Skip to main content

No project description provided

Project description

pydantic-core

CI Coverage pypi versions license

This package provides the core functionality for pydantic validation and serialization.

Pydantic-core is currently around 17x faster than pydantic V1. See tests/benchmarks/ for details.

Example of direct usage

NOTE: You should not need to use pydantic-core directly; instead, use pydantic, which in turn uses pydantic-core.

from pydantic_core import SchemaValidator, ValidationError


v = SchemaValidator(
    {
        'type': 'typed-dict',
        'fields': {
            'name': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'str',
                },
            },
            'age': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'int',
                    'ge': 18,
                },
            },
            'is_developer': {
                'type': 'typed-dict-field',
                'schema': {
                    'type': 'default',
                    'schema': {'type': 'bool'},
                    'default': True,
                },
            },
        },
    }
)

r1 = v.validate_python({'name': 'Samuel', 'age': 35})
assert r1 == {'name': 'Samuel', 'age': 35, 'is_developer': True}

# pydantic-core can also validate JSON directly
r2 = v.validate_json('{"name": "Samuel", "age": 35}')
assert r1 == r2

try:
    v.validate_python({'name': 'Samuel', 'age': 11})
except ValidationError as e:
    print(e)
    """
    1 validation error for model
    age
      Input should be greater than or equal to 18
      [type=greater_than_equal, context={ge: 18}, input_value=11, input_type=int]
    """

Getting Started

You'll need rust stable installed, or rust nightly if you want to generate accurate coverage.

With rust and python 3.7+ installed, compiling pydantic-core should be possible with roughly the following:

# clone this repo or your fork
git clone git@github.com:pydantic/pydantic-core.git
cd pydantic-core
# create a new virtual env
python3 -m venv env
source env/bin/activate
# install dependencies and install pydantic-core
make install

That should be it, the example shown above should now run.

You might find it useful to look at python/pydantic_core/_pydantic_core.pyi and python/pydantic_core/core_schema.py for more information on the python API, beyond that, tests/ provide a large number of examples of usage.

If you want to contribute to pydantic-core, you'll want to use some other make commands:

  • make build-dev to build the package during development
  • make build-prod to perform an optimised build for benchmarking
  • make test to run the tests
  • make testcov to run the tests and generate a coverage report
  • make lint to run the linter
  • make format to format python and rust code
  • make to run format build-dev lint test

Profiling

It's possible to profile the code using the flamegraph utility from flamegraph-rs. (Tested on Linux.) You can install this with cargo install flamegraph.

Run make build-profiling to install a release build with debugging symbols included (needed for profiling).

Once that is built, you can profile pytest benchmarks with (e.g.):

flamegraph -- pytest tests/benchmarks/test_micro_benchmarks.py -k test_list_of_ints_core_py --benchmark-enable

The flamegraph command will produce an interactive SVG at flamegraph.svg.

Releasing

  1. Bump package version locally. Do not just edit Cargo.toml on Github, you need both Cargo.toml and Cargo.lock to be updated.
  2. Make a PR for the version bump and merge it.
  3. Go to https://github.com/pydantic/pydantic-core/releases and click "Draft a new release"
  4. In the "Choose a tag" dropdown enter the new tag v<the.new.version> and select "Create new tag on publish" when the option appears.
  5. Enter the release title in the form "v<the.new.version> "
  6. Click Generate release notes button
  7. Click Publish release
  8. Go to https://github.com/pydantic/pydantic-core/actions and ensure that all build for release are done successfully.
  9. Go to https://pypi-hypernode.com/project/pydantic-core/ and ensure that the latest release is published.
  10. Done 🎉

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_core-2.9.0.tar.gz (345.7 kB view details)

Uploaded Source

Built Distributions

pydantic_core-2.9.0-pp310-pypy310_pp73-win_amd64.whl (2.0 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.9.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.9.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.9.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.9.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.9.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

pydantic_core-2.9.0-pp310-pypy310_pp73-macosx_10_7_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.9.0-pp39-pypy39_pp73-win_amd64.whl (2.0 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.9.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.9.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.9.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.9.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.9.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

pydantic_core-2.9.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.9.0-pp38-pypy38_pp73-win_amd64.whl (2.0 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.9.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.9.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.9.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.9.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.9.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

pydantic_core-2.9.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.9.0-pp37-pypy37_pp73-win_amd64.whl (2.0 MB view details)

Uploaded PyPy Windows x86-64

pydantic_core-2.9.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded PyPy musllinux: musl 1.1+ x86-64

pydantic_core-2.9.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded PyPy musllinux: musl 1.1+ ARM64

pydantic_core-2.9.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pydantic_core-2.9.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pydantic_core-2.9.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pydantic_core-2.9.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.7+ x86-64

pydantic_core-2.9.0-cp312-none-win_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows ARM64

pydantic_core-2.9.0-cp312-none-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

pydantic_core-2.9.0-cp312-none-win32.whl (1.7 MB view details)

Uploaded CPython 3.12 Windows x86

pydantic_core-2.9.0-cp312-cp312-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pydantic_core-2.9.0-cp312-cp312-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pydantic_core-2.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pydantic_core-2.9.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

pydantic_core-2.9.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.9.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pydantic_core-2.9.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

pydantic_core-2.9.0-cp312-cp312-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pydantic_core-2.9.0-cp312-cp312-macosx_10_7_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 10.7+ x86-64

pydantic_core-2.9.0-cp311-none-win_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows ARM64

pydantic_core-2.9.0-cp311-none-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

pydantic_core-2.9.0-cp311-none-win32.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86

pydantic_core-2.9.0-cp311-cp311-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pydantic_core-2.9.0-cp311-cp311-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pydantic_core-2.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pydantic_core-2.9.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

pydantic_core-2.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.9.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pydantic_core-2.9.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pydantic_core-2.9.0-cp311-cp311-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pydantic_core-2.9.0-cp311-cp311-macosx_10_7_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pydantic_core-2.9.0-cp310-none-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

pydantic_core-2.9.0-cp310-none-win32.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86

pydantic_core-2.9.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pydantic_core-2.9.0-cp310-cp310-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pydantic_core-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pydantic_core-2.9.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

pydantic_core-2.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.9.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pydantic_core-2.9.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pydantic_core-2.9.0-cp310-cp310-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pydantic_core-2.9.0-cp310-cp310-macosx_10_7_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pydantic_core-2.9.0-cp39-none-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

pydantic_core-2.9.0-cp39-none-win32.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86

pydantic_core-2.9.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pydantic_core-2.9.0-cp39-cp39-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pydantic_core-2.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pydantic_core-2.9.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

pydantic_core-2.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.9.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pydantic_core-2.9.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pydantic_core-2.9.0-cp39-cp39-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pydantic_core-2.9.0-cp39-cp39-macosx_10_7_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pydantic_core-2.9.0-cp38-none-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

pydantic_core-2.9.0-cp38-none-win32.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86

pydantic_core-2.9.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pydantic_core-2.9.0-cp38-cp38-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pydantic_core-2.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pydantic_core-2.9.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

pydantic_core-2.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pydantic_core-2.9.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pydantic_core-2.9.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pydantic_core-2.9.0-cp38-cp38-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pydantic_core-2.9.0-cp38-cp38-macosx_10_7_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pydantic_core-2.9.0-cp37-none-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.7 Windows x86-64

pydantic_core-2.9.0-cp37-none-win32.whl (1.7 MB view details)

Uploaded CPython 3.7 Windows x86

pydantic_core-2.9.0-cp37-cp37m-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pydantic_core-2.9.0-cp37-cp37m-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pydantic_core-2.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pydantic_core-2.9.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

pydantic_core-2.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pydantic_core-2.9.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARMv7l

pydantic_core-2.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pydantic_core-2.9.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pydantic_core-2.9.0-cp37-cp37m-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

pydantic_core-2.9.0-cp37-cp37m-macosx_10_7_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pydantic_core-2.9.0.tar.gz.

File metadata

  • Download URL: pydantic_core-2.9.0.tar.gz
  • Upload date:
  • Size: 345.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for pydantic_core-2.9.0.tar.gz
Algorithm Hash digest
SHA256 3afee35fceaeea03e91714adbe5ba0ac1b1b949702b1af283bad175f55665c66
MD5 93e845be0be171c9b57086f82f4e7cfb
BLAKE2b-256 94b36bca832a94cf5dc95e000711178aabbfb9a8528bb98ddedd154e5140cade

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d980715f7b37e9d7b93ba76473a7dcc5fe52cd39c4e1f57f6d57e88a5bfe2f50
MD5 c8d1ebfdcb6b0d0863576800a06bdf66
BLAKE2b-256 9ed72201046925f7b1f8d14bf4f8ac0ae750056da6e05512895ec5d76ada6333

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 15fa39220ec5ca2dea38c6664ec55f0b67dff16340006f4162b5808ba9ed66fb
MD5 18e0439f5e3b60ad25c8aead44e9cc06
BLAKE2b-256 45b35627d34d7fa6dd3501f4af22c553de1f0f6cf449f7dd967c15dfe495034a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e6cc0d88aab12db83e6564e88871af68a219f0df650f4bda086a6bdaa1d19577
MD5 6bcd94955de6025a4bfe5017697c58ee
BLAKE2b-256 c0a80a56f8b34256cd5d6b99c0549c8ad0c79fd65ee89ec946c49137db67fdb3

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d731bd93d39b7126f7b94ff602507ebd70c03c012610f02cd10d95918a41fc9c
MD5 0c53764ce3257c4b9f34fe1c5c19dc80
BLAKE2b-256 abe3f920ca3d2459eec68885fcdba46001ab0997c28c272435b3020e057d2937

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a191dab33b5575d79b98ddbf44dc77214ce27603c99c2a6268cc259b0f5c4fbb
MD5 daa0d9f3de076a74e0024717ca5f3bd2
BLAKE2b-256 dea65a082f0b9b5331e5b62e0381f406ecc781303584119ebf33dc30cd24f160

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ab99b277577ae8029e074699dfd65e60f6abd82edc20a89a3770859217e7dbda
MD5 bc4e6f19dbb04809f2c0d69b19659f9b
BLAKE2b-256 4f460d68ed22891e448c5bb073654bc2f377e606e40a0a81efb9a90a5b83ab26

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6cbb7a410cc9e153fafe56d8ba570e711b3a651648525dc416402d2fefd790a4
MD5 fd0606eebf2e7d5bda92986f1d77828c
BLAKE2b-256 ae0856e79e22ee2551af04a1542af64219d508cb7232ec06dff65c89752f8a8c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp310-pypy310_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp310-pypy310_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 880b15af12ff845536cae84ab939bc246097716ce6b708a9fc0f71a1873b7cc1
MD5 123c9f2a2745cc8f7d14d4ec6d0821fc
BLAKE2b-256 20932bdfc8c7753a4f17fc7a037522ec78b61e1cbd9be535efb91334313a4a3a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5c10df3f827c046594ccb89447aee28e0768aa5db1e20274640864a2887ebffc
MD5 2f610210dfdfb5728698f3f3857adb69
BLAKE2b-256 835431b23fe5412a181b97675d07724f503c904779a7f689ef6398f1fdb0afe0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3ff26c8af620d3a008d4988956758b4936436210b5a0334485190a7cdf45fefd
MD5 97e8045a141f9efc54e06933dba6b3c1
BLAKE2b-256 832abb0b3d4af7c6542e8670f893ff80fb2dff1274277a8e6141b5b4e3f6c1c1

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 194435b3e1849f8df122e61c48864a9c4b58d99f46aa7ef6f747a48d317b6017
MD5 2c57c952b05fae070b19b8906898d141
BLAKE2b-256 793238315f9a46108438f672cdfc4564fa7953ec7e52392442ad57774ae6faf4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0a5bdeacffc2c94c0dde3337a8e269ce17db6b6120d9b25b840082f326a0ba70
MD5 53e389f21bfcb8d073cdb4362ba17a22
BLAKE2b-256 1db6019d1126888fc38ea03d7662e4b1e0ef750d1a28c9cd7db22076f788adb8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0e0da92988b57723298afecdaaf8fb27a3ca7385693e039f2b09144ade424d33
MD5 37c0868bc80dcc267982320a63f632cc
BLAKE2b-256 54fd24efd6fd22d595fa7bbfc55bf52384a098241a3ccee7c2c922c81d64ac06

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 571685d75feadb24a5186145b6caa8a41900be48a7b2f15995737dc5f66a7bcb
MD5 9f7faa0b3c1439fb2f9e945627a524d4
BLAKE2b-256 00e5e5d555f12f907db96c71f49f10ae58a2c84fc49ec43052a0559aa8d6d1d7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a8ce1073d69e80f0942760d59ae3d3f8737f974a3040ec052524d3923c07b31b
MD5 79fd1d3154138a63611188fd7339c79c
BLAKE2b-256 4940cccbb7d8cf810f2108e75e5049bfad3a2aeef902631222992a2702ab3a63

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 836e42758e1a208a5ad5779043b577a34381ff9a693082d6e9d66f4dd6b77362
MD5 598ba47c40f61bd2a96c7b8b10c977f6
BLAKE2b-256 777cd8a8cca19d1fda2b0b71d4e0c3ff4bdd09d43197e0f48123e6c3e5877851

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0b5ebba7d71585173f6abaf1ef0313733a05ffbb75977d4d5cf65cbd1ad3ab7e
MD5 4f2abc0d3e10f1c00e763b3c490b4bdf
BLAKE2b-256 f9892b2b05eb0505cb494ba708dd2eb8761e2fa7c0944f87de5835edb3addab9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f8551d9b3c24df9b9878ae032de38b7c8accb1b1bea411e958a4964b9cdce97d
MD5 fc8332453afe954cc35608ccf6e4ae95
BLAKE2b-256 cf74e8d70f69f94315e6a955eb7354e9804ff6febade9f48d369d26b0419640c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 17e0fac3ad76aa95c281aaa8c01bdf985c22aa66aa79f82464fbe705b308905d
MD5 c67fe7e80bacd2e901c2b13cd297575d
BLAKE2b-256 da54185951ac7f4b37a718ccf94bdef2ff339b8fe4b9983a5ab1ccf1021f0187

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df6b0eeea78adf5890666ac48239f800c2f82a77cc44029211ee6bb825271db3
MD5 5d0988c6efb44c1780ccef49fad55a14
BLAKE2b-256 7046c4f5415a88b3eeebc6c09730066124bda62184a886f9e0c66554aaedc5da

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c9e56e0d182274274ad06b7f8d96dc07ed14c39d6cc63fb4e43f9d0b57921a22
MD5 5e88cf09d6f70ce51c260bef35623688
BLAKE2b-256 661840764fba9c6458cb00b0ea7a56aade8f90c40527570636c4b7c313321d2e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 1d5b392fa509e2dc0dd4b231fb33e37bb86d20b4a39695ae383076e4ee61d0d8
MD5 2cb6e5771966bd722f257ec207025385
BLAKE2b-256 3671efa5c1c326ee878c4f45285a19b04046dd1fc27313017b34945978c1617b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 317496d7048f03a5b21d73cd65838ee77de8d9d4c0fdaaf5df8dcccfe4430e30
MD5 42330414474419414c8f1e1f2ca8cfa5
BLAKE2b-256 1b5ab2790ca0023bd560bbb0a528cb585de89d12884d304e91e47ff8c1e84523

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 17da825a7d882249a5be3bf1aa8776ca7703f6f92a23b8d354800e1b30b98982
MD5 00f7b68711acd95e3b06f56a4b860100
BLAKE2b-256 c563f3d707d6bb6d9ddf69bf1fd473128772ec63a15762822ea42c8a99d5e291

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 218459ed47e43a5721460dc2fcff2a484b5592b5249646bdcfaec0beddfd1d8a
MD5 c3b1b2dfe827301fb1bff139ee6e3bb7
BLAKE2b-256 e81cac5346ac2786092cfbc5426b6e3ff7ce95401ae498d530d5e93f6d54e503

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 735d888cbca9d382f409b796f51a4c4bd9cabadf312a129a04e59faa13829add
MD5 9d1a7b1764bbe804105d04750a2befa4
BLAKE2b-256 4bc230f70fbb01ef7526e294a7867de15768197873512613366a07c0d3b24453

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 937818ddb644fb1302b1ad5062ec241b46c9a0465b07207aace69ce8b52511fa
MD5 ca8789143b1f3be4968b265c2c44c666
BLAKE2b-256 961959884ea75fd24f735cd481b7d9538ec833eb05dbc3905f4892bcaf62e50d

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 274d3057fd649583cc7192595e0a2c270b12becf76a9ed34f96ccdd02888e3b0
MD5 0653f8ca19a321c184ccf3c7002fa300
BLAKE2b-256 5e5f898a849a6bd6648e33a2a05657f0b1581a355ffb9e48d831a1ecced95264

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 527f5d4249e563c376d03d75a21f9f2047c7e43ef3891c2e312cd8e890054fbc
MD5 9374640c04e69b53911f891e58cdb368
BLAKE2b-256 7bc84e6960d39cd55b348a0dd77d66bfc9a2c35096c872e8b7338fdceeebc1b8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4bd4194af8e337a8103f05481badb97dc386f73e970d3a18c7fd1e88a71d3213
MD5 e2eabced19d113c4d9ea4186fb22320c
BLAKE2b-256 359e5733ef09e69b7cfc0206601ec77ca8a64f2f9dcf48a16d5ce78e2b0eb3d6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8e00141c00c3aa544eefb3955e9758b5892da2673521275b433aa95c385a1442
MD5 1a4a77c86caa4637c26fb2ddd7492215
BLAKE2b-256 380e9f92262f6db933746dbb7348875a9d74b466e3c3ca4eb7fcddd0e15596f2

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp312-none-win_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp312-none-win_arm64.whl
Algorithm Hash digest
SHA256 17cec7ca295ceabc2ea707334c6f1bba9eb9d4b90c60b88742adc424e2e6bcdf
MD5 6213bcacb6fcf9406cb5010eb2521383
BLAKE2b-256 c86ca0e1514c1d131144497d749c4de4317aba076e44808cf1f3732a8075c1ed

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 5e652d24db195ee6ded9776f14edd75160b52849a077eab818d095bfe07089ee
MD5 032d13609ca8c440190cf4a561224127
BLAKE2b-256 e224427aafb8e56df995ff034bd0910b7c27ac9b234d158476b5a75b8acdd72e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp312-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp312-none-win32.whl
Algorithm Hash digest
SHA256 21e119619ea10a7600120a1a56e595b7df2d2d0c40f3c468aac964bfcf248d47
MD5 6a195cc3a144401178dddd4216018d74
BLAKE2b-256 3353ba0a5e7705ecfecc528db79522674e7439cc34ca0bfb064405aa8d7905ec

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 85496c0df1102d9a18ed6a2149e36e954f57062c7982a54f987fa881a7c788d9
MD5 de70dde492e8c74da3eb027d0f85c24a
BLAKE2b-256 ea29b85e3b5bf7d64fb73bd0244f68c84bff2ae33ca2dbebd47389b550b86e3f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f9c40fcc3e3a98c6b30ba646315c0005b02ec7c6b5c7007858b6606cfaa37aff
MD5 8337fccc3339f01c2cd1ce15c6a00827
BLAKE2b-256 f9c67dd6aac6191eec21582112b1be889b0cd8413d6df900785b1b027c1dccae

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d30e464b5cbed5907a9b5c05513740353ab40b99efc0a2ffbe67ad841ecb31b
MD5 d29e8585ab3cf441f51e24a3cb0fb78e
BLAKE2b-256 cb1873249b3bd6bfb50d8dd20b4a3cc0ccef85db1949b3c9969d917ff029bcec

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 b59a7f18f4b7ae71cfde914cd221900ac0c48f1b3dae442d75b95e4e3013dd3e
MD5 e1f400e784f7735d8cb331fb308ac113
BLAKE2b-256 433f4b7bc21d56a73cd4ca0e80c616e73e644c1d4fe8c5b3ffb80dfc98bb2c63

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 036dd39ac0c613469045f5fa4c90ca9038fe905316aa7b02961a5be99aea060e
MD5 274f1cf815fb5841b91a53905bad57e4
BLAKE2b-256 3a4280dfd7668773bef40c3dae0bbc286961a55d85f88300077d80d4135aec61

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 9a9f56ac2218e1c316a2636c75e580ecc5c995de34aa794e5633e105bf875f0a
MD5 795b626962010c521cb41a23c1f726ff
BLAKE2b-256 5f461001046ed14bed09803ddad910c2dd0cdc6499c09de3cdf319818572f38f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 96990d693825efcffc78bca28f2cda98ebb64fb3dcf7e525a8abcdc1ab4e06fe
MD5 b8bf54a0af3e85ca113ed43db2facae1
BLAKE2b-256 db37b729d653c954fcb21a3977b72ec34a6d1aab74cf920817cda7cc0e178554

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 190d3753fc6cec6fb666beccd5c9b1c3434c86d02278f7b551d144999e2a6793
MD5 4a91041a4acdc208b41a09391ca8454a
BLAKE2b-256 b35925c64f217ca17394e91525797dc746d8996f148ac8c4261cc785509870bf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cf54e5fb167e32e53348d915e09d059e063b40a3c49a77cfa7a98ae62277b172
MD5 93bd133a4f76e86b6e8220b7b2c73395
BLAKE2b-256 6f3e32e24faccafc6b6ccfc984e6ec8dcbd198fc9ded80e4d1d47f223e052e46

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp312-cp312-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp312-cp312-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a6d73f1529a49f1851877c9dc5cd5ef00eec0d6b22c6cb71545ebc4167e7f7f3
MD5 8e706bc05a09ddaf90ea294dac6dc759
BLAKE2b-256 4338b97059836777b144e5f35f43c5fa0839f76cc786007b717973f30c9a2560

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp311-none-win_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp311-none-win_arm64.whl
Algorithm Hash digest
SHA256 1787a7cca418cb1c767cba6ef4b81ef4c87c488d439229059b687a219efe9383
MD5 505ace3589c2de167d8fd13367e0bab2
BLAKE2b-256 951dc4abcde725d790c9aa58b7fd8503c3a42e2453073b5ddb71f8471ab38286

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 ae212959a0ec235e5bad1cda9973490db21d52f8af9dc74cde4ba02543ab09b7
MD5 ec588b633c37bcf802f2f3c2e162e83e
BLAKE2b-256 84b7c4a04f001dddcb76edc2941478fb5e8dc0f79a1673668d4eab57377beac7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 42f6b7b84108de79191538b2e33dcb4fb68dd2ac751c7f6af6f4b2b8cd4df3b3
MD5 696c67c92aa4f52b4094a7ecd7bfaa1d
BLAKE2b-256 fba0f84abc65b071f445fbc9e681b8fd273164c1d287156b3e958df7309b4730

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 158c570388215c3b1a138dda4fec31e090b3be89ab7bcdf6cbe205333888ccbd
MD5 654f88dcee91cb0c80163b9b05d5ee71
BLAKE2b-256 d50416b6d3bbed6248d1048d5ea3da177ae93bbb6887e5545e552ca16a45492f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7ba53bc51d759e52cbeadcd06dab608a705583a5034b5a764a11ab0dacfaccbf
MD5 d4ced2811b4cc97f2ded9340766f3d1e
BLAKE2b-256 76c5ab293404e397cdfea66426b0a9c0d59b5ee55d319eb432727ab44fafcdbe

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8fdc8ac8b73d672bbce52fb6394dc53b84dc174499742328da8f1cc623112f3e
MD5 a848cf9a4597efba8d61689a6c489337
BLAKE2b-256 383982917651dc8f0b4bf93814f0ba4f4ff1df819f2e70ac7c713b69c478b436

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 623f4b0eb2f9ee4b2e9ceb3c7cc5c5db877982d2b032c7493abb9daf62a8eeee
MD5 4bee083cb44681dbe513057d92ad51ef
BLAKE2b-256 eafac37d8ccff706e86afdc4ced5f60e0dee85b993664ac9878ba93a48cd4468

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 091e2295a9b1049be97b3d835630c8bd79a7085bc6884497bccc2614527a3deb
MD5 77b4490a003ab181b758463432ec479f
BLAKE2b-256 202c0c50d30c5b58ca555ded78eefbadbbbbfbf8be20f5fb6dfbd1309fc9c079

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 2d84bd4230f0cd334071443f117e629ee762767c1004a56f4783003ce6a87660
MD5 ed4bc2e341411d0e70b9d0c65ba8f4c0
BLAKE2b-256 98d0a194e0fcde4ee2751ea5abe9a77767fd5b36a88fd3a64992d4928fa1ae44

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4d6966bcbffe476ac84c37409ca7bcd9447a4042eef9b8651b4fa2a5095ec610
MD5 bc0c8a875d685538d2bd299bd838257b
BLAKE2b-256 b89752b2394a24c3116c9514a7e4afe0c8785d15a4cb1482bc6071a17602afe7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 32b9de267634078b069b637d06f5b1e6e1b1ff1554ccf8ff0359750966c91118
MD5 fbd5be89bd17a91f815d2f1334624fc2
BLAKE2b-256 edb2e66f373f0a7884e26cd980dd51786c609799528ab0ee05b4a78e2be2af2e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7ebe477f75502145f91e0632f2fd8501cd121a32b89dd19f76f4a9b5c6dce0e1
MD5 1152db58161694c9e4d9c573641e5746
BLAKE2b-256 29afefffb20efa1394d0a8315c010b7cbba139773175dd81002e078981d81e0b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 02452ec7536a687b7b0847bbe06f251de331678dfd8915d61c2956b169f3c3f2
MD5 0fc12fdd54651a5cf23c0f10a4f739f8
BLAKE2b-256 be831dff9aa9272f0dd4f62fb97ec007514e8d9a1710ee699ffb4046af21f856

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 380c7563f26b3afec415e2bb25e2c4bc3c7abc23c1c947722f3a2bade29d4e1b
MD5 ec2d07c4552b7c0d5c1866c3841f68e9
BLAKE2b-256 b61635534cdd3b09f8fc128c1b82cf021d1265221a09a0bab64b150fd6301aa4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 eaf387cdd8eb3fb0a4b1ffbbc49fca83ca6c32f12b2fd189f06da4c0ec6f613b
MD5 2d6c10e12438a2d5d6f39b51838609f8
BLAKE2b-256 81fd7ec17597aada4795cdd1b7bdb4048bc5f7136e425c4c5cf6a6a2c29d4d53

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b6eda52a5675945ec1784bce90be87da22b7c43cee6d732238503354295cdc3d
MD5 9e929962d017edc4b57a5bc9081c10b2
BLAKE2b-256 422d578196003974006df908967a008e853793020045b6bad6b22bb9dd238ded

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 69c94a747f37665859f376cfef93cf8bad994253f358a918aaa1eec450a70d38
MD5 c14db075fe72666be69356c1ec893660
BLAKE2b-256 714c5c9e6605e95300be400eef21ad474023bdebfa88e8d96ac50bb545453c3f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee4569fd9a4a28888020e85b1ad945ea91db38b32d29ee0896ed094625e95afd
MD5 965c037a5fc48dc3009188257afd38be
BLAKE2b-256 92ec19bf51031baaf3c73613827f18b54ac76b8106f0d0cefe121eca11fdd868

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 79033b1864d96493b0e2bf5611e783e2e95ada9c13e6e3c6ac39a1653e4023a2
MD5 a1f2e80f90290170440c422ba7b97071
BLAKE2b-256 18d22c985778760982ad8915c07aefeb8f22977bfe79d698a8a65191571670e4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 96f4de28cc4e1d7fb96b957a77067afd63a7ff92258124f3a35c0d7b392be410
MD5 7be99ee4a7ff8feecb171cf0b7cae079
BLAKE2b-256 a4ca09039ff4218559bca6a298b280d8ae160036600128f8529eaa8a1879cb1b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 a90406916a3f9e1c12c0b3d9164a74f32b563fb91dfae1bda54564d902e0a143
MD5 b2f83a5cba4eb1e38fd9442454c76021
BLAKE2b-256 0511f85ec82a6892a939b1c3fc74548777856a645fb2ad86b9f74791ac971a2b

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 90227628c4baa0cc67752ca8c0c13adaa811304bfd82cdc43a2a202bfcc93c8b
MD5 4bc698b8baa544d2d9fcf30b8cace66d
BLAKE2b-256 37b33d8c0fa57eebc84e4a7a81962674d32cce3748241ff41da38ebd1d010e04

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 542cef8d285f5c3d41dd0f738a69168d0301c65af250fc838927936bbdb1552c
MD5 8680ad23e692306f60832cd23fed3717
BLAKE2b-256 9f65bcbb8e3ef33a672ad1fad6a7b47a191e297dffd03f010d0ab9a9001c78c0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 52e3a862b99717695e7c3356bbfb0446abc3a76f0886fa8a7383c1be30025df3
MD5 4c9ca71a699b1a6ef7b4bd159f157744
BLAKE2b-256 854dc427d8e14b02316f9c57d4a2265d678167b49b34161d2d1edcb327754dd8

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ae2a40cbd62e61b5e9001003dba5f563b090f5f1c3a0573367213f83b3edf508
MD5 438efd5255a9f83d36996b50de8eb9c2
BLAKE2b-256 36b670ec0c7a87a3b63c14a812ac4f5d9bc7c939a549b479d75f11a4d4a723e9

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 60ec60fb42e43718ee6255f6fbcd032163d6771afc47c91a33381b5ce73e1b22
MD5 6742f3904edfbaf2da086e0ca42de4d6
BLAKE2b-256 59173df2692453d03f0705df78b5caa63d71536d37f18310909658042f65ce34

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp39-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.9.0-cp39-none-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for pydantic_core-2.9.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 4384d234417a754ebede9ff400dcfc021c78c781d96aa1e4f0e691e9f89d9a55
MD5 e73139317e4109986003837a31e2af94
BLAKE2b-256 0496cc427d70c9fc73e3356cd548f4827bde260740556b4eee37875f76e4e4ee

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8036236645e155cd853c45fe4931a08728a11efdfee04b046786044aa0f01d4a
MD5 730bf42eef5662205d1ad9063ea8fe3c
BLAKE2b-256 571152a0a43354fb2d431c66d24e3afa16e9ed227506caf66ae5b9d7bd2c9b3f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0c3403b3b1b75cce67a9e5b5c0e0361fbeeede2bc4e0660cc897885a0bdff13a
MD5 0e8ca1ff2ebb832fce5c105880b4fb96
BLAKE2b-256 ce41069552970ae4d94b181888864d82e5cbde4b477606f62441cb01531ba9a4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0a371aa3cdf7af31b40a5091ecfd2ef614632a1c4fa75d76dbe9ccf63d03ca5c
MD5 94f1094cdb1445992f3ab1bc6a69189a
BLAKE2b-256 20deb2b7273a5b1a9146b791d1c6c8a05f1e1fb3fe1135c96b00deef51d7cab0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 dda5f119870b117134cef060c50fe637106ba7fa4a569d1ba4ba08322d6e86ac
MD5 4c554b25dc791eeb34b416cb2f8bd02f
BLAKE2b-256 3a8f1d468243fbcf2e2ea3e1e89aac87d521bc5634819cb93aa6bc3ed5f7c33a

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4b8f444979d438259097e8695a9f95f0320f3c7fe6d187eeda8f4d2db601ce1f
MD5 62af94b369336e1d1b2b1423ecf7dc39
BLAKE2b-256 64a2fb16a412b5d721a4d2b7e74007dcda76348b92d629612cd76d3863081d1c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 f2564650ebe5015b3c99dbf5540c9d6789aaa725545401d2003eb8acecff45a9
MD5 bf9956f873dd029db4466eb932bd3ce0
BLAKE2b-256 717913e50bb71c7606e917bc56a3ccf2a7769f27ba5e641bf4cd89af395838c6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6c9bd3600dcbeebaed925818e9bfe98132622c650d6f97dee1ac036eabaa1917
MD5 8de1afdba1a7af245c616035b6073b4e
BLAKE2b-256 49922cc87db045e362ec6ed4da9e3b3d4d65f442dd0662f81d42a3dfb8153d2c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 11d73fe73152364ee1a5b062f58311544c38c30666b0179ef8470e6a98b20add
MD5 1ecaf3b57e73d5d495b2a1c57bf3050b
BLAKE2b-256 de81a288a0d112878fc18c515e962952d518421c5d63bfc4569f655791849217

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f7a0b9aa61c05d62af76ec8f87797d3c56268df970f72a6f4a7130e2931ddb1f
MD5 bb2205b424ed16228ed33310a5eb6da6
BLAKE2b-256 17516ddaedab740e3dde7da542097a4a4ac825e9eb96e0c9b092e9530826982e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 5ceec3c88c15de6280c228ab27ee3bc4df93f5e76b4b5ba1cc8097cfb152457e
MD5 ebb435918109c3e50705861707b53a2a
BLAKE2b-256 d5a467926713e1992754610558f8faf5d7ab37454e2cd572736f339f0235df45

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 97f02ad9d5a016dd6d068f2ce2fd53bdf357f250b48d457b9be8511fb3e158e0
MD5 553605f8146fc377163508cfca7ce15f
BLAKE2b-256 5d681841229c2302debfd6d7383d9a938322b3c6677bd5441eb0aeadb8ea2bb0

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp38-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.9.0-cp38-none-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for pydantic_core-2.9.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 a4630f1f88e4488adec3b3bab172324f6c2704d020836304697cc775982d0eef
MD5 55e001c4acd07163f44ebc4820d43c13
BLAKE2b-256 c53989fcc6cd98ff1430c116de9f7ca62060767c26164aaca672dc1e387c40ee

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 896980bb09b52bb4cfb594783adf6e9e02603151c4882295c79f2c24e6c00efb
MD5 ec3a4f67ca651d31a5841c9a886add11
BLAKE2b-256 314939927e080996a226dd80a726e504c62f52a2e539f621b434d4cd9f451501

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 90dcd94f8b2a4a211b922542f2c9a257a7d658e5dd1a38b4daefb14824ad307f
MD5 76100466d6406fd5a546c160b023a416
BLAKE2b-256 4713f17f5e23bfd3b6aed0b0669268fe9a8c072cddd80caf02c7bdbf72bc2a98

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6d0fe00b62d4ef6258e7dbaa7e57d2c2ffcaba0ef62892e8b61891bb3cd5459f
MD5 4f682b670947832d0a2e5855232f300a
BLAKE2b-256 1cec50d3e6212321a886d380ebca77c687b7327bbb2282b2c81353a7f44ccedf

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 11fa68f33ce9c0e2ee519e8a494a13f9c6ff21d7c590b25817fd50c5fff656fb
MD5 3200e5358868d5db3c97ae5592cf20ae
BLAKE2b-256 bd9caa9e51feebe5b2c854a4fcbada1e15e0f3f5aca01e4c497a721406b58f72

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1cd05a7fe37bb409db89d658f16a9243a34aa63a05613fc0cabff42cd5664ea5
MD5 4c9110edcdb1bf14f7e8563e69ca0248
BLAKE2b-256 758ebd2405e9cd118e7e304939070f92067e83a8fd3f188db419a4e93a45279e

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 360a7154f38ff3d58fcb79715040ffb5d4100747311502089729f8f8f4259a83
MD5 78f7d00c5585a30721717ca79057d926
BLAKE2b-256 38bee83b0e762812322d347b3a7af9356536244b67c75bd1df35196826cf3a98

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09073a93b608d452473b800bdb6c1bf040ebfd46ebef11a2661907d092862ba3
MD5 8fa9f3e6c1375189ee301bb6d6958775
BLAKE2b-256 daf45070162a40cb0340f04476a3293fe52752e000d82d79b4949337b3c1a2ae

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 6e19ea5b407b84ab0e99ad1a33909d10c14f337898077a515d4b861776e339a5
MD5 469c4da00c040c9ccc5b7caa17ea0f30
BLAKE2b-256 89e7ae62fad31912cfa166bb89e527c681d03f940aa828995ee84e2b6dfaf8e7

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3ae53063e6291395e7e5524de979d20c27452a37bcd59ddcff55cd7dd9337d3e
MD5 d85a4462bd4098cdb15f4c0f4ec668b8
BLAKE2b-256 346f27eeaf0d5c9636858e836998019d07786ecb75e92f7caff3b1e054b71690

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 edc960a54a85a6cf49227c57cd431f03c30f477fa985dfd896d110770b3fe516
MD5 dd50467dc52cdf64d68e3396971d002b
BLAKE2b-256 dfc6c83255279981f5e374dc7cc56aed9cc6af189c556d8c60a8f907776b252f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 52902bd4a766e0c383ee30a4bb645436c297b3e2927fb883144058fa89a10d36
MD5 1ee84583c4dc05be11ddd67491c3df29
BLAKE2b-256 3b21f61d512a5d3e77a6b297fbdfbd9eb0f8e872e152792e77836ea021a65680

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp37-none-win32.whl.

File metadata

  • Download URL: pydantic_core-2.9.0-cp37-none-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for pydantic_core-2.9.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 6fc70f08f3c43baf0b74dc5579f71aa5bd3aed1e4d05862b6db2b457708bf53e
MD5 76e456591b5811116b096b4b5b37628d
BLAKE2b-256 f2ffee9240194376ac1113bf603f479c0e7b4853797816ed259a4df80d1d021f

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 da1288267185e4d4cbdb2320e17a5206d1feee83b464156664d436b3605a16f5
MD5 6434606bff8c20a5366adbc4f67dcce4
BLAKE2b-256 e9adead6537b3804678f21271b27f344facfa8582e9a09d5d7a0d83d35ff7669

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 09395cd083f4d48cb73ed7fa1a6d6009595c5414fcd647c4d5b74b505650ef9e
MD5 fcc01f341f87258d423ce84166232b46
BLAKE2b-256 be84f6fb0146875b99b849a503a3b8a03297c7272c3fbc5b99c9e360570bc267

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f0d32373601e016c8c2d2c3b6382c8f7cfe91f1f43d695cdb12970fdc2e766f
MD5 e04e18576163ae1a6659d15e146a13dd
BLAKE2b-256 7e48dc08e6cd7cc02ec9fd39fc92963122195b39ab8f7022b9d772880e78d5ad

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e18f2d5a9ff628c8ee391f1352908c93125e1fc972a303a4d25726ea01266d0d
MD5 155c98fefe9d5752b7de16711f3706ac
BLAKE2b-256 9f74c7af11ba6c37b103df6461399ca683545a1f51517ebb6840339ef11607fd

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f172a5dbc13841021e3376cdfd64d45d348635ccf2146b6d065ae9def292f82f
MD5 81100deefdf8ab568ae3bbed62146a83
BLAKE2b-256 7018054360d9c2dc6a4db026bed56a3150dc9a232d78fd4e36636907d2c2d0b6

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 9cde5f19ce949cacecbb766f6037438aeee0c0f2bae656370fc98f20ec4c9731
MD5 625bdd44d8425ac4aeae812c7e089fae
BLAKE2b-256 747d9c78da487e32a1961989e52201ffc54e8675722343df48dd10a8e9b819ec

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b2d9891a83971a347207c60a46d000ddbc8788ae9669f58941bf5d7aff5cf692
MD5 1b196324a3aa0785209ec40adf724a3c
BLAKE2b-256 4aef9b9c6347b1f27465089d61d18d8c50552178f74e220ba0b3fc62c89cb389

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b107b2b7287080fc6954e8587016c935cc66df5bcda2aebc0b2f01e6591cd571
MD5 8973a670230eada6c80241ec8b5d51b3
BLAKE2b-256 903846bc98b57f98329f88e1baea80725fdd599eb19c91b1d2ffcaf49e3ccea4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2d6ac059a1df33cdaab750c00f7eccbb5ab88c20a772c3829d2046fdc2448fa4
MD5 dc9439ff5228dfba25893be504713fe3
BLAKE2b-256 511cafe27d40cf0235152832f7366028595c72b5c6d430dd90afbe911018b7df

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_core-2.9.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pydantic_core-2.9.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 c5dca9cb65eb68cdf0138942e87bb22d840ac7cd6e0dd55b730765692ebc11b1
MD5 84232c86accb773fb64525384d862205
BLAKE2b-256 d8cc75b48ce8d3be9d285b48ea20d4d6bb43ae70c3585bca0f5faa00ca8368a8

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page