Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic validation and serialization.

Pydantic-core is currently around 17x faster than pydantic V1. See tests/benchmarks/ for details.

Example of direct usage

NOTE: You should not need to use pydantic-core directly; instead, use pydantic, which in turn uses pydantic-core.

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Getting Started

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at python/pydantic_core/_pydantic_core.pyi and python/pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Profiling

It's possible to profile the code using the flamegraph utility from flamegraph-rs. (Tested on Linux.) You can install this with cargo install flamegraph.

Run make build-profiling to install a release build with debugging symbols included (needed for profiling).

Once that is built, you can profile pytest benchmarks with (e.g.):

flamegraph -- pytest tests/benchmarks/test_micro_benchmarks.py -k test_list_of_ints_core_py --benchmark-enable

The flamegraph command will produce an interactive SVG at flamegraph.svg.

Releasing

  1. Bump package version locally. Do not just edit Cargo.toml on Github, you need both Cargo.toml and Cargo.lock to be updated.
  2. Make a PR for the version bump and merge it.
  3. Go to https://github.com/pydantic/pydantic-core/releases and click "Draft a new release"
  4. In the "Choose a tag" dropdown enter the new tag v<the.new.version> and select "Create new tag on publish" when the option appears.
  5. Enter the release title in the form "v<the.new.version> "
  6. Click Generate release notes button
  7. Click Publish release
  8. Go to https://github.com/pydantic/pydantic-core/actions and ensure that all build for release are done successfully.
  9. Go to https://pypi-hypernode.com/project/pydantic-core/ and ensure that the latest release is published.
  10. Done 🎉

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-2.6.0.tar.gz (334.6 kB view details)

Uploaded Source

Built Distributions

pydantic_core-2.6.0-pp310-pypy310_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.6.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.6.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.6.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.6.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

pydantic_core-2.6.0-pp310-pypy310_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.6.0-pp39-pypy39_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.6.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.6.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.6.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

pydantic_core-2.6.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.6.0-pp38-pypy38_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.6.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.6.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.6.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.6.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

pydantic_core-2.6.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.6.0-pp37-pypy37_pp73-win_amd64.whl (1.9 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.6.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.6.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.6.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.6.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.6.0-cp312-none-win_arm64.whl (1.7 MB view details)

Uploaded CPython 3.12 Windows ARM64

pydantic_core-2.6.0-cp312-none-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

pydantic_core-2.6.0-cp312-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86

pydantic_core-2.6.0-cp312-cp312-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pydantic_core-2.6.0-cp312-cp312-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pydantic_core-2.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

pydantic_core-2.6.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.6.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

pydantic_core-2.6.0-cp312-cp312-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pydantic_core-2.6.0-cp312-cp312-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 macOS 10.7+ x86-64

pydantic_core-2.6.0-cp311-none-win_arm64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows ARM64

pydantic_core-2.6.0-cp311-none-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-2.6.0-cp311-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-2.6.0-cp311-cp311-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-2.6.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-2.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

pydantic_core-2.6.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.6.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-2.6.0-cp311-cp311-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-2.6.0-cp311-cp311-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-2.6.0-cp310-none-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-2.6.0-cp310-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-2.6.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-2.6.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-2.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

pydantic_core-2.6.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.6.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-2.6.0-cp310-cp310-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-2.6.0-cp310-cp310-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-2.6.0-cp39-none-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-2.6.0-cp39-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-2.6.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-2.6.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-2.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

pydantic_core-2.6.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.6.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-2.6.0-cp39-cp39-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-2.6.0-cp39-cp39-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-2.6.0-cp38-none-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-2.6.0-cp38-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-2.6.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-2.6.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-2.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

pydantic_core-2.6.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.6.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-2.6.0-cp38-cp38-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-2.6.0-cp38-cp38-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-2.6.0-cp37-none-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-2.6.0-cp37-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-2.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-2.6.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-2.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

pydantic_core-2.6.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pydantic_core-2.6.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-2.6.0-cp37-cp37m-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-2.6.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-2.6.0.tar.gz.

File metadata

  • Download URL: pydantic_core-2.6.0.tar.gz
  • Upload date:
  • Size: 334.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.6.0.tar.gz
Algorithm Hash digest
SHA256 e50513d8dd8ea67259d45986e314f545f219ebb2496eea52269e457cdc7419f4
MD5 25c655d0a4ce459a831d9b97531552a4
BLAKE2b-256 3a130a98f6ad59e2aea4ee48e18f21a05c081d3d1b5376c526eda9569a7fa4d2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 fc54501cdffbc8a7dbe300d6e4745c910d767a1aa273febca965f5fa561036b1
MD5 d627178d219bb887486ceb6d3d57200c
BLAKE2b-256 ead54c3527f12fe297b4e56c04405a4952b2850f17d8b6f47c18c78fb24292a5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5d9510004c4db5c683e349905c9700217da10b35d4447c7a1dfff1b6dd26192a
MD5 f7e9f09490ca27dd01ec2a1ed28cfc2f
BLAKE2b-256 66a6128b5ad725bdefb6ab6423d0901f4049af453b1f744e51d712dc1f457a87

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5b3159c893a1d6dc93080b882d7c4fa8651abbb228a4d920066f3f48b7a200ac
MD5 0d3a705dcf6964cfae78732216cc1a44
BLAKE2b-256 7bcd47e40ccaf027747118d2f85e8bd34db9fd4950c8f2976fd5adeba8b5cf7e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 358f5d48aa850054ef1b148f4c3000b2ea216db4ab611039080bea294002349c
MD5 ea2dd9bc21e012c8bd129efc7b46ac9a
BLAKE2b-256 4f8a629b32539c2e46690bca0e89e10b196b84a9317aa01ee3a3c1d013b6ff16

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a5534040341ac6ad4d133023cd45da3654fff77795481c8e4d4508cafd248ba5
MD5 7ae235639fa5cf8beddd6ec5f5b0b5b6
BLAKE2b-256 e5797f6d61dada407b558cf97c50f970b0727d17358d569570f2e3acff070d01

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f5ca934143857626de2423d65d487687c87931a62044ed5ee0deee55018569f4
MD5 7e3a791cb50b404b098ad437438e0ee9
BLAKE2b-256 9361b45ec29149d170423851a0c40e6fb8b67ca6fb6035efd680c39f08f080dd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b0b4bcc57b12980b67e5eed09732102b19380f79dcba09444faa7a5c1826a432
MD5 426904d85f7d498d85492ba5aa8f9ccc
BLAKE2b-256 18fde1e17ea48b300664c3807b1acfbb64ff3ee0c6855654ad616783cbe0d1aa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp310-pypy310_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp310-pypy310_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 eeb7b4e1dd925db174a410680c846cb7ab7eb1923f556b44cf53cea774dc42fa
MD5 16faa4c8fe537e22ace108ff3ce8a9f0
BLAKE2b-256 a2ee6f9e9d9d95f1c0947c16433984de900939ad521f6b1baaeafb2a478a49f7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 535f47fe0d2db647fdb0376cbbadd34fd00b3a5f56f772b0b0ef26928e8afa22
MD5 57dd2d90ec7a772c5a04aae881986aa8
BLAKE2b-256 787075d744eaa52e8511b063df5fb1de98d7a88aed73a7844aadf7cfa532efe9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3d72ebaa6451490ae05d3da858120b395b3bf1bebc8a5238ef803ff0f4f16f38
MD5 c6615c33b32fb4b251fafc11396e5af9
BLAKE2b-256 8d14cfb28ef6d65e07ead008a8771ec2ec925f50a1a3b97129095c7edb4a81d1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 6cc57fb772b48e5fd3691ca82d3756b6e64b885676d27d66bff551d951a18e5c
MD5 c739a99fd974a52d504a54f604131623
BLAKE2b-256 b3968fbb7240e503b66105080b69ac00a27c2cfa540f3323c7c0f12bc14decb2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b35585d14028c1afa41c1183906ce4128128d1114be9958b5ad0fb3721b50a4
MD5 57ea9ab4dc77617d1e7d050c6dfa0cbd
BLAKE2b-256 6774066f20cd0308e4769bbf03237247d9a1e510ba6a5b12de81733087d642e2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d179b77fff4387a46ed0b63eb87ad6be58bb2a3a3415e69a44e918e8abcbd8c6
MD5 9cbfa7926802df69d7ec5d503d81d8a4
BLAKE2b-256 3d8eb17f678efd435411a9abf9021db45a1f8c0fb2ebf32a64b9ea8cd4dd94a2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ffe8b2c8e30a87f6d7c1a78e23b8270a1acde9140cde425fa94688d302c8b2c9
MD5 0839f349011f0abf6beb210f919244c3
BLAKE2b-256 c065802819654baf16a047cb86d63bb05bdaf00c8c1364f584c96421fa6e6bc0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 892e7de51b8191929bf1246a04c13674a4d4b8dced8a4f86def85a1b0cb1a1e4
MD5 76e14ffb79b17b055e4d15b2b6443ef4
BLAKE2b-256 811f6a050b253b522a95cc227f35b48600abb8f61bbc478dc693bdc58484126c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 c020c5047b25e64c39006fa11f15d93adf4ae85154387f8e10232871ba78e7b2
MD5 dfdbbf019b426ae755ebf61ac7e55375
BLAKE2b-256 8a8b53d29ee791f30672c7aaf3c35937dd102537cc46fe0910e7710d7a57f225

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0b52468b09ccee65bc96572345ec73dc89b42528874b626f7757000a6544d285
MD5 ac18fb23406046c74b0d3f67ded97f9d
BLAKE2b-256 42f87cf223e76e8b0b8388926041dccfdd5a48dfb83e521df9af91a19cc54610

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b2ddc15cf29dc4b385c667064d7efb96431006dcf523527c3d749494b73e73a6
MD5 d3d6f42c4f2e6b678c0ac1e198d93897
BLAKE2b-256 c712d902adb97cafcbc859febfd6362afa4051eef1a003a944f64515721ce5a6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 95e569d8f702851ab48e349c5eb2f8ea673657b7ed5f2ac335d540ebc8519385
MD5 1a11c8fde590dbe46ba33d0ce9f2fa48
BLAKE2b-256 934492da098564af1a61242cb0eb90841c5ac1b2727e6d183b2b7dc5f94c24a2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 646324855acd153632bb86cbbd222771df7859b43d2891ace57c5b8c818ba8a7
MD5 e56b98eff5fc3f6fc059f1b08ee17401
BLAKE2b-256 2e6fff702c584e41b5de6f6e8deb8413553224f3ca434a60ff3e25dd6faa5f63

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a9d6f16d771334c49a173403805ef874aff9800ea7c44f94ebf3817ae9c5631e
MD5 eef9f04913f78173227b5d1509b8a36e
BLAKE2b-256 2c57a8ab9cd118c584eb3a7175b904133227216e8c1bfe062074f1feb7c4994a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f52e9edca854804b780bba5c82f7a1aafebb7a7c496879a45423cf991c361f9e
MD5 5821f192162aef0dc82288a63b69be89
BLAKE2b-256 c60915af750c423ff269496b0e07aaa57831927380c6232a94941bcbc9a0735b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0dbd7262932b213b34f6c1bdd33b53b6ffc07e3cee21d63486d68e433020f452
MD5 9b7dca966ddbac58838d3578a2c0b139
BLAKE2b-256 b21cdbf42183b9b6de9a642a4aeab7a6d3b71f19b52f5d55a998a5fe9a89f860

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 10da8e685fe25be11089a666346461e01e23164688a224e33fee25d2a86da4e0
MD5 f70e961e7b6dca44941e99e277bc6931
BLAKE2b-256 a61c20aefd2e5a3681ee9b8250acd56e249eeb2c68c9d264538213291c9edc59

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 dabfdc82432499ceb33bb204fa0e5c0004a7dc1d85ba0250c5849ddfddd94819
MD5 403e0475d26d563588cfbbc39e7037d8
BLAKE2b-256 798c214e073ac30479b9b5c4e505018a049f1c32086268c193cbb5cac41fdadc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3427ca73cffe42297bbb0ed712642d8484c42671b329441a2e51ce139f7e2f93
MD5 86d69d9d3788728cc45426f5a959fc38
BLAKE2b-256 470fac0c28da51bb5ac6e2f4bee08088dcb84b427a908d52f0c79a06f30a0fa7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d61acd378c38bdcc1c109605831695eb27bd755d1fc5c765e40878601bd0c66b
MD5 85f09447d0291213c9e438d39549ff35
BLAKE2b-256 06b33d91c0df7b3148faad652e461c3363935088dbce3166f3dc0b42459d7bad

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 997fa26fd71c5d8676fa6dfefc06be1fac65fd578934d40e7546c047b7bdd019
MD5 c154a8f9657b7ea599f8930fab86d24b
BLAKE2b-256 aed23ecdda1212cbb8d5a746de274e6fb94d1c61a92b271c67891051fa5c5a7f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aedc8671291d6ff17b9fc587fed982c4feeffdd28351c577695a5f07945c4625
MD5 121ed1b2965ac1eea0139ddaf4464e6f
BLAKE2b-256 90b3de573925793be8caf1053bb749e4aae998726b522d1a76511a79ac5b4d66

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4f346c8fbd953f47711c388d9b856cad87cf72a714302bc04056f89d6ac55388
MD5 c99e68fff78c8cfee886b5013bb12737
BLAKE2b-256 d5b8eef17d23c191d9e29fdc3547ef79bdaf4aa3750e81635e42eac8c78a5d6e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6cc456fc3c7156b23866ab953d3ff57010ab6a4b79ba686109ef93581467f6c3
MD5 3ce2a8a69e9c45da4e5e4de001e80f9a
BLAKE2b-256 ec423a7f4d90242386efb64b110c1548175b01e0bdf24357c503b4503d8a2921

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp312-none-win_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp312-none-win_arm64.whl
Algorithm Hash digest
SHA256 5a878f37a144c5641ead8b0771164dd22237ed4013b9899f250f0992447114e0
MD5 e391b05cb57587ab977288c8ae0f1409
BLAKE2b-256 8b9598943b02eb3e1042cbf582754bd2a008c75e43bc436666440ffe1fa42d93

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 86a74d426ca995deb3c847a2b382775b93a306fce13ae7b66cdc5fb8090a3ac5
MD5 53db5b8047ec5b7a1b0243b4209b2a7c
BLAKE2b-256 85548245cafd20795d4333031d1e355dac331c95afd210440c229ef7dccd925e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp312-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp312-none-win32.whl
Algorithm Hash digest
SHA256 c029084413a8eeb7d7b179d647d1e1a5cbfd5e5a817862a0ba8c5024fc9febf2
MD5 9c4a7989b03b1ca214fa55f2255951ae
BLAKE2b-256 d6316e6084013417ec73cdc7caf141a264b1b8c452337df57c91c7d0d7ad9923

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 afd9d1ef2805729898f580ccde0e76a3edd39cf16778c2139222047c8d25893b
MD5 a4de3bb205bb1b91a24eb646469cb379
BLAKE2b-256 d9c4bcbe56d537d09092b52e962dc5ce2797bbadcd2064a24b6ae0070b65857a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4118471f4ba0f92fbe84bb6c0f645b423eaa5453e0dc4b6c0a6759da818352ba
MD5 a0e0bf6b2697e7ad0c44e2edeffd5c97
BLAKE2b-256 0726b0bd355b36130778667f3e8ea41414b53d1cfd2217012057328b15e528df

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b52ce001eacd9906955576c71ee3fad9a442117b86dd84e5ea18e6ce287078d
MD5 985957d34e614a3480fe19dbda27ea40
BLAKE2b-256 f7efebe71acd51b4653880f15aa8e990c46d67eb201336602c66efb87c23a38d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 582bfd6e7d09f5883f607b7171fcd2010d226497d9dfc9703c8aa8d58431fa84
MD5 0b88657b488adf1266343eb2542bffac
BLAKE2b-256 0b72ad9b85b29c8f583a14aa5619a61894ecec4a08625662b68f2f013b0de814

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a8aee2623180f736fc426925489e84bd244e45de4175dec76f10d4fda775721b
MD5 f81fc6442b404e8a506622bb8466e94c
BLAKE2b-256 96f45d889719da3a5f61253eb06e13b812abbed53ef3150f7451f649aea6618b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 bf6cb8b9c23dbb074f2d97b02af4d9d5401bd8015daad3e92fc35f88c5c07ba6
MD5 835435b977e96a124d1631bc41db6052
BLAKE2b-256 0f21a61122863e8a08eb15393992578b7539149b3b44550d4bdd2f4419eead6c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 693df3a922d94ba1c42ea732df7ab2f0492d6081b0170e86753a45e8822342a6
MD5 a177dd00a72f39f78d88a9afd0b286cf
BLAKE2b-256 54b658a7d47a3f84f65bcbeabc053f2184174b3e8b063496a69470f979742879

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 179da6a5264d11cf2defba17c0003f6e27922d95f37b4818905115e2c9b8f7ed
MD5 64ad45d4f64f6ca5511dfd3a18af38ba
BLAKE2b-256 73c9fdcb5b5e1b83aaa204515c38374f1da94e6ae797447a0f8c8f1892a96c81

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7d03de66eda2c3a6eab2c2cf43eeece37e4cf811e891361b1fb8d8d3cd109f3a
MD5 acd547bb38150e9ac52017078cb3d704
BLAKE2b-256 9db273b93f5bbd80302a098032e3a7961acdd9d9ed1747df2e2121b8d40725d9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp312-cp312-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp312-cp312-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a7d7b5af9ee32517280228629daca013ecc9a7834075af3d928287539ccd54ec
MD5 8a7a9dbee642549d840940bf7b127c00
BLAKE2b-256 91b7257237dd6cc4b2d904bd50134d6a408ea84119a37b336ba91b58671d447b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp311-none-win_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp311-none-win_arm64.whl
Algorithm Hash digest
SHA256 658f4e8afe60d8400526d6db28d4e88e76027cf6111716fc090de87d14b5c311
MD5 a28224ec6a5f1c66642f04e800e48a83
BLAKE2b-256 f007c65dac0502dc5af1f08385ffb2ce28157892de3a248259eb775247761bf5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 ff462b08951adaf55dbcc623d9b57823e888ffa4886f902dfc2c69d6ddc1ce4b
MD5 672e964bed6d9c07373bd451cbe57b81
BLAKE2b-256 7219dfc3366c4fd38d06571d77e9d4f197cd763e9fb868b95ef90ddf4b1184f6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 75850d211015ae46e28b3e05ee0cc8687316505cad385170aff70ad60f143011
MD5 3abb5dabdb44d66c5699270859ae99f1
BLAKE2b-256 d87fbaada4ec4428cd705c1b3d80e952e8dcc7faf94d7c10f58bd85aa88a67dd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e4d46cd802c163914f07124735371812e9bed8a39acbebcee5bd06d43f454e1a
MD5 e9f4cfe3a0365cf4756f16017bc503ab
BLAKE2b-256 8692ba32bccaa02ed37d4f099fd3aa893757fef34fa49e830eb51b7ff710662c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 fd29541fb6f7647f535c0067cabb50ec014f13fa599ac4e34152abb5cb046988
MD5 0ffdfe4bfd239cdaeccbcbc2f2322bf7
BLAKE2b-256 b2a17874d31241b5027a0771b5ace920e273fcfc0e6452b1ce18a4d828d33bd7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6265372636a78bc6b8ba92f7d2dafca353c549edc8082a602d00a28f71a9155a
MD5 b242ae568145c1e2d759a58e265a1bc6
BLAKE2b-256 4e3baf4eb150c186b453a63c1fe18782ce19d3a57bd6598ed400234fa90e0af1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 04b0e91c338536e3e3f77c3ed5354d14c46163f1c6b0706037b0b4be409eb943
MD5 a27886f7b43a2a41567f785a81131de3
BLAKE2b-256 88137763cc4802cda486aac7d4d5271c08a2b1eea8485a88700bd2c7e4692a9f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 49848c89575d7768ea8762cc029f573a3d611452c41d05ae75bdcea8f77a9e5c
MD5 2e759c7cd771a024ec4071697d31f320
BLAKE2b-256 b40db163761628be41713d4966b54983e634f65bfc1616eb58bc7abafe6cda4d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 82e34dc040001f50bec1a7a5c09fb6566635078ce91943cd10445a560cb3fe23
MD5 ba2b521241d167c27841955fc14cda55
BLAKE2b-256 ab7345ec005b5817efefcffb75049318d73583f2e1d356f312595aac94c3c669

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9c7507d40bd5d055dadba8ae9b6008356f380ce102942e0740228d97e8bd4152
MD5 aef84de4d8f40a77ff2f9e1767b2e794
BLAKE2b-256 8d1fb5024e65448b0d7d72930cabd732ee71719e7be562329d08f15c6c4384ff

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 42caa59248750573efbce6a74f3e121f9def86dc2087772d51f0907c2ed6dc61
MD5 9aaa128b306d628768cd3631051e611d
BLAKE2b-256 5bd87ff429655ca175921a002ddf6add017185c6baee51595831936ecc9a037e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 04d6de74f91ff1a88975bc5e3c7103b676106af380ce8d9b56649116e0855dc9
MD5 626b833be9af968457468db4f10a622a
BLAKE2b-256 7c67f9db62541ff54e607a27a434b7f3404265326f6d06bc65d4697c3ca797a3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 2f80f6790e87ec29ba28aab9a66b07ee789ec8fa6ea94aeac47e27f0019a061c
MD5 8b0b515ab0222feff9d0148b159ad9ec
BLAKE2b-256 f5ebfadd13d960396077d3324ede78a0f13a9a4e5fb5c8a3825ab2e54f4dae88

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 1d1b6c14c1116e797758bf1ff93ff18ab493279609aec6a60e6dee9de9065255
MD5 f6705e8e97df24c2a7d72553501c3f25
BLAKE2b-256 c80b699bd69804f156faeac83b8de6f1ee6b039bcbf41c2390949252ce67559e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 1781e985a9493f3fdca4c010fc6a009ab4fd40a61ab78e5cc9820eb8010c1c4c
MD5 f0bf004b7c7302b9546f310d2cb86a54
BLAKE2b-256 85d6e5ed9bd29e8f4cfed06af9b602a546aaf5ddb90c30a150a254277075d291

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fe66139cfdd02ec4a0aad0cecf53bf9933c748097a97beb9042c03f236dd68b9
MD5 4bc14143781a0543103d7276f8b478d3
BLAKE2b-256 d936a7c5644f26a25ea915cc1e69d53f97820c226769049176072e41518d5da5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c2c54ce857d0adb549fc735ffe84b9d1e77d1b460656fb2d3faa9050a85d8d37
MD5 06cab367d97b8cc65c3b71bfbba501ee
BLAKE2b-256 ed74d87abff0a3eaf5801e58cdb65cfac8d0ec6af8820072905c2438bccbe7aa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 253d769ce88f6d5b8ae8965f08c486114e30b5e5478f327348b77615a2a543cb
MD5 7d8aa596ab5fd48c3775a282100f19bc
BLAKE2b-256 17e659af5c1d593e1ef0d8f8f50ac93c77adf9d81d38a488d5cbdfa7d272cee2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4e9430096484696a1837f55728c804917ad694f8e965ad0317ff896db21c3a7b
MD5 b35f44a4a3605980fd4dbdb20e368b71
BLAKE2b-256 379c816a276234ef3c428525bff3849ec1cd4492a9d8e52681563a0659867a64

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4fd9661a30a370faae9303dfde31d09d5b6f28113f8dace9a63f51d205703a8d
MD5 1f6482d8eb8cce8f0e1aaa9619ca2957
BLAKE2b-256 5867fad675d33de875987951a9fc9496a0280d9b977cfbe26be391df665ae9b4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 775710d825f2b2ffe8a0bfd8d17cb8de6a9e562e78f50171c5afa9c508faa45c
MD5 0712fea5343ed2df7c29d291aecf9dc2
BLAKE2b-256 38c1177167685437976023869a3843e7452170c027ac27730ebcb788b56b6f18

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 482a20567991170d0b55aa4d73084858ab8d54804ffef8061f254c0f8b9cf668
MD5 131d22a999d1b5b19b22ad247791e4d4
BLAKE2b-256 00c182b8bb8052f70714509b2343b5ccf619bff8a26c04e474fe49350ca38755

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 959aa63057738b426137d3de99d8da118f5c8ba19a238fdb5e5f0717297e9da4
MD5 6ab639c73b651f6d087417af1f425a3f
BLAKE2b-256 b2decb962be424b63abbb68b0d267801003533cee6b217dab63d5f118d50bb00

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cddecc97d923c3fae698820a788d6e7fda61538244dd2a0808d6263115fe5870
MD5 c3edae722877b5a5f36d3cd36b6caa9c
BLAKE2b-256 50eb43fa300bf3976f355e35561c91d6bb7f50a5c1d70482ec6b718e116e75e2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 2ae2d2aa91f442427d5d607f5bc07a6601aea7e9812c158b11dfac4fca28b24a
MD5 04664453dfa599c0f275f5d4d19f6f8e
BLAKE2b-256 5b28180f46900c51bc95cf764184cee2091afc2032e7550dff3556a8843bb69b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 83f5a3e201fe16684c12e654423a0c293733a57a1f9a9f284dbfb1b59f0e79bb
MD5 75530115446d51b34a1ce5fd144e0d23
BLAKE2b-256 af06e90b197638d4cd9724215aec027c26c498f243cb0ef42ef0c2fde8bb9d71

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp39-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.6.0-cp39-none-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.6.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 36d6211421a4dd6d11ccb08e9ac92d143132402403ab791688cfc01973ad3de1
MD5 59a660d42023f3e390b52ae337b611f5
BLAKE2b-256 fc679079f2b615cf135f7d72baf6d50422a9cc209b2b1a17ec4c8f790e43dac3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ac4148c3bede4269f286c7d094e98c717f1101025145e89baacbafc7c5f7f74b
MD5 cf5040d0f7121b581c610a558c0cd364
BLAKE2b-256 21dc7a5f2bf792fd837deb71d4de2c3f00f3250b0de9536d27c25636461c9bf1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0ff7df99df6ae485e33afafc7adbfae2e133501b5debea4f0c20cd1f679fa321
MD5 2b84a717f458352e45f39a55775427f6
BLAKE2b-256 c582ce6b7f26307bdb0c296b7e163f7ad9f27861fa50029b006a6496a2f7a4cf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e89b0a3f05416a7e67ec7257cddcf44263a10cea618cfc89855d46997c13742
MD5 8d1d60b0d9144760615f9254210ce9bf
BLAKE2b-256 469b5829398f99a527ce4638744c67cc30b171e77f43f0472c9ffd51c545c706

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 16c572a839eb584115185146a04b15986e19e3cbf00e3788f8296b16ec7b3fd5
MD5 0bda9929d47a1bb14f3b199dacc7f2f1
BLAKE2b-256 f880ab983f8aace3add3bbe2dfab478a420bf1a2b1506a0179e40e12d503e046

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 11854f12f09d2a108d130645edbca7aecf24756455599b0b19dacd47499ccadc
MD5 975f0badfbd3a25068472c8e17038802
BLAKE2b-256 b36a0e081ca69f571dc83cf95f6569dbdb724a64f57d1de7118061fc273d95d8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 fe01f83bea0e4715c49449039b3c60a59408f0ceee61bb8c9a64699545e5b786
MD5 18dc62451f84de4681d7f83eae4a87a2
BLAKE2b-256 22c4cf7e981d7cac1ac76d23beb59e8838fea44b0f2cac9bd10510d1932edd6f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 51eb518682898df170d3d2ddd9c1f2a9496d79e5bd611b508d1a698e50b13fc6
MD5 82591753410d3b867e9c04a3c7315348
BLAKE2b-256 e19879f75d4d1ddcadeb212f689055dbaad7ae8e93bfabbffe445a96c8795ca1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 5464f3d27376739c7fa0af47096ac3696db1d8996d086167b3643f0443a1a976
MD5 8bb3a865b7ad33f9c98e1878eeb9866d
BLAKE2b-256 b67cb7743c68a6d6e670700828bab663351cea40174a01e24841e023e26e3e0d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3170a13c8cdb564f544ce03a7f26962828cce3456413b325fca49d32ef47ed1f
MD5 79d6fc3703300dc21c0a112d59cc6f98
BLAKE2b-256 e3bbb85d2080d9a8f157a2740660d34dfbddcf1e92b71a6d812ba260fdaba0cd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6798756a5bee9991af64763ee2f3580505932a3f432af9a73bc9fdaca460261f
MD5 c98f87fa35674139036dcb9515be17f0
BLAKE2b-256 9d8be108191b41b738d9a5232f00ee28c3784bb8f7fbdd89b11717151674cd5f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 757372e9b5c81cec72a077237d5d026ccd5ad9bf4931bebee4c92177d52b4eba
MD5 894a29d521618eea610734a9729af736
BLAKE2b-256 7f3bf9089ea301ea77d47ceb7988f120874cc713b8ef213103204484d64e7fdf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp38-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.6.0-cp38-none-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.6.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 59420b2fe9edfdc640e79aac09461400862d2e699ca59e5b96e5595cc7554736
MD5 cb9b879e0e1f61031c497efe1aff1e8c
BLAKE2b-256 e98e9a646a44f7bbfb7057e7f3a908c593a78359b695eb90315481e30b7ec6db

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9e8d12016b2fdbf885e3c7580fa8f6d2e90838586faee511656f2022ebf71a2d
MD5 c9588f614939b8e86face60786227e87
BLAKE2b-256 fccfd48bf3ca0f98828119aa8d520b32f24bbccacac18863933e9fba0e42d538

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f693255ffec26a090c76adfb8f6286b76f5f3c9aa245f4bbe03aede102d815ef
MD5 66bb92a24b1e3a0ef4d4c27822777d3e
BLAKE2b-256 8f88df861a16d168def3afd5cae0f52be39bb3d23f450c226a2766737c80679a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cdbc528c7c6fef0e9aa1b4ba620d707c9735cfc92e6b666b83862ee55faa9605
MD5 a70136e2deeafc1a73ce50c5af34fdd5
BLAKE2b-256 401a1c65ecc21a826102b221b513501ce45e64dad62a4535c4289743e130ffbe

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 77865eb89c646673bedc7de4acd0a076dd6bada2f01d010675031cd855b052cf
MD5 7f77636bbf895b5a523986cb8e9000af
BLAKE2b-256 7fd2fa4c7c6dc730be19faf73b665dd913fd8c5a9d7118beb0d35fd9d708ecc1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4bac3e606b7f8fffd5e3a0d7c5d6ab110075c9dc16b9f8932cb077b6d985f8de
MD5 be758fdba0ed0fed4d2cf832de5d52dd
BLAKE2b-256 30197d72eff7837f8425260e8c3ef018d5c864a6b33eb6d1e9abd3ef22ce330f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 99b6004cd989bbcaf32e0794e6f42460b6f5ac047b2eb443a661cfdba29704e5
MD5 1e335be0fb6b93151a174196862ee13e
BLAKE2b-256 1eb25000bcff4e38060403890fc87fdddfc78b7852148a18d4ad786cabd4dc70

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 905048671ef08f2a504cdf7e26ffbe88efd74494ba821f2cdb1e4b1506236047
MD5 f188b3dc5d2faa8e4980622d2b2a38b4
BLAKE2b-256 353ca500f677a13db31db45ec1fe09dbef953eba8ffe38e269189ab09d00f13f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7291e0e36c1bc5c3b20d3f3cf77ba9ac7a26423ec50781d4f0435c45ddfe18c2
MD5 554ddef78d2e8f0da1124603679a2dc7
BLAKE2b-256 707e448d89b69517df1a0d4d35f5e1f1f35e4aa72192bb64a2ccb45a979e752d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d13fc39e2d2957f32d8fa9d013bd7165d00c43890bdaea1e20a726873c50531b
MD5 fa99a52923163529bde06d1945bcbe3e
BLAKE2b-256 ac2b378c88174cb1db3a861b1ba63e118fb21fdf4b38d27c201864c42e0b112f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 14ec281d30dd1a7fbf62e0afe4bc7bfac4b5edcf8da7affef1a79e874f3899cb
MD5 76871f96f26ca4f864dc921538279421
BLAKE2b-256 c2a50ebe3700d529d27b38a8819f97e2e4b93fd4ea4d07786cb5accf4738c81f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 301e47c7cabc1c435773fcf0c7278181add0f211ddaf4c683bbfb62e09457c33
MD5 a8369658ceb439f4cf075bb492ac7583
BLAKE2b-256 ae8cf359f8f2043fb9765a4b5438bf8d997f5c76345d5a62de3d13d412fe91a2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp37-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.6.0-cp37-none-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.6.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 ed683ff1663fd596ce84cf4d132f7ce7b94f0b60686ee06ca2c8e151ccb918e7
MD5 082bdb8f93ef15c97a8b4abccaf9ad89
BLAKE2b-256 5daddf3f1f898b8493832684158e122916acc209a0fd740aa6ace324a00a2a34

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d0d672be281d2e297f95ca301710aed9ad7e10c56a691337c2f22375feb60f29
MD5 da1adacbdf0bba2c866140259eb27367
BLAKE2b-256 c136801780a21aa7e3bc81ac4e1ad67eaead12b0723ce5ac0c4fb38be047bf38

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 148162967ede812466915bee671403dd2ded9822332df6c52866348129d4e58e
MD5 ccfb7d028fb463144dd3e4bdfdc8fed8
BLAKE2b-256 6d949ffe574a5e0d8986aad9ab6187fbf4cb16f47b460302c0cf7c758a6a62f2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 310a47d94895628d3563859cb970cad1b3ee7a5f2282d9bd5512b3c5a09d4379
MD5 8f2af924acaf77ffb6edc255bfb5c8ec
BLAKE2b-256 72d30388f86aeaf73d9659f70d78a984d2b28539e38fda46a3f39eb26761636f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 67f7658ac47a88ea3859389c4a67713edce77ade653812e0a574bc8f0cb0d951
MD5 0644e7b6b731d2b240db348b61d8f727
BLAKE2b-256 ef3af8b0b84c17ba2eb4b445a8591e116d99ca4f257ccf2bae571c3916c82dcb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e3247b6d304226b12e240ff3fb0eb56b45520cd609d382fde6338a5556d44783
MD5 fdfa1c889e72a9c709402a5df9eeb1ae
BLAKE2b-256 63fd93566458b0aa8bde79c57289904af4693359ae4fd030c466df6dbcb36710

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 9f1a5fafbbadca467f426eb796bec61a908a670dfdcb984d300b9dd4d8b82433
MD5 8aa8a59da7aec560829176e7ba738c02
BLAKE2b-256 a7937b674a40ac48b27fdbaa83d682830fc808c82403c61d06433ef9e9026d5e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 859e11c4543bfd16b8033d50a2d7e4190fc5c6e182a6419b0d7c41109e3841b9
MD5 f4c40becb004245589d1856b43f8bf96
BLAKE2b-256 533ecbad56a4b5b9c1b2f7cae28d8084fd8b8d0216dde627db04194b6c91f3e8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 2ee383e256a0e4b8bff1832fb31c530380a1421a714276ffd32609ce58a4c77a
MD5 6d4152b22c378d47982b523759a7698e
BLAKE2b-256 34705f6dd28965241d9f5e2acfcf42abfddae20660d4a906f0586801a89e904c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0faddd509ca1811d7e595cb48dc9b63d080a95f8434c5dc6660f268694f3c20f
MD5 d8d1b35677c5af2738d379ee2f5b10ee
BLAKE2b-256 8cd36cc6cf42f7c172f45a8e5578d3561a7a7d1b7c613ff15c9a8e9bd0a46866

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f9ebd8c45c8729bb23bb902a5cff573996fe5d86c3fc8c17cde3443345533889
MD5 a16ef70e2140335b39b8293c57900f44
BLAKE2b-256 0468eaf1675fcba18ec139eba85b0409806c75325125cb1e3994caf358db9b27

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page