Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic validation and serialization.

Pydantic-core is currently around 17x faster than pydantic V1. See tests/benchmarks/ for details.

Example of direct usage

NOTE: You should not need to use pydantic-core directly; instead, use pydantic, which in turn uses pydantic-core.

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Getting Started

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at python/pydantic_core/_pydantic_core.pyi and python/pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Profiling

It's possible to profile the code using the flamegraph utility from flamegraph-rs. (Tested on Linux.) You can install this with cargo install flamegraph.

Run make build-profiling to install a release build with debugging symbols included (needed for profiling).

Once that is built, you can profile pytest benchmarks with (e.g.):

flamegraph -- pytest tests/benchmarks/test_micro_benchmarks.py -k test_list_of_ints_core_py --benchmark-enable

The flamegraph command will produce an interactive SVG at flamegraph.svg.

Releasing

  1. Bump package version locally. Do not just edit Cargo.toml on Github, you need both Cargo.toml and Cargo.lock to be updated.
  2. Make a PR for the version bump and merge it.
  3. Go to https://github.com/pydantic/pydantic-core/releases and click "Draft a new release"
  4. In the "Choose a tag" dropdown enter the new tag v<the.new.version> and select "Create new tag on publish" when the option appears.
  5. Enter the release title in the form "v<the.new.version> "
  6. Click Generate release notes button
  7. Click Publish release
  8. Go to https://github.com/pydantic/pydantic-core/actions and ensure that all build for release are done successfully.
  9. Go to https://pypi-hypernode.com/project/pydantic-core/ and ensure that the latest release is published.
  10. Done 🎉

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-2.6.3.tar.gz (337.2 kB view details)

Uploaded Source

Built Distributions

pydantic_core-2.6.3-pp310-pypy310_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.6.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.6.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.6.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.6.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

pydantic_core-2.6.3-pp310-pypy310_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.6.3-pp39-pypy39_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.6.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.6.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.6.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.6.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

pydantic_core-2.6.3-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.6.3-pp38-pypy38_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.6.3-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.6.3-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.6.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.6.3-pp38-pypy38_pp73-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

pydantic_core-2.6.3-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.6.3-pp37-pypy37_pp73-win_amd64.whl (1.9 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.6.3-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.6.3-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.6.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.6.3-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.6.3-cp312-none-win_arm64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows ARM64

pydantic_core-2.6.3-cp312-none-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

pydantic_core-2.6.3-cp312-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86

pydantic_core-2.6.3-cp312-cp312-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pydantic_core-2.6.3-cp312-cp312-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pydantic_core-2.6.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

pydantic_core-2.6.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.6.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.6.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

pydantic_core-2.6.3-cp312-cp312-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pydantic_core-2.6.3-cp312-cp312-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 macOS 10.7+ x86-64

pydantic_core-2.6.3-cp311-none-win_arm64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows ARM64

pydantic_core-2.6.3-cp311-none-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-2.6.3-cp311-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-2.6.3-cp311-cp311-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-2.6.3-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-2.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

pydantic_core-2.6.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.6.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.6.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-2.6.3-cp311-cp311-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-2.6.3-cp311-cp311-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-2.6.3-cp310-none-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-2.6.3-cp310-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-2.6.3-cp310-cp310-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-2.6.3-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-2.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

pydantic_core-2.6.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.6.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.6.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-2.6.3-cp310-cp310-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-2.6.3-cp310-cp310-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-2.6.3-cp39-none-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-2.6.3-cp39-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-2.6.3-cp39-cp39-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-2.6.3-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-2.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

pydantic_core-2.6.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.6.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.6.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-2.6.3-cp39-cp39-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-2.6.3-cp39-cp39-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-2.6.3-cp38-none-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-2.6.3-cp38-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-2.6.3-cp38-cp38-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-2.6.3-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-2.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

pydantic_core-2.6.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.6.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.6.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-2.6.3-cp38-cp38-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-2.6.3-cp38-cp38-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-2.6.3-cp37-none-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-2.6.3-cp37-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-2.6.3-cp37-cp37m-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-2.6.3-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-2.6.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-2.6.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

pydantic_core-2.6.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pydantic_core-2.6.3-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.6.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-2.6.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-2.6.3-cp37-cp37m-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-2.6.3-cp37-cp37m-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-2.6.3.tar.gz.

File metadata

  • Download URL: pydantic_core-2.6.3.tar.gz
  • Upload date:
  • Size: 337.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.6.3.tar.gz
Algorithm Hash digest
SHA256 1508f37ba9e3ddc0189e6ff4e2228bd2d3c3a4641cbe8c07177162f76ed696c7
MD5 29a2f85463667001aa86c7c3393087a8
BLAKE2b-256 cbfe8c9363389f8f303fb151895af83ac30e06c0406779fe188b4281a64e4c50

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e49ce7dc9f925e1fb010fc3d555250139df61fa6e5a0a95ce356329602c11ea9
MD5 b5604119bcc8358436e60df3b486e85c
BLAKE2b-256 ec9374db7ee54c3393860ba129993cf37b9fa30dd88e5a05f4c0b229189df8c2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b25afe9d5c4f60dcbbe2b277a79be114e2e65a16598db8abee2a2dcde24f162b
MD5 7814bba3a79676fc3596e6380efd682e
BLAKE2b-256 35cc265ddcc90040f14e7e4bd12d203692eb54e6914af020f1db56d9adfc04a4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 85cc4d105747d2aa3c5cf3e37dac50141bff779545ba59a095f4a96b0a460e70
MD5 2cf656941b7af44cfd9cf79e80316ee5
BLAKE2b-256 4b1ed6fd97a4ac47c26af73fe7b855b84b97a8897156956274b931798a6c720f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 046af9cfb5384f3684eeb3f58a48698ddab8dd870b4b3f67f825353a14441418
MD5 0aea17693d7a9d4c2f26811d3e99627a
BLAKE2b-256 56f9851d1a5f5cacc908192a0452ee20a898c3d46517480d51b6abc6c37807bb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5fa159b902d22b283b680ef52b532b29554ea2a7fc39bf354064751369e9dbd7
MD5 a5593ff592a1dcebb5d6e33f9ff98898
BLAKE2b-256 312a3796bbce3843cb9f10fc2cf8776d26556353e101342ac6aab7193bc73585

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 930bfe73e665ebce3f0da2c6d64455098aaa67e1a00323c74dc752627879fc67
MD5 19c0b74c2bbc1e89da0951269064d4a5
BLAKE2b-256 426e5f07f9c7a9190e62f2220c0376b8f8d2518246851a698b2873f771016d2d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 99faba727727b2e59129c59542284efebbddade4f0ae6a29c8b8d3e1f437beb7
MD5 93c78f3d064009f974c8ed14bb8b0238
BLAKE2b-256 9bd7cbd63100d798bf4d302cbea70ee0b55107e84f2dbe0b4729c3d3c1f0d70d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp310-pypy310_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp310-pypy310_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d7050899026e708fb185e174c63ebc2c4ee7a0c17b0a96ebc50e1f76a231c057
MD5 a90de5943774eccf00f00d6516ee58ae
BLAKE2b-256 d79a367a33d36373e5fea7a5abf0c619d2e1cb08f866d065fe4c2090ec967465

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1fa1f6312fb84e8c281f32b39affe81984ccd484da6e9d65b3d18c202c666149
MD5 437091c1574fc6ec63487e7ea6aac11c
BLAKE2b-256 09d9caa996532ee725acfbd065ad932d35355a569e575e366f5ae0a59df86f24

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 615a31b1629e12445c0e9fc8339b41aaa6cc60bd53bf802d5fe3d2c0cda2ae8d
MD5 680f6ba28e11d12fecc8db34b0fd0efe
BLAKE2b-256 afd7149e40873b0d6f37f31cfe72ad874125055a3408a45a99a0f9e53ccb69eb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7dc2ce039c7290b4ef64334ec7e6ca6494de6eecc81e21cb4f73b9b39991408c
MD5 afcca31f6d0862792b0f6c84b539f889
BLAKE2b-256 693506c53275843c593026df06f00f84ea31fe7b86218cba77b26f60768aba8f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf9d42a71a4d7a7c1f14f629e5c30eac451a6fc81827d2beefd57d014c006c4a
MD5 d41a7e8aa533aad7e25e6815725025f5
BLAKE2b-256 713bed4197ea7a9a6dcc233ca654d3caeb3ea383cc60ac9f7e0a5a92db9ecbc5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8b2b1bfed698fa410ab81982f681f5b1996d3d994ae8073286515ac4d165c2e7
MD5 e04c9b255d834b134aebc8b8f1d09339
BLAKE2b-256 1b63b3caf16c86c7f5fd63dadf6fa047d58cf2b58fed5fd20e5696a6a4f64431

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4292ca56751aebbe63a84bbfc3b5717abb09b14d4b4442cc43fd7c49a1529efd
MD5 00c2b8452632548c427e7de2c47072d5
BLAKE2b-256 397803cf262776aff1478cb04e2a99230c050b76c9854a0768f68719a828e647

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 48c1ed8b02ffea4d5c9c220eda27af02b8149fe58526359b3c07eb391cb353a2
MD5 9e15e8b99d2e5b22c597c83f278fd698
BLAKE2b-256 aabed91d2183f6c3cd1e251e2deb2ab560e38ac1c3d920f33aed77abf2e96791

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 c9d469204abcca28926cbc28ce98f28e50e488767b084fb3fbdf21af11d3de26
MD5 aaac5c0957e7c4ef10194caab602b05e
BLAKE2b-256 3eb4202942124bcd1f480f8d70a274808d544c6b2da2d86b93518514dd1f7a68

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d38bbcef58220f9c81e42c255ef0bf99735d8f11edef69ab0b499da77105158a
MD5 a72c311d63be5559af2af5ab1a696d7b
BLAKE2b-256 355ff9a80b46692e52da721ee7e07e0b74032158c112179eb60cdd10bb2faccd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d9140ded382a5b04a1c030b593ed9bf3088243a0a8b7fa9f071a5736498c5483
MD5 f41f74f4335c4db56211bb0b38422684
BLAKE2b-256 488cb6009252ad531c3b39d20f1fda91a5db050596187c70e8d39dfbe5ee9985

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 6656a0ae383d8cd7cc94e91de4e526407b3726049ce8d7939049cbfa426518c8
MD5 eb40acc2fc93fb3a35aa716536f9b740
BLAKE2b-256 bc4160569994e95b8dc27701f9dcd09f057643a802473b934e698e289735596e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 75c0ebbebae71ed1e385f7dfd9b74c1cff09fed24a6df43d326dd7f12339ec34
MD5 ceba218046582ca73a513707654f5eb1
BLAKE2b-256 e69231f86fb76e889586adb2fc683e83ede61b96b0738aa25f896b9469745386

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 56ea80269077003eaa59723bac1d8bacd2cd15ae30456f2890811efc1e3d4413
MD5 624919b29a4495f613dfcbac012fe637
BLAKE2b-256 fb267d4a4e9349c3ec619d8f300ea3a637e1a8902e48c7ec7ca4e0bf69606273

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 252851b38bad3bfda47b104ffd077d4f9604a10cb06fe09d020016a25107bf98
MD5 b890503d48f1a6faa3b5977b56631f90
BLAKE2b-256 66678f294836b8ebd9abc7d94fc759c8b4fbe209a5e73bed83c31257e592398a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b962700962f6e7a6bd77e5f37320cabac24b4c0f76afeac05e9f93cf0c620014
MD5 a0e0d3e9b98bbe74d8bfdfc8484e5dbd
BLAKE2b-256 a6586ce467c899bddd94718c7d1dc66e8deada77ba4edc2186b719c791dca44e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3796a6152c545339d3b1652183e786df648ecdf7c4f9347e1d30e6750907f5bb
MD5 7f047f3b80f6faa9af972af93e1405b1
BLAKE2b-256 9e7940f780f3929efd6ce4be33b8c9efec5beddfcb101aaa9f2dcca76f57a64c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 f1a5d8f18877474c80b7711d870db0eeef9442691fcdb00adabfc97e183ee0b0
MD5 e9e29bccb3676b62d7e5bf90d47197b9
BLAKE2b-256 e1bebee1032fb4ddc7edf9d9c15d765e06f0a7c6f8e3b2c77303beded54a3882

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 692b4ff5c4e828a38716cfa92667661a39886e71136c97b7dac26edef18767f7
MD5 86b3cbc9623aa9e767f42d1e9fe4b08e
BLAKE2b-256 24b34609f29aa904826abeeadd966dd1666da9f44f513c81e6f45ba17c970e5b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c8c6660089a25d45333cb9db56bb9e347241a6d7509838dbbd1931d0e19dbc7f
MD5 b30d7b47336993758e951d8960c326d5
BLAKE2b-256 437de4c06fc30a5d8742caaca081e18db3957a450aca9c16e6099d39a0a99cc1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ef724a059396751aef71e847178d66ad7fc3fc969a1a40c29f5aac1aa5f8784
MD5 cf51cc6be7a97c516a8dd8719c1e88ac
BLAKE2b-256 954c10fb8d0335e6966ade1d46657d0a75df714e2e6c692e9438175ae43ef9e6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c6595b0d8c8711e8e1dc389d52648b923b809f68ac1c6f0baa525c6440aa0daa
MD5 2c7a8e3d4c171b3b7cd4e7d1d3720578
BLAKE2b-256 7dc038ad95c35bf21e04cee9c332616504b5f2698cb34ec22dcc316c8e7fcec2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 3c8945a105f1589ce8a693753b908815e0748f6279959a4530f6742e1994dcb6
MD5 a20819435d8034546e1d9528762649f6
BLAKE2b-256 0cf2ed9d36aedac003c8755226e7e98c520b3a6d1c2db8d782936981bbe47ebd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 2dd50d6a1aef0426a1d0199190c6c43ec89812b1f409e7fe44cb0fbf6dfa733c
MD5 a9aa668e5769e2c499d8026231c679cf
BLAKE2b-256 26009bf8ebd51f8e5e3f71dea9b8f3706a2289c66090fe309d04c1e04c08d6b4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp312-none-win_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp312-none-win_arm64.whl
Algorithm Hash digest
SHA256 1ac1750df1b4339b543531ce793b8fd5c16660a95d13aecaab26b44ce11775e9
MD5 852b56b4c54c206a36a89c10a59599bd
BLAKE2b-256 ae9feda26f38f76ea7cb47ad1dc0d4597c504cf8dc9376b74195b272d4d00ca5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 23470a23614c701b37252618e7851e595060a96a23016f9a084f3f92f5ed5881
MD5 e1902792fa278f2603478dbad031bd1a
BLAKE2b-256 5592714a0af3ce3a34b9f0d11f2abece455174bab68c3fce350ed24fceb7dac9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp312-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp312-none-win32.whl
Algorithm Hash digest
SHA256 f70dc00a91311a1aea124e5f64569ea44c011b58433981313202c46bccbec0e1
MD5 aab9df7488e6dfade762062426a3ba89
BLAKE2b-256 ff7a730696eaa6f1190a53236fca7eb013aeff25fd951dbae8a108128ddd982c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f93255b3e4d64785554e544c1c76cd32f4a354fa79e2eeca5d16ac2e7fdd57aa
MD5 1de60a109139cec4f381c68e2891e3de
BLAKE2b-256 b4199b2685fd637b2aa8a0ed3051782b7d70dbab0cfd824c5649941541f15db5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a87c54e72aa2ef30189dc74427421e074ab4561cf2bf314589f6af5b37f45e6d
MD5 6ee77a8eebd20d74baafc5c972dab2e0
BLAKE2b-256 1f06076ef59f71cb139e5b93483ad65da56c4f3e875f1ed54bcfbe0c98457085

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1480fa4682e8202b560dcdc9eeec1005f62a15742b813c88cdc01d44e85308e5
MD5 82688d954d8a2499ea5c47e62b25cd0d
BLAKE2b-256 c8ebc7432cbca6468f998d5e5d2ecd0b968e8fccd1423eac9a4513182265610c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 340e96c08de1069f3d022a85c2a8c63529fd88709468373b418f4cf2c949fb0e
MD5 2a22286fc15809c10ba442e206d741eb
BLAKE2b-256 e0314c15dbf79c1a3a5156534506d4d2b1d3d22f17a345bcb8dc69a834d2a9c9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3f90e5e3afb11268628c89f378f7a1ea3f2fe502a28af4192e30a6cdea1e7d5e
MD5 fd10a41184f8b144acf7f6bbd368b10c
BLAKE2b-256 7e238c19bbb4d3bdd823e594c0112181f6e76bdcb0f7b064d57e6372d8b72918

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 240a015102a0c0cc8114f1cba6444499a8a4d0333e178bc504a5c2196defd456
MD5 768708bd44df826089fd082eb78be0bd
BLAKE2b-256 0cd633d8077f152f0f7e5331e5bafe2f03b0c065c6572ca1d4b2d17a6fab5b7a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 37a822f630712817b6ecc09ccc378192ef5ff12e2c9bae97eb5968a6cdf3b862
MD5 5ac23d3b3a7d1ce1c8c99f9f74a366e7
BLAKE2b-256 cb3786bec7ed20592bfcaecf4e27ea7608387bef226e19b92b4469d16be1fadd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f14546403c2a1d11a130b537dda28f07eb6c1805a43dae4617448074fd49c282
MD5 9a0f2795e55c370a3404e05f791fe5f8
BLAKE2b-256 6c6e049b05d470d02f8d11d186a746aededa31ddad82df9a4b7fb7a670cc1cf4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bb128c30cf1df0ab78166ded1ecf876620fb9aac84d2413e8ea1594b588c735d
MD5 37cb63e09943c79b17b4c3fd7d534f55
BLAKE2b-256 404b676c27610e3495bf2d45753bb49516756df83f4b8e28d49ffa534d22ebc0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp312-cp312-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp312-cp312-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8421cf496e746cf8d6b677502ed9a0d1e4e956586cd8b221e1312e0841c002d5
MD5 f811d9e20291b4b5d24c60e63dfbed8c
BLAKE2b-256 0b06e34be09a8faa1f3cb7b84c504fa958fbae22abad45705cf4ec615d3c81cf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp311-none-win_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp311-none-win_arm64.whl
Algorithm Hash digest
SHA256 5a2a3c9ef904dcdadb550eedf3291ec3f229431b0084666e2c2aa8ff99a103a2
MD5 faee7feef36f3405e82ec46d83cf96aa
BLAKE2b-256 07c693977a6ac3c87f6ab73c10cf1774627a72ccda66ffcf18380c5f098292f6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 84f8bb34fe76c68c9d96b77c60cef093f5e660ef8e43a6cbfcd991017d375950
MD5 4a774c7c5b45d7638b5c6ab8eb207bae
BLAKE2b-256 2937eb1c5853ecaac79d2dc19be206fd6732fdfa6a6bf705048d0a1046c5fa8d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp311-none-win32.whl
Algorithm Hash digest
SHA256 430ddd965ffd068dd70ef4e4d74f2c489c3a313adc28e829dd7262cc0d2dd1e8
MD5 f9a16500f9944ab98acc7df99e1d2976
BLAKE2b-256 ca152de7d8a1905dd8c11706ede05e722e0a8322cdf5cb2efe169c47891fe087

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d79f1f2f7ebdb9b741296b69049ff44aedd95976bfee38eb4848820628a99b50
MD5 8fff33a9c5e30a3f5ac1d9ee123c4bc8
BLAKE2b-256 f846cc1c9aeffc74a68f4c53737c2e7d7160fbe3f766e704e7a0d625ca695d2f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 02e1c385095efbd997311d85c6021d32369675c09bcbfff3b69d84e59dc103f6
MD5 fdcb6541dafc445225821c7717ac6b87
BLAKE2b-256 757272eff1131f1913aeb78eed21b1c2bdee57b4c41ebc94f81ea8c0d48897c6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ce8c84051fa292a5dc54018a40e2a1926fd17980a9422c973e3ebea017aa8da
MD5 a3c86f3178213e0c14e8aca1083fca03
BLAKE2b-256 0baf363618764a1d4063407362343b1f5541fc07141176de665c9592ea68a49f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d4eb77df2964b64ba190eee00b2312a1fd7a862af8918ec70fc2d6308f76ac64
MD5 b4ab4afc335b0fa8af9f480fec6300a1
BLAKE2b-256 4e3d051ad07548d576b7b3f8ac8099194215599c668fcb231faffea4b1e38c0a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 883daa467865e5766931e07eb20f3e8152324f0adf52658f4d302242c12e2c32
MD5 b72bcf348ef1239596ee074b280a2082
BLAKE2b-256 494fb19bec3633fce09636d1ae96b8ddcdf29e15c0764efe0176fc40e4afabc0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 a892b5b1871b301ce20d40b037ffbe33d1407a39639c2b05356acfef5536d26a
MD5 f5e6cf04101dd44cd57e1195c7ec2d06
BLAKE2b-256 3ceefde99471baf04184f13651df2f98135b865d5c1a5311ab6c942a2ee7693c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a0b7486d85293f7f0bbc39b34e1d8aa26210b450bbd3d245ec3d732864009819
MD5 18c93290b2ffc1f33c722c8a5efe9ac7
BLAKE2b-256 67ffc6df2c938113bc72db40a671eb83c17911f459910807b9644ec828aa9e78

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 22134a4453bd59b7d1e895c455fe277af9d9d9fbbcb9dc3f4a97b8693e7e2c9b
MD5 66cc51ac51a4889e74c1c1cf931c001e
BLAKE2b-256 754df02a7aa5b63e2c7cdb101f5524a1a0cde5e1210fe7458348964e6649894c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 df14f6332834444b4a37685810216cc8fe1fe91f447332cd56294c984ecbff1c
MD5 1a40ca90d37550d1f3056363240f2c14
BLAKE2b-256 c4dcbbc346df4afa3aa4c9ec2a6d22c9fd31c326a2d99a491055d735519c2a3f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6bcc1ad776fffe25ea5c187a028991c031a00ff92d012ca1cc4714087e575973
MD5 139c1875e0b8c31d85ac8c919beba27b
BLAKE2b-256 48c586e2ca533641e7a21354379725f681cfb7980c93cfb4f1e3c03b3260915e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 6bf7d610ac8f0065a286002a23bcce241ea8248c71988bda538edcc90e0c39ad
MD5 f37c26672dc0b2c3cff0cd2d1c703c77
BLAKE2b-256 63af869dd176247e855468249bcdb873103146c6b41d52b12a7c6ffc5d30462f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp310-none-win32.whl
Algorithm Hash digest
SHA256 04fe5c0a43dec39aedba0ec9579001061d4653a9b53a1366b113aca4a3c05ca7
MD5 76094517056aaf14cf592ad026e84f16
BLAKE2b-256 a79df78e8927bb73d1f6111de7be5ac1cc1d45a6e4234063a9287d9ef0f6329a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2a20c533cb80466c1d42a43a4521669ccad7cf2967830ac62c2c2f9cece63e7e
MD5 8423f702933bf2a68f4989588f9570b7
BLAKE2b-256 c728e9c511e09d6d168354411cb75928b5ab0740c0d37d4868aabf2a1777c986

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b594b64e8568cf09ee5c9501ede37066b9fc41d83d58f55b9952e32141256acd
MD5 aabdae6d99198c21275fb4e67e5837b8
BLAKE2b-256 dee796e8a756a204bc4d5275b6b24fba327c68f3dc5de747a4b4963c8114e483

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a750a83b2728299ca12e003d73d1264ad0440f60f4fc9cee54acc489249b728
MD5 31e12003bbc2bacfd5914c140c528bfa
BLAKE2b-256 fcdc2443b6224c396b765d2c68d61a8c24eeb05a6b425518cad80ce1fc4d4430

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 aaafc776e5edc72b3cad1ccedb5fd869cc5c9a591f1213aa9eba31a781be9ac1
MD5 f8ac7db1df3fe4cc8f54aed6d92d2eae
BLAKE2b-256 dd3c489be431725a8bb66157b696be45eb87cda80ffb37a0a717a1f09e5d9e41

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 522a9c4a4d1924facce7270c84b5134c5cabcb01513213662a2e89cf28c1d309
MD5 a5908c945473d2c9c81dc9ecf6aa8296
BLAKE2b-256 5fd3c66c5dc33dfbb1baa0b4bc4613925d100c6c31132488e59adf77b14168d0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 84e87c16f582f5c753b7f39a71bd6647255512191be2d2dbf49458c4ef024588
MD5 d584956a4cb25cfd7d369a4283cb1c22
BLAKE2b-256 2297e2cbe6fd558c76027d9d66abd343ae0e73815b397d7dc79ac4af3777bcd5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5493a7027bfc6b108e17c3383959485087d5942e87eb62bbac69829eae9bc1f7
MD5 28ec19b1e9e8f47d23e997b19f17e9fe
BLAKE2b-256 09f622911450873cb37dd8578009c0235f0606815aa95fb9cd58f702d714e49d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9e8b374ef41ad5c461efb7a140ce4730661aadf85958b5c6a3e9cf4e040ff4bb
MD5 a01c1e56890c2766432992f9ee6338d0
BLAKE2b-256 5ba9abda51237902e12644c9acfdfc98de61c2f4a28e1517750b0933c993a930

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5cfde4fab34dd1e3a3f7f3db38182ab6c95e4ea91cf322242ee0be5c2f7e3d2f
MD5 da6eb87489d6df2801d4213e05190802
BLAKE2b-256 9c6015daecade2df0d85bcbd277195ca017d5214b236f4e7476df2423b723b8a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 1a0ddaa723c48af27d19f27f1c73bdc615c73686d763388c8683fe34ae777bad
MD5 07bfdd6af2379dcdaa8d9113e59d25af
BLAKE2b-256 9f8bd88f086e7f40e68f8e4ea9465a8f10ffa370dda85d7facb538656c795667

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 9b33bf9658cb29ac1a517c11e865112316d09687d767d7a0e4a63d5c640d1b17
MD5 3506a4c0c9db3cccb62812911d0c8ef5
BLAKE2b-256 15e8508c94592226d9ddf0696a54c9d3c03018842dedc734830de0affa9b0eef

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp39-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.6.3-cp39-none-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.6.3-cp39-none-win32.whl
Algorithm Hash digest
SHA256 44b4f937b992394a2e81a5c5ce716f3dcc1237281e81b80c748b2da6dd5cf29a
MD5 4161f7eeb618eb7aab3d5625a2ee2f5e
BLAKE2b-256 333bc8e74c5021124ff007501522b6bf8ed56c56a975954cb24ca483d7b88cff

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1aa712ba150d5105814e53cb141412217146fedc22621e9acff9236d77d2a5ef
MD5 596fee52544ef038ec92fe0f9ba38d95
BLAKE2b-256 2805a28d2a0d74a28ed4fe9c712bcf19a8488fab63214a7f3e7eb929eff10fe2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 acafc4368b289a9f291e204d2c4c75908557d4f36bd3ae937914d4529bf62a76
MD5 6bcae406cf5077f9f5f43c6351dfe619
BLAKE2b-256 f16974868b3de48990943303bf2f967cac8fc148f76af18104f461d24857b8b0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 171a4718860790f66d6c2eda1d95dd1edf64f864d2e9f9115840840cf5b5713f
MD5 4caa4bfc37d7075f25a39d0996163607
BLAKE2b-256 18546d64dff3e49e7faf4f5b989b49e46dd8b592d1e3f3db2113f4aaf1defdd3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ea053cefa008fda40f92aab937fb9f183cf8752e41dbc7bc68917884454c6362
MD5 228f3df4e44a83e26722a6a2036aeffd
BLAKE2b-256 2deb1199be6d451694fc736b4e79b8f9634ceb610a9bc3c7549fb590fb103eee

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f06e21ad0b504658a3a9edd3d8530e8cea5723f6ea5d280e8db8efc625b47e49
MD5 f9ba3976a510fc90eef71a0478a64b34
BLAKE2b-256 18882587e660641b0cccb823c576cd8d9cccbba2beae30260e849f6f9e4d87ec

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 b0a5d7edb76c1c57b95df719af703e796fc8e796447a1da939f97bfa8a918d60
MD5 8d51ff27b7c86f1a94b29f53ff924386
BLAKE2b-256 d962d104454f5c1b8f5cb92147ea9a7515159d6867bca367a849639276991f9a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 19e20f8baedd7d987bd3f8005c146e6bcbda7cdeefc36fad50c66adb2dd2da48
MD5 623f64126309d96ee06bec6b1a3a3396
BLAKE2b-256 3b0ef6030be191443ea0d7b3babfb63b2dba2e13075dd714e26b772a4742d564

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 5ed7ceca6aba5331ece96c0e328cd52f0dcf942b8895a1ed2642de50800b79d3
MD5 8c71941f169539010f49ec68f43cadd8
BLAKE2b-256 e9ab8a7d00512e3fe6150d7d7a9138262e042052a5ebed7b295de1fdbf1cea07

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 50555ba3cb58f9861b7a48c493636b996a617db1a72c18da4d7f16d7b1b9952b
MD5 809867fc926ee073b8edc15d0744f2c8
BLAKE2b-256 b4646bbd24f487891c9049c9c2529c4f15c218140b87aaa9b063500421da0556

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 813aab5bfb19c98ae370952b6f7190f1e28e565909bfc219a0909db168783465
MD5 09fbfa6dc894b520965edbb4a07701bc
BLAKE2b-256 3a5a37e852cee70de74babcbc6b3b5e8076d64a08577da35a2a9de72e44b6e5b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 621afe25cc2b3c4ba05fff53525156d5100eb35c6e5a7cf31d66cc9e1963e378
MD5 2048956d4f1c2b0a2889884b94d12578
BLAKE2b-256 ca6de67aa5a1db011d7dac8c7d6810eef703fe38b4d606450f50bcd928a08829

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp38-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.6.3-cp38-none-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.6.3-cp38-none-win32.whl
Algorithm Hash digest
SHA256 07a1aec07333bf5adebd8264047d3dc518563d92aca6f2f5b36f505132399efc
MD5 8d2817c960595fe7692b5eed1254c451
BLAKE2b-256 62eefb63b80855bf8a51d477da75ec89e747c5e5d5034f5a40a4d6bc449f568a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 788be9844a6e5c4612b74512a76b2153f1877cd845410d756841f6c3420230eb
MD5 d7f17cac18ec7363514e2351b5a6ded0
BLAKE2b-256 9bf7cae2dacff9e3fd553ca75ae14f8060e7bb18efb522cc9a4aec7937ba410f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8ecbac050856eb6c3046dea655b39216597e373aa8e50e134c0e202f9c47efec
MD5 db369ebc8488284d8a0463c2b472d288
BLAKE2b-256 27d2043cfbb60e4832cacccbe82100e1c0a0fe68819d4deac0c518984d348493

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9680dd23055dd874173a3a63a44e7f5a13885a4cfd7e84814be71be24fba83db
MD5 551d00d7d7270c45d6c9d7e3ec7068a6
BLAKE2b-256 b08843c79099fe0bcf6680c0782eb1b08069f024a08e114121b6704c9b26355a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f468d520f47807d1eb5d27648393519655eadc578d5dd862d06873cce04c4d1b
MD5 ee25a392e44eba16d7bbdddacb5e809f
BLAKE2b-256 d4f70f44cd7e48801c0986fb46f13c5972a416c1fbf8b04388a11bf9faf1c136

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9e9b65a55bbabda7fccd3500192a79f6e474d8d36e78d1685496aad5f9dbd92c
MD5 913b5ecc421a3198a6fd9a06db5666f5
BLAKE2b-256 0246cb4a9d8528e4e9b585ae891553da1c187d37317d68ed841bb358442aac3d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 9616567800bdc83ce136e5847d41008a1d602213d024207b0ff6cab6753fe645
MD5 393b1a6b085e4541413c5ab36a02d336
BLAKE2b-256 f19302b3ac615ecd8bb5de5afd7b733d057c35675b9b6441a3de73498e40c95d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d85463560c67fc65cd86153a4975d0b720b6d7725cf7ee0b2d291288433fc21b
MD5 01e031d0a1510d1a333160fccf1952a1
BLAKE2b-256 b82b541a0206fa615b37a9fca2426303c2e1c45bb2f00d8fb7c42d6abef4ca96

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9a718d56c4d55efcfc63f680f207c9f19c8376e5a8a67773535e6f7e80e93170
MD5 a4147fff9f75fe19965ce8052c596211
BLAKE2b-256 f3dd1f9bf99ea2f2737471e67f24d9ec91a887f75cd1c829a686e771bd3eccaf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e61eae9b31799c32c5f9b7be906be3380e699e74b2db26c227c50a5fc7988698
MD5 2f23df52c30ba562f19eb91a8d45211d
BLAKE2b-256 2d81bb038964f84f8a6b5abda2cb57afd2240731b313663ceeae9b7edb150863

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 5e9c068f36b9f396399d43bfb6defd4cc99c36215f6ff33ac8b9c14ba15bdf6b
MD5 2bfe9cc8fca25411f6c656aa4f917dc0
BLAKE2b-256 fe13118d3219cb42a2cea5e86f6a1865670c84c54db07cd4813a35433f971b4c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 a8acc9dedd304da161eb071cc7ff1326aa5b66aadec9622b2574ad3ffe225525
MD5 55e71e053db0ecf583ba7e209e6d9883
BLAKE2b-256 e2e0b29dd1cf3963a45c877bf7c22fe64005e0fa51f70721db1d69085b90d8fa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp37-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.6.3-cp37-none-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pydantic_core-2.6.3-cp37-none-win32.whl
Algorithm Hash digest
SHA256 d9b4916b21931b08096efed090327f8fe78e09ae8f5ad44e07f5c72a7eedb51b
MD5 7b62ac2f47e7d249cbe0b3f1f1818940
BLAKE2b-256 3dab887a4e183c02d0271123773fee48bd8bfd8689ece0afc9eb5b2db32342fd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5e4a2cf8c4543f37f5dc881de6c190de08096c53986381daebb56a355be5dfe6
MD5 c0bea67adf0cbfb2c797548c714d21c7
BLAKE2b-256 35b7fe8fce6796ae947b988409326a4c7e171b364a0d55abbe6e6e26f38529d4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1c721bfc575d57305dd922e6a40a8fe3f762905851d694245807a351ad255c58
MD5 da778096f4c4bf94f47541f17f1d2f06
BLAKE2b-256 f61db42918302817a49dce460724b8847996c5704c83ca112f1900feeb27c68d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d63b7545d489422d417a0cae6f9898618669608750fc5e62156957e609e728a5
MD5 c55ae36e3cea20cbb7c0b0f7ff7165e4
BLAKE2b-256 c774900985786e5e7c2e66c396f94009f5a17372b6abbb14c2c080e9a538efa6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 439a0de139556745ae53f9cc9668c6c2053444af940d3ef3ecad95b079bc9987
MD5 7bb40a6f8cd4c09e95e20a1fa64c54eb
BLAKE2b-256 73d71839f0a48c850e6af5051248abad877f976f31ef16662805632449bd6caa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3ccc13afee44b9006a73d2046068d4df96dc5b333bf3509d9a06d1b42db6d8bf
MD5 0705d66fe2eaed0df2e6f51ecd65cb39
BLAKE2b-256 e04527166728e86a58d03223ed9e557437c5a9fdaa9875f7f4f3907cbc88a283

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 002d0ea50e17ed982c2d65b480bd975fc41086a5a2f9c924ef8fc54419d1dea3
MD5 9533658753832ebafa094c03b54b98b0
BLAKE2b-256 e7dbee143cd185b04fe1528be9d42bd0e221bc074fff4e8306b27bea50756745

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 672174480a85386dd2e681cadd7d951471ad0bb028ed744c895f11f9d51b9ebe
MD5 f85757f2129bc8f7521ce6e54b0dfacc
BLAKE2b-256 1e8e07c19dfa60be2e6a1a606787aa4abd6d2da7d412b1d8d90e687b0926d965

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b44c42edc07a50a081672e25dfe6022554b47f91e793066a7b601ca290f71e42
MD5 92951edbe77aafacc6a143bb57530f14
BLAKE2b-256 85b5c52495965cc78ad15dcf04b59abf3509d1db052b93876ab6b353c0a18ddb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f2969e8f72c6236c51f91fbb79c33821d12a811e2a94b7aa59c65f8dbdfad34a
MD5 64a1e7e3fd88014b29784cdbe30a551c
BLAKE2b-256 56cba8f3bd21ce196c5b5e924d975dfa013c00ca4e5005b5e3dc0dd879c49352

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.6.3-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.6.3-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a53e3195f134bde03620d87a7e2b2f2046e0e5a8195e66d0f244d6d5b2f6d31b
MD5 ca57c7f3ef3013cb077aa99b375e6f67
BLAKE2b-256 5ff8b218d36e918be03714d558dc9ffab366faf4f551fcb52f9730b3d5394116

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page