cc9e77

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 2bf9407379b57862904fc290bed3009b595b5226992c9a8cc2566f9618bac80b
MD5 9f9da20c095ce708a7d229f7bb7a0fbb
BLAKE2b-256 28e1a590c9cfadd82427411809ffc5f864667c1523227462f60a83b338886b75

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8ab23c49d46473938bb8c01dee6378fd1f6c49bf43b75d5537af3e8135e55488
MD5 4b919a293cd9e64c061cd1cf20dc3f2b
BLAKE2b-256 d07b11a4ebc8b962beb08bbe4dd4c5785edc5e18036b34e6ab4dfbd3486b7e07

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp312-cp312-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp312-cp312-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 bd8abcb45436b75bf8d343314f6e73798d3de048b23bbb54c58c32019be21d62
MD5 bae444d9a6c2ebbd389c278cc7577017
BLAKE2b-256 ad107d979085a56bfc0511b8d6ee2d746eff0f890a503a003b59d4abd10e562c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp311-none-win_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp311-none-win_arm64.whl
Algorithm Hash digest
SHA256 a9e22b00c131477e50ec2c8c348c21855b4b151a04278635ed7c12b295917ccd
MD5 49ffc89900cd4dd540f82a0cc321f1dc
BLAKE2b-256 2721ed928fb41d194b72f2879c4002b25b4c51dec118342a5e2f98b2812c2592

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 3ac8bd24ddfab484951d0139fb7b4ed4012e4c07bf3f725a38e9ab8a53a4c39e
MD5 4fcfb13d55aabdaa30f1960a8e677677
BLAKE2b-256 299ca0ba345d591a7b007c5fecfd3e3a228d111281ec3cd5fdb06478471b2127

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 b9ab6d078f8096a6a8396ffbccb34aa24cc4082d58c1ed2a65e3bc7c9e70cf98
MD5 0175551646380a385aa19876924d20bc
BLAKE2b-256 1524c1cd0cd37d93b24458942c7cc33453f10002af37483ce0dea514b404bf1c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5b019b2d328911fb423a4f0f7d3c1819cc41a20a166c05352ee2980d8a1ea5f5
MD5 e52db5a265a778423310f73786b14b8d
BLAKE2b-256 43c5e0295bec923c517ce90702bfce322d1032aff3569b3eb20a0a2b2b93ef49

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 551fdfb76648fb87b33bb24296b265581c2a00a6ae59d937bbda72db5aa469f1
MD5 a409d974c6823b9fe37bcd2fc3824659
BLAKE2b-256 5c96d2548af7957f49995d23dbd4a8c7a0623f4ad7121710c99f96d8cbda26e1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp311-cp311-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp311-cp311-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 0f3a6deda373e1d8441a9923ca706cf6b1ff7d1b7c6d6ceef4ba40fe79452b4b
MD5 86aeab4381630ee431f67e20f967f5f7
BLAKE2b-256 82acba23294ac601615396852806cba4279bd4e7d63d7430921258a4b60e00df

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp311-cp311-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp311-cp311-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 b7e08e5ebfe69f9763a9a5d046f34304acad7859fe43741eff4e0a0211b68b7b
MD5 34591768d8584c1f08fc6d1aeee088a3
BLAKE2b-256 7dd342c3162d6b0890694245a893f076eccc81ed011d50b1c0765e9c60be9552

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp311-cp311-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp311-cp311-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 d2067edc02c34554b63beb5523044f899ad19447ac2804909bdb691a50e8c0d6
MD5 3218075c149a0ef82da0a26095535bc1
BLAKE2b-256 d8a53d780c8eac1b2ea62fe07c7f42d1327975139343c1016f050d823aab3593

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 943a4cc2fa14c46544b3ba80cb918434bf68fff65843e42deed75dc6b1e38fec
MD5 9877f95898d284b75b2f35982591c843
BLAKE2b-256 55558e08b2811ddf90c9f98bd03b3353c9ad72b485c6f53a199168e1f56a2b20

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 67b169ddcb6e1b1bf3a05ff28c2cd734b1b201319d52b34a4bc91196d90d9a89
MD5 5046161905f7bcb8732d73b8e027424a
BLAKE2b-256 3415970d6ea08f8957907689e4b847f5b2efc4d1680634c2f23ed4ad4fd5b061

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 50a62db6030faad97cde733518828279dd3f70df6e2e28b672105524bcdc9d5d
MD5 5581dc45893e6dbd55546ada38d88fcb
BLAKE2b-256 1e0ce854db9e5255f15737a7e0fa02212f42718a7a619ea3c9c5fd282a476bef

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 01b3c53ee1e5f2ab72cd23c8fbf803abeb322521822d722e0dbcb0717f17ee34
MD5 83f92db324cbc9d00e82a2ed46bf511e
BLAKE2b-256 4dc58dce30e570682b5a08fb50ba01441ee656f10e7dbece1c7cc11d88615216

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 4b38b49dac37f75b7ac07fe33f10b5cb78316fb8ceff0f2f122d7a60f4cdbee1
MD5 e4d7a49bb3799e0a2f6c202a891146bb
BLAKE2b-256 a14f667bcab0f978ad152964683e23fc2d975bfd6f5a7e017041933c8c49f8fc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 90cc76846975ef3910b7921c730a96a52e0fcbee0f6a1f1ab610b415ed731f88
MD5 9a91abbbeae8e1ec971a10c1a79dea6c
BLAKE2b-256 96c548c4882d4b1b347a712a0e95e4df6723eee33385d99829eee5c5f6ccaccc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 4439cb8263ad9c80762018d516f0360ef751411a2787e77563232fd1bda08e82
MD5 c4bbb132e16862e2dc62dc65bd991862
BLAKE2b-256 dd76759e0489663f588d373617f955e95c6d9562ec01607e38501a09147bc6e0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7914963a6de4d42062b72ad829794870a78146363616b31ec92139d237add6b3
MD5 66956603b89ddfb67a869d6283ab1211
BLAKE2b-256 0db35d129150d8ab92de30af3c2e94d2bd419a625eedf49d103230d8d5802e31

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 6f628e15761e8826c07bd8b36c10b052d9cbf24214f805ffc6ee59617435c212
MD5 5e567463ffe0a8334421afc8c876762f
BLAKE2b-256 488bf63a60b30cc18d327c23521084af5035a4f47d9b304516c14841acaa4ce9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp310-cp310-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp310-cp310-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 dde9cce9cabbc367449befc997e6c85ec067d4c7f594e03799128c2310e2b008
MD5 f85a696d21f69201c51f6fee8213e5e5
BLAKE2b-256 8ae81ddaf6ac317ef82c18774077bc45d9a2c8d331495104f2f24669f13a3bdf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp310-cp310-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp310-cp310-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 971b46b4c592d449d652e10ae25b7bfc93606998a2d1fe7e3079e13558d87560
MD5 e9fbfa50fabddec80b21773f17f41ecb
BLAKE2b-256 4b178ff871b8c71ebfc14cd10c0761e208b63f7ded3b2962bde849706f22826d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp310-cp310-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp310-cp310-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 1112ace240bdf19b1ce633d1ef27687d81a45caf362c0faad48584f357a8e8d3
MD5 baf052e2caaa15a9e4a66e67049e19b9
BLAKE2b-256 1aed178c902bb10d5425f63634536ab5001ee4120c1eb926ee89179084c737a1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa0e9cdd1a02e3934db730a49434d7d3fa8474b409ab9cb420dd8bad40cb02d5
MD5 82841c068eb558aed54219f135083f2f
BLAKE2b-256 8cda0da79735e17004097d3f744d603d29897eeb9ddf8af69644de10ba598633

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1bf31cb9563bc7958d8ce95d0dfc9c3540b730fbba2d0e07546f6ce7db845ca3
MD5 4fa430e882043ae1a83f35befb229495
BLAKE2b-256 2fc9c444b58e7ce0ba64df7639d94ff9f49e5f0c5ada9b07de7291a9fa0f99f8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 38083af9002ff9fda8c9576c1e816095eb3838249607d30174e47a224d9b0a9d
MD5 f8f6af512463c03104347e6888bca952
BLAKE2b-256 358a4e9a62e558791e73daf5425a452ba60b40cf8f222ada6f3b9d4217af3233

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3df387f7bdc186e99816d8c5b128548f4f2f8b08f3e20d813d17f649954f643e
MD5 eba45774542f7733b8a62b4eaa33c737
BLAKE2b-256 01e2a5204fb26cd3a03698ab94eea635e23121fbbf051c849444e9457cbabd74

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8e9a5816dd0608454fbf55e67494c7c9418e110f55c4f31c111550dba435cb42
MD5 d8f40de6509bad3e55bfa52ffcd0e2b0
BLAKE2b-256 af32ea89ed4be7fff4e19c3238a73f8ff6859b11413c0c4f595ee7f15ff9e267

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 872815f3d574cca652c3b4bceebc979e4d64e023f91e4d5610e13de91c6aa640
MD5 cc501d81b58bfe0d176edf2b6472ca51
BLAKE2b-256 ce9287ce012eb16f3ba2467f71df2403090579e978c25efa23804cbd27c194cd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp39-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.5.0-cp39-none-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.5.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 1680509a8d9e01312ae108cf653746b491e3a97bd52afab1eb5e48e8b4fc89cf
MD5 473ab14efa5b642169dd8ee7b484776c
BLAKE2b-256 2998021196af926c826187f16ae8c3a022f59e801bda56e0d8b8c5933e22a0a3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f275d05229ec580cea7aff556036a2f3ad8df31f8d7a0a431cad579f0c7313c1
MD5 80b07aaad2ff0b5f90b85cb0e2bc5250
BLAKE2b-256 ad66d1bd88108ec129af9d29e8d517f3000d66cfb18bada2b6831e53bb48d364

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d93fc619b2886098ed3d1732434b680d4137305f14b47476c0ba7f9a31c21889
MD5 9a62da56a49245590169953ec6ef0b72
BLAKE2b-256 d9dddfeffa32c5b3f0ffc79933973262f79747e2ebf7803e57acacabc7992fd9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp39-cp39-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp39-cp39-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 56ea72c1c4d496fd37a454b6733006609736fbf075e5a99962d73527e044a69f
MD5 dc616ea0c5913353f3ef33c07f42fbc1
BLAKE2b-256 41cb0cb926c4a8e06141ac79163c38c373899fd86ccd6177bcdbf7417f5e68da

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp39-cp39-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp39-cp39-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 900309272068ed8733f70373308b18146982ba1db2ef2b591674364d5eb7b723
MD5 5bed09d761b2b4caa3194c4c6f4f4926
BLAKE2b-256 86ed71850d467eb334cdf20d1ef753b8e76adaee918c970df77914b15c5d75b9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp39-cp39-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp39-cp39-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 69ff9699033da77aae17a9ee13c604d8591227a16902a954ed9799604f7e9496
MD5 cc359aa8ef24beba20b0ce44a3af0a3c
BLAKE2b-256 e465cbe15e21c9571d6b822b1304c3ca6c52edfa00e2c0e71a103acb5d5c42d2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 68ab5a4e714930b08517c28ec31760b70e6b2362e78459de4b99c932b71f2038
MD5 dcb2a4f2f50d43b547751e5fd1746044
BLAKE2b-256 bfbc10def428fbf42e143dad5d10b1627073082efe01921422cf3eb6e13447a0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 020a2f19a9b9354e9a5e482dd471e835a2389dbf604dae7725cc0eb551906286
MD5 30c9eea669fc687d0faa8f489032a141
BLAKE2b-256 2d3ec75b4258a8e3105c0eb65cdd5312b3fc107064aaeefc9c4980915162fe3c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7038b427994fe2fa2ed5d70f8c3fd14ead630e7d6f0a808c6ba3a2cb310fe661
MD5 eda48c6d3be79f8dfd7623ff14c56746
BLAKE2b-256 2865cd6be831b1f6dd77c67b80b827ce5b4737176a35dcc3e9b7c0ef60a7e42b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 08bcc84daa4eab2b3014145bced7137335ada522d00417a6ce3d991733dbdf5e
MD5 d498013dcf1b009287221b6dd89378ce
BLAKE2b-256 f2f871c3a9a3c301b60e18c90970ba63ebe0a287c6058ec762d9d9fffee0f97b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d5a8520eb7bc4431b086407ed9f4fbefc91f00704d7923fff3247906b65eb12a
MD5 ac59e74a9e647ee92db93246cb962588
BLAKE2b-256 325b7bf678db8d7fba9385953175b888e5b23eb03de569a3b1a7eddbcc49105d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 8f4a987849e608114444b0de5facf37cfcaf98fdfe90ac84793043d16580a500
MD5 44abe8a94b43bf2aede1cfce89aa14b7
BLAKE2b-256 df104f19a1cc14f999c430d8d7c1575b4d6a9877417dc858c48cdd92c0d0501a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp38-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.5.0-cp38-none-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.5.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 30218817661d815a5062c640074ae6329c51ee53c2796cce4be78bc1b0a40a15
MD5 cd3eeddad9065afc24660cd28280d65d
BLAKE2b-256 7eaa11774b8e1da345940d243db44a09cf83c6d25a4e1486f948b53e0d5f8d76

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 002125901a4c735d06f4d5209ba6d7c355b88b49f8dfdda49ad14bd83898dd06
MD5 f9d58e679cac7a82e7e504ed47e209a6
BLAKE2b-256 bbd954012fef3262ff14e9e6cd1a06b065708cd43da86ded1869b618ed0a59f0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e58d45cd248ba28f93c490c3054b2978b8f0a841639399653976211bef65ad08
MD5 e061b619ffbac8d89c9942a571350691
BLAKE2b-256 50c92b6f780441e5a2031d1181089dfac290c985fd79803ad5d2d40e8c6f57f5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp38-cp38-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp38-cp38-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 f0506b3aca0a4575fbab8602d5223337b4a048c7f0babd5e7adbf4f9e9bd3737
MD5 9edda7ed967dbc19c3219e9af0e2e120
BLAKE2b-256 1f4b6552de2989083c6d8849ac739928f902279543fc7f1e5ea27efd9534d58c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp38-cp38-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp38-cp38-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 8ecb4e591fdf374cd3234660132d2a540f45ddfa946998bc8f1552d7cac9a1af
MD5 be6bb2d28acf3da3e9bf8aa3a8d06cbb
BLAKE2b-256 30089547fca059c0cc4f4cf6c9d5a879d0d534da3dd43163488bfd3bbc7c13d5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp38-cp38-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp38-cp38-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 224a102c694003aa510ab1b922ae311999f2cffbb5be6968ba6fa549817ba702
MD5 5d5572bccdfe18423a6a7c28a45ef876
BLAKE2b-256 f6947bfc012463fda6cb0be364246f1bb079d0c999aa2c46cc6c7b6309c9f271

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b22151a6db609696a617bd0dbe65bef3b882db6371f5717560a94678f31c00c
MD5 33c4917b95bf081b2f2f45c4685f9372
BLAKE2b-256 e43e9b2504d9cabd5b495339a0cb9552174123966acd08a3e66b47d9d6a447d4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ba6dcf59b1c8df0e60e58b47c863e534ca1255c91d287604e3af039f7529602
MD5 2a87cd8a628f2ba3ff8792c060d6da07
BLAKE2b-256 b616a874db09e02dfd878e6f8e317351b0de9a4236dc976a5f28c218d9ff7920

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 8370898618a1a1304e99cdc4a0cdfca0d645bb1b0cc6f1f2e80677ff6d25a1b4
MD5 47eba4658f6f3f29fc306eba6b77f571
BLAKE2b-256 5b8025ec55b990390d1f8119d93f808e4c047f47e3bd9a9242dbcc427be582b8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 876517c39aaace4d86235d0bb27873e96096de7f59695661af3735f0569c7ac3
MD5 de4d1b7838b9677787a492a99f3d0975
BLAKE2b-256 31ea852f3e8c135f14e8a152f70899b1e5ed19ffc8ee86a88fa8d6863b630484

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e1e2729453233619f2f984a8b3ea1bd072c4b11dc98084f10968450fafe405b3
MD5 d6687aacb967b5535cb6a955a9c209c3
BLAKE2b-256 e3b3ca60a0d8f1bb0016ae1b05009bb4b0725475f42560c9652d13d76582c054

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 ada0200dbe009ea6ad8c1312c869cfa92bef7babfcec2d5a6b2947b25e3e72e3
MD5 3ab490843e47240cfefe68decc825af2
BLAKE2b-256 cb64846a183584227ca3f289277d4c236bb89e0227544b661bdb5dc592ff4ebd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp37-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.5.0-cp37-none-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.5.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 b8fb1c436c612942257b8de1f5ffaba85cdb356b3c349d6a1ea17880bf253c50
MD5 33908e7233b65cba631aa1891a71cfba
BLAKE2b-256 0e98619222d827edb6490fce1107fdb1fba9be2b10fbab3b72d50fa03abb4d8f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2eb68f7910108be4d7db1d426786d6073eee9b5b71e031c20e1316bb057646df
MD5 085751a48f8ca94e068f89b677dd9d42
BLAKE2b-256 742158b73c683ea533638bf9039c797d09d62353b2d5d8637f9b2d2d3e8d269b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ab0f427047107d81c5df421e5cf6f8e6cb7826f2c51d5d09ac2595a8d28c6851
MD5 a5278d771d809020e1fb111aa23dfbe0
BLAKE2b-256 83cf7d7eb25c14264fb023b66ac980a8bddf6914611d3f1a6a8ff29a34c874bd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp37-cp37m-manylinux_2_24_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp37-cp37m-manylinux_2_24_s390x.whl
Algorithm Hash digest
SHA256 7bfdef66ebab71e844ed6f6fe068bf3404c8218a9c1a916fb0ae5291d7cf3ad1
MD5 99878b3f494c8e8a0b0aec4fa7d8a4bc
BLAKE2b-256 2e7d640bc7f911bc703f344e38405e728c4303bc28f967bb9971d259c9ee8b35

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp37-cp37m-manylinux_2_24_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp37-cp37m-manylinux_2_24_ppc64le.whl
Algorithm Hash digest
SHA256 a3641adaad909bfc75dcd380f1e0e6777914710c4c0f4e41b33ef782e48239b3
MD5 fcbfce16a75127402c9e595bba16fe05
BLAKE2b-256 8862813389da340e73da578b3335904b6d27c48c9c98d2d8a6a7c39b164e76c9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp37-cp37m-manylinux_2_24_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp37-cp37m-manylinux_2_24_armv7l.whl
Algorithm Hash digest
SHA256 a5a5ac7e8dee8a1edcce9b8290f0c65a7b4647d5cee5460db0e00281d966ef09
MD5 07a09ee3362a4286e23e323f94ebc86b
BLAKE2b-256 75b46a169e32284c29dfd2dada1f6c29cc4be8ca6abdbbdb85d87a3daae940f7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 947495b23bad203076e41acd6b0a448ece2b8373aa310535b2fbee81dbf65a8e
MD5 b013b88914f7be98d364577a748aa5f0
BLAKE2b-256 326b556ea52c0b9e5d9468b3d0575a32054c859f01b371114b3fbb4e97b2c84e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7b4c00748d1a0b84afec4b3399057b55519839aa83d4ed527ebe3c6c3309e8b7
MD5 851a967a9cd33e505a0e021ad86a39f1
BLAKE2b-256 27b0f7f264f3c0db6a3722260fe7ba27373f8c6a9d33c070f480ea791d1a7dfd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e0212a8fd5a4dbc809da859d01ecb27c581dd9bf6c11ca750ce38c30acaff94f
MD5 01501ebfa2afd54ecf6a5f7ef85bb442
BLAKE2b-256 0efef8481feebbf301799b376fd9cad32db415626439227a30b1773c5b67c718

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0290c26027808f8c80925388603b6051a89375922d680a5df44727693161289d
MD5 1c8fd2f5f486309d123fce313dd84645
BLAKE2b-256 d87096db70b8439e3b9748118c24ab78f2b90f855942669b76e6fe6467a67cfe

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.5.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.5.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 5219aebe5a016bacdfeb204db76d0b6b86d9e86439263d5a3b23f61931a6d2a2
MD5 93f48b2939aae4866382b9276e2fb3eb
BLAKE2b-256 92d355abda95ceb407424e9f44cab7b560155475b41c7f1a6421fb42cd6d020b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page