Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic validation and serialization.

Pydantic-core is currently around 17x faster than pydantic V1. See tests/benchmarks/ for details.

Example of direct usage

NOTE: You should not need to use pydantic-core directly; instead, use pydantic, which in turn uses pydantic-core.

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Getting Started

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at python/pydantic_core/_pydantic_core.pyi and python/pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Profiling

It's possible to profile the code using the flamegraph utility from flamegraph-rs. (Tested on Linux.) You can install this with cargo install flamegraph.

Run make build-profiling to install a release build with debugging symbols included (needed for profiling).

Once that is built, you can profile pytest benchmarks with (e.g.):

flamegraph -- pytest tests/benchmarks/test_micro_benchmarks.py -k test_list_of_ints_core_py --benchmark-enable

The flamegraph command will produce an interactive SVG at flamegraph.svg.

Releasing

  1. Bump package version locally. Do not just edit Cargo.toml on Github, you need both Cargo.toml and Cargo.lock to be updated.
  2. Make a PR for the version bump and merge it.
  3. Go to https://github.com/pydantic/pydantic-core/releases and click "Draft a new release"
  4. In the "Choose a tag" dropdown enter the new tag v<the.new.version> and select "Create new tag on publish" when the option appears.
  5. Enter the release title in the form "v<the.new.version> "
  6. Click Generate release notes button
  7. Click Publish release
  8. Go to https://github.com/pydantic/pydantic-core/actions and ensure that all build for release are done successfully.
  9. Go to https://pypi-hypernode.com/project/pydantic-core/ and ensure that the latest release is published.
  10. Done 🎉

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-2.8.0.tar.gz (341.5 kB view details)

Uploaded Source

Built Distributions

pydantic_core-2.8.0-pp310-pypy310_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.8.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.8.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.8.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.8.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.8.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

pydantic_core-2.8.0-pp310-pypy310_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.8.0-pp39-pypy39_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.8.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.8.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.8.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.8.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.8.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.8.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

pydantic_core-2.8.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.8.0-pp38-pypy38_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.8.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.8.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.8.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.8.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.8.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.8.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

pydantic_core-2.8.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.8.0-pp37-pypy37_pp73-win_amd64.whl (1.9 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.8.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.8.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.8.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.8.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.8.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.8.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.8.0-cp312-none-win_arm64.whl (1.7 MB view details)

Uploaded CPython 3.12 Windows ARM64

pydantic_core-2.8.0-cp312-none-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

pydantic_core-2.8.0-cp312-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86

pydantic_core-2.8.0-cp312-cp312-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pydantic_core-2.8.0-cp312-cp312-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pydantic_core-2.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pydantic_core-2.8.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

pydantic_core-2.8.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.8.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pydantic_core-2.8.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

pydantic_core-2.8.0-cp312-cp312-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pydantic_core-2.8.0-cp312-cp312-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 macOS 10.7+ x86-64

pydantic_core-2.8.0-cp311-none-win_arm64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows ARM64

pydantic_core-2.8.0-cp311-none-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-2.8.0-cp311-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-2.8.0-cp311-cp311-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-2.8.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-2.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-2.8.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

pydantic_core-2.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.8.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-2.8.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-2.8.0-cp311-cp311-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-2.8.0-cp311-cp311-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-2.8.0-cp310-none-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-2.8.0-cp310-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-2.8.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-2.8.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-2.8.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

pydantic_core-2.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.8.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-2.8.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-2.8.0-cp310-cp310-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-2.8.0-cp310-cp310-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-2.8.0-cp39-none-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-2.8.0-cp39-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-2.8.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-2.8.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-2.8.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

pydantic_core-2.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.8.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-2.8.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-2.8.0-cp39-cp39-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-2.8.0-cp39-cp39-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-2.8.0-cp38-none-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-2.8.0-cp38-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-2.8.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-2.8.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-2.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-2.8.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

pydantic_core-2.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.8.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-2.8.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-2.8.0-cp38-cp38-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-2.8.0-cp38-cp38-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-2.8.0-cp37-none-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-2.8.0-cp37-none-win32.whl (1.6 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-2.8.0-cp37-cp37m-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-2.8.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-2.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-2.8.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

pydantic_core-2.8.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pydantic_core-2.8.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-2.8.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-2.8.0-cp37-cp37m-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-2.8.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-2.8.0.tar.gz.

File metadata

  • Download URL: pydantic_core-2.8.0.tar.gz
  • Upload date:
  • Size: 341.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for pydantic_core-2.8.0.tar.gz
Algorithm Hash digest
SHA256 d6985b38b6c9bcd022a7862b7a806473081ac5fdc7d0e55e6892c9ca9ba5b524
MD5 796dda3ed9f09a0fefd8fd18df95ad5a
BLAKE2b-256 54c975db60d505604235dfb54b57b59409defa0b057a86cd210c1a1b7995d900

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3608e10d41f7b5f75c999b293022ff965ca42bc05c7da1617b613e758d0d05de
MD5 882356b5f6cbb511052424d6eee0c771
BLAKE2b-256 517939b5455cae6acf3baa90b6c2556842d8db580e5d81c03cd53c7471b7d43a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cf8ec4ce4ef5c5610ab89da6b059a8fb2f7f74271dc461e1106c1e1c57e5abe4
MD5 523a197373d0f322bdc2b395f8dcda78
BLAKE2b-256 af242280c070f7d4b21a1c7caba4829ba662814c1fad56e7c4685d01e4c9cf2a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f5eb88ae89769cfacc7297bfb3ea6649613468cfba0091759a5da63aa484df91
MD5 5b3acfa759df77547b53e85bcef71e38
BLAKE2b-256 412ab6f86fe27d332c90391e07e8181ce22b854dabef297e7f3ac98701d2786d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 244047ffc1f69741d441d099c9dd583ff4f4b949abadb4156c7c65b22117e9dd
MD5 3488853f40a57a6ad11fdb44d057e4ff
BLAKE2b-256 25d25df5da88232b24e13df3798f76d2e912dfb1ee06657dcb5f7af89f0e6dd0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3f90892c5fd0016e433f2d0ef814ce27a8631ee2240007529d60069995d8ffae
MD5 a1e7deb074928f3d34edad57df7eb89a
BLAKE2b-256 b0be862a9244203620f0d5d889c33d330c4cc72f9edcb67fb0cf146198020e18

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4dd7168fa87d64a40c6d01b526a45d9802b469bfcc35d948e365a8e45100a90f
MD5 a026c5d539cb942439e6b1d0833c2986
BLAKE2b-256 984d67d25e906c27cc0831b760fe7d5f4a0b3d4618289a786b78fa0965b3abbd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4fcfa3a43c7f854ec30632db19ced74de2434a18ddb50407e80d706fe9625867
MD5 0589486305f0deca2dc0076a3d696819
BLAKE2b-256 1b5ae8f66fd545dcd522ca5af1954292a87258a67f0e9f7b2468314d3c9c2720

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp310-pypy310_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp310-pypy310_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 9447182b186eb37d3f553f0d4cca39156e70a7a28fa9f8168c714365ed35b35e
MD5 f5e8f0dd79ea1b10891096e26c93b3c4
BLAKE2b-256 68076bf47c1a92d8f4495ec1b20361b34b05b0068a9a4d30bbb53719a56ee33a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3b4f0e6321a0e103f8a5f023a1d7b414d0db9d32664cc3dbdff3ee2cae27c5ce
MD5 38e85d163a7e87fa26e4ddebcb4d8d80
BLAKE2b-256 cc7e2ec287b44c436b9d3cc7907de56266e6b8bc8f827e6ea4222f866d7736e4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1c0f0ce2ae63651f9f6efded390617b3cdf2ad9028fd0f9f370905a330eea9ea
MD5 b8dca6a9f876caa8ebe09cc2c2ca65c3
BLAKE2b-256 8716084b2a6dcb9eaf657573ad35ecfaec9f4dd15c249551a2386558feea263c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3c7da012f1fd32a6b6b2db02f5017b439fe4f6159c8780138e29df4c12eff275
MD5 cf816427c5bfb6ace90840654efc72b0
BLAKE2b-256 7993cf69c88bd687a1a185eeacdf91ede8d92959b10c4c3aeb0ef32677725bac

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 491420181e991abdf9d0d9876acde6d2aa53d7aa8362552abcbb838a2e9fc4b4
MD5 cb5238f07fa4c3865e9c93c74a812e17
BLAKE2b-256 c0c004dac8ca1cae4f29d654a66454cc191e4b8f87e98c31f99ed282a5c493bb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0d14635ff2c8e57fc9285c08f17e6b6d92b3688c494bc5faf47a86c656ed7163
MD5 36e4330b070453340fe2f08c53358109
BLAKE2b-256 487f7796b80f9c2282241bf832d76be163218d035d9ac27a91a85ee140dbd279

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 d12e762d509f48b57986f910b2631aa930961a19c926f1b3f1baecb6f749eaee
MD5 0f6cfb94ee5a2ed0aba411919138c434
BLAKE2b-256 1db7a758b135cf8c7026ad9c93fa7977b982dbcf2205db0abe02c3888b5a9925

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c9e1fa46673309a8048f66317bd68b7d153057bab7beccc416c8255acc8a09fe
MD5 8ab178dd2401aec5b9a90eb4d88f2608
BLAKE2b-256 e6274c8440de10c0434c2e553844edf41700eba8e51994ad4c81bd223e750360

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 02955ebb235fd9a905e8e91f65a80591383164b7c2eb6b6ad20eb82afcfb9f35
MD5 2316224a81815c28cf3fd10a3a8a5735
BLAKE2b-256 50ab48d37e9a533ada758d4f7c7770cd0ae2446c4e5231b8d719662a46f83b0f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 693863b0247d26ef7641481f5b8fde903a97dbe497cbca4683d4b6f8cd11b618
MD5 f7c214e3b9bd41ac015286e864090ef2
BLAKE2b-256 bd61c69977ecac03cbf47e17bb9e03105ccfa315c457e06d2ed33c8ac00e4ab1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bb177197e6f8fee030a0826e4c20d2bd4a17a49fd168228a53c18c0ea184bdd1
MD5 c5a8b5a4b67ecf6df3735e84f3ec8073
BLAKE2b-256 d798cb4db8ae05f96eb912bd04762cb9a891d0fe947b267269917bcf22cec863

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1d740543c601561607bc09541e4080483806b510d37cc6db894f3db4ed8e817f
MD5 90b18b6abe7457de2e53e551ee676f75
BLAKE2b-256 592478d7f5ce44c23e21966e50b65956268720632442078b3cdd9dfcd9563cbf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6d51b49e5618213f42e3cd88165083a52cde1479bb084d43b979426a36fb9cd2
MD5 0c27430364d9401c0f4145823d5447dd
BLAKE2b-256 6fc25fd5f94b1d577af3e800312bfc6978c75ef3ea03359e33e3be0b995545af

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7ae52d78001db394dbc024c4bf83a123424d09996cc361da5676de121ec2e5bd
MD5 d549b81b7a4535385bebad94d5a1f422
BLAKE2b-256 bdb2a6e0f31fc78878d7e6e3853d93d9a36c044bd44dead71e3fc985f2ff8d91

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 513e18dbe231803b0f38f50a0a0332ebaf1273c0ec98fa922591dc1a58d3226f
MD5 1e33c077009d7898f5c09b35be530db8
BLAKE2b-256 36c795f0ba5a9ba03e007227c2f72f0f7fad3d2c683af62eb8600e819e8c64fa

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 537fbcc2e791168ad1cb355aa9237a4dcb321c7f78dea078316e448f2b0278db
MD5 dd9ceaab03d9f84e919fd868d1c76cce
BLAKE2b-256 63cbfd7cb09719e702ea218fc881a236174a4b40fa4a67645cdbfc1e74f65d7c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 0f6121a71a57a74682a2b73a54471736244c438dd647eb2b7fe44312a7d853cc
MD5 6906764ad36ea546b59ad9b4bd2fdc86
BLAKE2b-256 ab6f3fdde8c0cb6edf903ed48b23196f2b67bf7901c5b1bc7459dd328cc50f54

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3debdc85bec529985b441c6c82be94683fa890438f3376d7a1dcf261a8052828
MD5 7b49ecf77cc2ec227a3c0b046e2c6c93
BLAKE2b-256 5815914367bb0e818ae2c89591589e5566fc04d460d48b87745ac24a0bf9df3e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ca39957811a9feeb14d0199b7a031a5a3928b2729ea58f1d96bae3c9baf01695
MD5 6e5b639f1cc5dae1545fd772547e8c75
BLAKE2b-256 2c8bf55ff2794d490098f1123679bbc9707f9e44eeaae3abf58fa64f23d1a865

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 424f1e12e060f7cf09066c3810aba5c71134a467b966c500f0b7f2ef85902e51
MD5 86d7ab78aa09f13131a531bb720f0f64
BLAKE2b-256 58decb814c44d5b79334d60ea95d2ac716a30b3ba2222dc2bef752e6e9a7125b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ea6bfc1332d61964abe4336ce9314724739d465a684d6f80ecc14270fcc62d4
MD5 600daefef6a61d4bcfe5e61a8d74324d
BLAKE2b-256 7792f2201a3b8ed826f79d1a733237af67b3072421ec815fefecebcc13fe06e0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 27fca697e6a666c0cf634b4b90731b5f1843d361483c4c84b11825088d49efcf
MD5 e28ad49b54d3cf7d8978c794d75fe654
BLAKE2b-256 1dfee404f61e96c345f99be51b6f4d433cc2b3fbb05e53f3c79fc0a7eda20739

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 00f48282a30f4207d74e97c7fa002a935c087f35a6239568e06f242693558e4b
MD5 f8d98ec5466acf0cd7237d7d406f58b4
BLAKE2b-256 9884cc52cb7b23500b90a6e01b4f0409ec49fd915ba5d17e500230f76a68fb36

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8918aa96fe3275eecb5bfa590523d1a97eb6b489766ca9a83cd84afca203ff4d
MD5 856335ec47ec1ec2523af72dc27912f7
BLAKE2b-256 865fe48116751304473d69126d5b96021ec873c8f9d4c263492d09bbb4662dbd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp312-none-win_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp312-none-win_arm64.whl
Algorithm Hash digest
SHA256 806a6ce87f749f46e46d072cc9b773e8a106efb9cc74c04b9821f31b8dda1876
MD5 e54ba41d071409d2ee003ad734432350
BLAKE2b-256 63c72a3e82aa83b8f3061b1cf75102df3080175ac5fa0ba736fdc96745473dc4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 4e777f21532acb82b8f43d005ba6ba35269f532cb878088a1bb760bfec48d855
MD5 84e19f5beff7702e65af24b1c0e45d06
BLAKE2b-256 e714edee05c01052dc52975ee51e8409a2e65d1c7b4e62f05c71da671b7c1b9e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp312-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp312-none-win32.whl
Algorithm Hash digest
SHA256 7ecd640538e6a1e8ac4553bbc42c2944ff84c50d6e06c954362ad986e85fd947
MD5 c8f6c34ef208981d6d89e656d91247d4
BLAKE2b-256 d8756469bd6fc59587d3f3044fd0f5887c335557016c9255f6155980c492c9e6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e29489622fee2652b248c9fff14e448aed385698bd4e27f3694c84f4cbb45c7d
MD5 dc33e44579a8054c7a2881e60e71da4b
BLAKE2b-256 b69768ddd96e2720b953b65eecde6ba14ad959dd44bff5d460aa539be3b68cd6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 101fe81e9f23f89c2ead4e93bab272e1f3633342cf5fe8b478e45a21fa2ce8f5
MD5 67ae569c8abafdf05006f568f72b1dbc
BLAKE2b-256 402edc918ef16d0bbdff737e1a068af4a84a80b91b8086e92804853165318a48

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba94cbf9ef38386308da868017722be0b2056818abec7531d87024a5951a278e
MD5 b23425073d576d2760730badde3f712e
BLAKE2b-256 96de75a457da11c509874d77c35472f56eb8865c99291e5c723ca5c5f04f5200

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 517a4bf8225b435c689f1768d938e731c974466fffac85b46b40024dd059bbe3
MD5 538c1b2fe257a99e387c9363b6bd0839
BLAKE2b-256 bc9ac449f528778404b72d98cf513f69df1330c6e655971583f3a3853fe5e3fe

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8d5b665314bf4ebf627ee98d02144ba19267e7b5af06c348b7355a666cb04f22
MD5 a4929d60796d4fd44e94ed67776bd2b0
BLAKE2b-256 43a24bb6d61c091b909c532fabf7142abd8d423b502ff6d3013e1f4f60657d06

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 349e5f689c2bc1f9798229f5e541d3eba3354ad396a323c95dcb7bcabe089bda
MD5 2902c718f9de653a236d06f1ae66d403
BLAKE2b-256 b5b29b66d4795307837d965042c2ec8edb94a8f06150c0fd3e9e1420e5cc2373

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2bb8ddb3a6788e04e14c195252a6ae2a9cf5e918deba002e880a08942a9eff6e
MD5 a8d9f83237f07bd64dfff0114c703a42
BLAKE2b-256 a35280d6e6021d5b2986e4692fd35dda929dddfd3361424319d0647baf35ee84

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f46c238bbd302b6866a4362eb0c0a16750f6d1ecd28156b1a1e4d5980eeb43eb
MD5 6d1552bfc9a9236c5a445cb5550f127a
BLAKE2b-256 799757ef47982d675bf8a1e6c6e002d93b8b827e153a5264c0deb88c2bf94d7f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a498b14a9c238489ad5e0e236107e2f100e60f0bd837ff61939eb60001deb562
MD5 e473553fade04dce7c9e55928763f069
BLAKE2b-256 4037a62c6edcb4e077dbbc7d32cf741ecf7b8938e92e6b3ef5adce8e7a4f5768

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp312-cp312-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp312-cp312-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 1d9a1626606431f3ad0368a6ff5c16465c0987d4581f8af88924ec6272dc2aac
MD5 9c77797ffcba3d4f5f1aade566b0db92
BLAKE2b-256 a2c832122b786e148859a2209ba3d129956ee7e870739be7044f548ccb71e652

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp311-none-win_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp311-none-win_arm64.whl
Algorithm Hash digest
SHA256 3e748a5860640d7625be635ea6fe6c194e887f712d9cf44c192f645c755ef2d4
MD5 409b4e98ffe9803fa97f5fa6068bd305
BLAKE2b-256 34ec9bc4973ad06d8b9b59c6529bfa2c21c7fa8aa99bbdf1cfda95c842ba2f9d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 b5f56d61ef6e234b11970e68d8d9559a46ccb002cfa4956f040c33aa5810267d
MD5 557a78637ce69539ff1a57f1447ba188
BLAKE2b-256 e98ff7d0560d2a91e9acde7079212f18e1d49fff55670b6fe086e2376f869fa6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 cc5f33098a68dabf7d8590f4638a4ba9b3080cd47829ba1c90699b1f47386c73
MD5 ec60d90c33d1df1aeed66fc353d969fd
BLAKE2b-256 19b7ff0755ffc1f4e464ce0f99ee94e452f2b2feaa7a9d287f85199f7b7a4e01

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e539fd8f2442f0b750d1f3ede643a3618ee99e645e11c94fe5c929be8730356c
MD5 99ddc2de678c3340e1e2832ef1dc62d5
BLAKE2b-256 1b6c65dc82ebf1096da8385c9e91fd3ecf02ca9b8020219bf21f7f41b862570f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2d01016c7b8c379f0593dc70491ae20538de9d9ab0fec59e6e7617bbc76731c3
MD5 dc3a8152ec974126b239b3d178ac4d90
BLAKE2b-256 0ea0e559e7b55f538aca9b19ae737c4643b59f960cd48c9972b20a1a8fd4fa21

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 16ba43e998a97cc984086c9c0e2edd979a3d3f14398aa181927c9c00dedf3b9b
MD5 ad741c1360f15af02e7789dc354b1ce9
BLAKE2b-256 cfa6e1400846cd7b0f2409a403e09cd93593a84354426e700305e85f7aa3381c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 cf68691d1f8b65341f935392797c58cec1732d1866e9c7efdafb0a4b140ffe7c
MD5 00440414d46f1fbf871a90eac7b79247
BLAKE2b-256 3043db3d837d96d6a3de3a67a5ec1572ca591ff15df2b098f518ed98962f2e3f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 da2bf55651033b7f925efc4e11736073c75090a0635f04e1d93b6c6fc3a160ec
MD5 27089072c8778543124c82d74af7f9b5
BLAKE2b-256 69eccce011b2ff2f3347fd7751bced18a56ab7cde8b9e981933f6fd40d06a622

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 60a51c9463de504701cab17b9e87f999317b310d6a70cd0c44d71406a065ff1b
MD5 e44c6b8820f1f3bfd8b25f03cf34af4d
BLAKE2b-256 e8a123a5beecb554ba90b31faea589117ebbb6ae9a6dad790a1b7c583a22481f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e85f5c87e57cbbd6a578ead28b326256a7e08f8c2dc3b7c78d3a890b7033e1af
MD5 fc45d1f9bb394c3f2543c760e77f3542
BLAKE2b-256 defe4b5a09cc91d0576d54ec99b560c6910eb844961a4f7e4890284fc5be4497

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7c1f10ca50d712dbb49b7d2d6883e493f9ed1861b218f1002b12d37de2d6233f
MD5 ac0fef41dfc4d7987316a3b619cce8a1
BLAKE2b-256 df530acbaa214b6f58db0af13b3438fe4791dc6da56946c988001f6087378f54

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 24f877b2b7286ad9786b15394173c9a686b29675d9f2a30bef36d265d078909f
MD5 4bbea536205bdfdde3212b9d1e751e6a
BLAKE2b-256 1120d430acf031c8fa85638e77f73b74c03698e80ba61ccd9570689a1d6cd0f5

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3d232aa5cdf04db0f6819a479b4c4321fbbc93d241d262478aa34c14e7fc64ff
MD5 0070c1e40b746c3ba8b50b7df627000d
BLAKE2b-256 c77d7f395f5033bb4c04dce96054a6d9058094633dc7d965d001f0ae821557c3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 ddf98889acf60fa77bed179082170479060ea67042e1ede9fc62145819b968ef
MD5 50e978997174c726826c9b4079ac1db0
BLAKE2b-256 86cc5280781fea4b039119b76b1a4f3580169f2635362f39aac57aefba0d631a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 ba70854e1385168c22b62646b1e90e28e2a1dc911bf4afe3178673fb95b9a6d7
MD5 ee30447ffcc10dceb5f0a64448b30638
BLAKE2b-256 925aa25eeb0e9263b841674c9362faedec04be92c76f6a958a5192d17c4d6154

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 61daa95f3a8247a75f0095228a2a20d9fe7085d5c1912472e6ce2d02e9adb570
MD5 dc8bef328fe3ed9bb8c168091283b6bc
BLAKE2b-256 a6090b3f01b67ff03c505d1bdb93e57b311abcb49d7e43f2fed15bb9797f1e4b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0cf1f25b9b41c9fe9e8be50e2d7bb1978ed7f326fa41b604625eb8db5dcae094
MD5 dde13262031e4b7117951df6e5de6026
BLAKE2b-256 a174e31acd940a6108571286d0d9e1fd5260b02a07a8348b1151b176b2465d98

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c683b13ff9c18e1f6aa47efebef28be4bed27ec444f3ef935cc14d3f1f2bc73e
MD5 2f4341eee5234c57e5561bc6a71412d6
BLAKE2b-256 4a1a95323937a7fc9e7aa64d6f4c079dd1a027918d1723d9e94e4f1628f18eba

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 517bc432e10c9a69d03c99649128baa1f6d3a17e178d238c6ac87694cdecf7e8
MD5 3cc75cedd3fbc74a1d7320b8629f358c
BLAKE2b-256 9f773dd3ff65bc9e79d0566b73a06e27bbb21c1822a048a1dac1e8681e2ecb63

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 baeaf422a124309247f46177562055c9e3ab332107e9e9a434f2ddee0a560a39
MD5 d0bf3e60de00eb1f01780e36f7454060
BLAKE2b-256 1e1e2a0345fb04edc7f339ee3160fd02641ea6c8dbde00942a17a4fc32922300

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 fe7dd5647b2c988b34a783c33cc446aff757b8d30da33e8e4883b17e37ad5f95
MD5 8338a7effca5e987a6a860baa6e58bdd
BLAKE2b-256 86f0414a8c8ce415d927eb0b19e178983dd3088da7bab6cbec681485a4b7f153

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c66538ed0b43b3191802d24ce386b641478e5ea56e18bcd53d62ab7b72e4fd39
MD5 9f2d696d537523363ca54f43341703dc
BLAKE2b-256 abe67098028ff9e2ebc45e46b93846ed6e2938d97e4c12d73c99907fc6bb5a43

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b2f4f5606203fa812516875a791df59a77a32c797dc1b6a161be350f1bb9e1b3
MD5 ae4f451e4adf1d82798c8f44574fb94e
BLAKE2b-256 685f9e28e9388854cb66fab411673a1265a5b3ec31f130db72f1d70a45820527

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9a1550716d5266c153a7deb04e2f3c2b14caaf1b10810e14bb131ab6fe9ba73e
MD5 951f35709bf72c32b2eda57fb098f60e
BLAKE2b-256 5728ab73056ea09a45f443d4a23b039f4801ba3c65561ce9e686000f741a95d6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 81dd20312d508de10efdc125ec92ecfad283a0fcbdb521263a377cba91eb800e
MD5 7999cdffe894505c5f362052648fdfe7
BLAKE2b-256 e9ce2fbe686699d549239173f53f7a983352302d20a8aeca7ebfc45057790797

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 51a7ee73800c6282df591b1b73eafd7450e7d07cda53c557008d4684cee60c42
MD5 49c2ec952ee9029c887d654c89a45b6c
BLAKE2b-256 004300a1ec6c62bcbbf1fc04f08834583bfb00857ee36a372e3514a474327b87

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp39-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.8.0-cp39-none-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for pydantic_core-2.8.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 7df0cb1b76e354ce561262ae12de391a28aa673156c0c19a6e81b9ad78452786
MD5 91f4bb7fd17b18a389fe6119e9209f49
BLAKE2b-256 6d685819a09c647d7d0a827f7a658d646005d1b3ebd48b954d44156e47015f97

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7745890da75c3ff9ae2bbdad64a1b4bf5390cae09d8104841c5818cc7440c3cf
MD5 3383de5f9a6de769904a3c2d33a9faa5
BLAKE2b-256 bd0404f7077b1d048aa05da45e722dc0d7c1358cabaf107fcbc981ecf653bdb3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0200d252560954ddd274eaddd4bf7ad2ef03a86be3f4054b04f390478b0f36ff
MD5 475f4050c4ffd26b6fa36a76583207b5
BLAKE2b-256 80a9980e022e1fb6157f54d69d99c77b4831af5abc6ea4553a6a37779dc091c4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f13e583df7ade5309e78433b95f9e4e86071e80be0341634cac9f5d9e45145cf
MD5 d5329bd92aa006c9105eee773bac2c9d
BLAKE2b-256 39f68c18c19af5a462cef729c6b43cc73a271782944766ad95c1b7ef3f90016c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d300c5a2e69d488a2d4cfdeee64f61d2775f6655279575f7bc19e9cda9460964
MD5 c3a697be6b4fa966fa90e4f461789e21
BLAKE2b-256 f2e25dff1ee30676b092b445f34a2b9e4956a2a7546f66be30f3a1a027a77a95

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 14d2c7a05d16ae8c6efbbf9f14e68f037888d230b92700d38213a90aaa2a18c9
MD5 7462df5cc555b81794ff1d89ca953807
BLAKE2b-256 723219fc0f4431008be2f69cc66bf2deb548d146ef88304842c22d7c509f393c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 83252b9d1527634b3dca38453fce6308b208b402a596a1e75d878cad52701655
MD5 ac1631c8c64a991e3c877400a33193e9
BLAKE2b-256 808239580cb7080173a813126b74d48454db1a45c35df7da3edc2e9925070329

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 67274a5fdd5d790f05d8a4690e14dc9452d118368c2fc4e75e8236e76f86bff1
MD5 1dbc97b6edbe884e242c0bcb89962ba3
BLAKE2b-256 0514abf2a8c11683905ca5179f4a60591c5c7f9e988bd0b1c56e3a62c174b738

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 2f20f5c88804c39c1dd3fc0ad8a7cc13e92325075e76dab2e2a7315753548f6e
MD5 12a2f00802125713f6ffd5a4b504509e
BLAKE2b-256 914cd86a844482778b8ef1cfcd6697183d104108d80dfc08f5096f64d21d8eaf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cbac5637b27a4a1954e31355c02f86a465ff18ee60ad6d974b3cffc42c0b998d
MD5 48a9ccbb8f6fc1a4005088af19cbacf9
BLAKE2b-256 78f18f9afe0fabaee3371fc2b5290ccdda2ff915b4d12da708cc7e00315ce0a7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 076bee1a003f69ba58766e15ae6a19af776fe8e975a70dcb6136675c3353900d
MD5 4bc522a335c88ab9c290777dadf00ceb
BLAKE2b-256 c416f5dd56ef6a19b5771b047455eca81cd243bf5f6f29fde9c4e4c2e1cd6466

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 6d330bda4e7973d2f9970f2d6318d8074c4003b608ef3d8017ee111d8feb655f
MD5 6fefada4097ae050f91cb48309d1abf2
BLAKE2b-256 16808008ae664dc8bff325eabf9a7473249598414ecb9db8a64dc1c79321e113

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp38-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.8.0-cp38-none-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for pydantic_core-2.8.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 78f3e4bf389a00d66ba0a7b926446a1a7bc9099ff513ec1535a850e1badf4a7e
MD5 dcb3d2be86447d3209a938d710f53d4c
BLAKE2b-256 8ae6a180ebcec7046322796b6a9c0b9fce59e0c6144d5db1f53e06be3fc14f53

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 58209e75aa809ded0e50e9d34aa5c34fcdeb3952b37bf7e1c6f26660325e994e
MD5 d8f7e8cac506828a8430ddf66d654456
BLAKE2b-256 b967f094cdd08a71e5a18b9c34ffb77f9a8994bf674c84769dfd1adaa2198618

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b83bef2f35a5889b2a9623575918deba2bfc594303058660dcca2823324003d7
MD5 92c054d38397497e3b47d6c32aab1f6a
BLAKE2b-256 b173ac0f36ab9b15c9a6168992f38df67211c5e33d6bb251499374b16c407123

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1392f09d9d147b4d8b185a02f972fde94619f1f7b2fdd57cd641d7b0ef37b0aa
MD5 20c3d35ca5c93a31678ca28b4396de80
BLAKE2b-256 3f185947a165b32a9bb6180e67e8e9fe40e2e9a06d88d1db215256db6feedbd4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4cb59f1aa917e86404cbcb5349b6f0d6a7dbca006ab7f56291198af97ca2a50c
MD5 9ee52cfa498f846bb0c0429f88e7e047
BLAKE2b-256 d02b82590468969ab39fefef4174e7a8fce7c5afd34034ccff42d9e6d8887dd1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e3f0f98d4c811491dfe2dd6c17d08b2a4f4197c424985f1f4fa73e2d78c4a099
MD5 b1e0f0cc80d352aca086f835829468e7
BLAKE2b-256 e22cac2be838c71ebb8275be3627d860fb8a8a86363cfc8af1632485440a6fb0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 18b545e6ba98c95f41206acebda4339bcd7b7847f4aba2bebc6e23ec4d85cdf0
MD5 c7369ba1dc46166b91761e1662471a15
BLAKE2b-256 cc8cc9c9cdbc145eac9b1f0fbf84732320e9c74bc27d57988bb2040349b6ca77

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f2a8ca96b6b5798f00a6faa3ae36e8fc29db214df5aa33967a0fe78a438ff6c2
MD5 9d2e7f1e2203a83158fa7c32fc05d47e
BLAKE2b-256 89721d7452a15c81e6aa7e5b2fefdff866775564d64bb68c7a9496edde29bd19

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7815f66124cc04506e9a370698f4d3187cd3ec732ea0dc146ecb9b7030a393b1
MD5 3fb54b96f4419dd0f614af248b233323
BLAKE2b-256 931882560bd0658749baf2827236ce7c2e24682ddefbba686fa0b922d99d6dc1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c1f9890a7c7cf5ab7a826ee9ca7c0d8c0682752d699f55c01328756c40d9749d
MD5 cc7094285013fd7f56c184dc5c44f9b8
BLAKE2b-256 1ee94b56a48a13f34b50f270dcb0560c0d4ae6fd7892fbd89e2488f8e1f8551e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f094ad3308f3cb0e3e3d0b4992e45e2b67865acd8933da24b82bb137b2239e3e
MD5 ba9b0e880e15535613d91bf1d8dcb06e
BLAKE2b-256 5f2ceedb316d00f6f570784377ee9e6b0dbecde5774f805047158ed9f000c30f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 f035ae63a24ed1f97c62e3574d16a360694002ed3550ace3e2f83faa557f0b05
MD5 1d57d1014b35866347e575fc89c9fb05
BLAKE2b-256 2d8297938822f79c70b26259864f1a8c87b2f2c3a5db186e69b9dfb4aedd4273

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp37-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.8.0-cp37-none-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for pydantic_core-2.8.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 045192ce259cffd47100f75cc3c28593505e9b3b30d6e18d395620ca7e0e18da
MD5 dc9f6d740e3c6ef8283ce1e6eba7157a
BLAKE2b-256 470cc8bffa1810494a37edf753365b648fb46c923857b8c22b3a59d7ff6fe2ac

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ddd0e6eccf26ec82112f6c75bc325883b43bead64da31177b27520abf1e098b5
MD5 45e87ac67c505f2587a561668b3e505a
BLAKE2b-256 9e4384b96b75ad7701abb0b4a52e02508c8e07d5895a0fe0cc550865552420c1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3236d3b7fc3149e4181b85a94a5c7ff0253a8bf4bf669e9bea7dfcfe25a8131c
MD5 27b27545f52364954423a38ea726d36c
BLAKE2b-256 9a76309faa472967d018f217cd095022dd320504216223361c05ef721e58a752

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0f7f75fa76005cdfc25b25c2e21fca3be2c0fc19e2ba28d8beb00c6d50e30031
MD5 026f403ca58ef4c473137ff45eeeae58
BLAKE2b-256 3a734b8d24ef9f59de1aef4112a34141c03b15e3cd940962f3140f242d8aabfc

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 42a46d14f3e72e2677fde0b61535070366f0e328278e0f50a0411e3e136b32eb
MD5 62b24ab2c595fdf2125604052612145d
BLAKE2b-256 a06300002c2b5bdf9d53cd057c69cbf72f845ca14395fb4842120f45dd115a67

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7f6212812cccb710bdc62764464f820a4c7e36fa198a69dc6c9367cad26a952e
MD5 11670f9eb604c7bc967ab8480d2285ec
BLAKE2b-256 9f9549418014e94a4875ad2fdf51ca94e7b1d0037e000cd083df9ff7c6bb52c3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 46e295729e5f50d39e5c37c9deb70ef0d6210178564e3eddab771800d589aa85
MD5 da1d448085a81830263c2c79b177fe5c
BLAKE2b-256 9c2a492f62ca16b06c20d8a2fd5f0275d649799d9b1a8e22d0b8f6ff640b6967

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7ebd2fbd753f5e4f92152756054ca70df062d77170f9bcfe1749cde6a8e04080
MD5 0c19d0334e81f9c54268c2bc4eafa831
BLAKE2b-256 89a8fa5b19a4f82d4a456ea8a3f932696ce10a779bcda0c22ba5ee692d826438

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 488ad55ba51c937dfbea76a90a408afb7e861468d9a8fd8ab864e2e47cff7498
MD5 c7dc91d3105062b544b484b8a3e4cbf5
BLAKE2b-256 07672fdd599c845ec1ec3bd9e8b2c98a95a1f0850d0fd73cc526042468db3b91

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6eabf433337cf03311e6bf566a90daccf5919a28cea704ecf96f266f1297e4fd
MD5 9f187c2b1212f1ac0835eb0ec64ef1f9
BLAKE2b-256 751e45d6eb88438534f20278846c4b2070a477f8b66c36401611abf06eaf3e24

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.8.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.8.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e18f790312742e6267ec6293ef01cf3e9fc382264ab98f0b69b538ccb391fa9d
MD5 c3a84a891ec6fef7291d50d96558ac7c
BLAKE2b-256 88b98e76213c3ce1ae5074bacc1300769e570a80f2bbbcab628838ca1d3dd3a2

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page