Skip to main content

Dgraph to Python object mapper

Project description

IMPORTANT NOTICE: I am still working on this project. Slowly, but I hope that it should be releasable by mid-2019.

PyDiggy

Dgraph to Python object mapper

  • Free software: MIT license

EXAMPLE

# ./examples/__init__

from .basic import *  # noqa


# ./examples/basic.py

from __future__ import annotations


from pydiggy import Node
from typing import List


class Region(Node):
    area: int
    population: int
    name: str
    borders: List[Region]

CLI

Point the CLI utility at an existing module to generate a Dgraph schema.

$ python3 -m pydiggy generate examples

Generating schema for: examples

Nodes found: (1)
    - Region

Your schema:
~~~~~~~~

Region: bool @index(bool) .
_type: string .
area: int .
borders: uid .
name: string .
population: int .

~~~~~~~~

GENERATE MUTATIONS

from pydiggy import generate_mutation, Facets

por = Region(uid=0x11, name="Portugal")
spa = Region(uid=0x12, name="Spain")
gas = Region(uid=0x13, name="Gascony")
mar = Region(uid=0x14, name="Marseilles")

por.borders = [spa]
spa.borders = [por, gas, mar]
gas.borders = [Facets(spa, foo='bar', hello='world'), mar]
mar.borders = [spa, gas]

por.stage()
spa.stage()
gas.stage()
mar.stage()

print(generate_mutation())

The result:

{
    set {
        <0x11> <Region> "true" .
        <0x11> <_type> "Region" .
        <0x11> <name> "Portugal" .
        <0x11> <borders> <0x12> .
        <0x12> <Region> "true" .
        <0x12> <_type> "Region" .
        <0x12> <name> "Spain" .
        <0x12> <borders> <0x11> .
        <0x12> <borders> <0x13> .
        <0x12> <borders> <0x14> .
        <0x13> <Region> "true" .
        <0x13> <_type> "Region" .
        <0x13> <name> "Gascony" .
        <0x13> <borders> <0x12> (foo="bar", hello="world") .
        <0x13> <borders> <0x14> .
        <0x14> <Region> "true" .
        <0x14> <_type> "Region" .
        <0x14> <name> "Marseilles" .
        <0x14> <borders> <0x12> .
        <0x14> <borders> <0x13> .
    }
}

HYDATE FROM JSON TO PYTHON OBJECTS

Given some response from Dgraph:

{
    "data": {
        "allRegions": [
            {
                "uid": "0x11",
                "_type": "Region",
                "name": "Portugal",
                "borders": [
                    {
                        "uid": "0x12",
                        "_type": "Region",
                        "name": "Spain"
                    }
                ]
            },
            {
                "uid": "0x12",
                "_type": "Region",
                "name": "Spain",
                "borders": [
                    {
                        "uid": "0x11",
                        "_type": "Region",
                        "name": "Portugal"
                    },
                    {
                        "uid": "0x13",
                        "_type": "Region",
                        "name": "Gascony"
                    },
                    {
                        "uid": "0x14",
                        "_type": "Region",
                        "name": "Marseilles"
                    }
                ]
            },
            {
                "uid": "0x13",
                "_type": "Region",
                "name": "Gascony",
                "borders": [
                    {
                        "uid": "0x12",
                        "_type": "Region",
                        "name": "Spain",
                        "borders|foo": "bar",
                        "borders|hello": "world"
                    },
                    {
                        "uid": "0x14",
                        "_type": "Region",
                        "name": "Marseilles"
                    }
                ]
            },
            {
                "uid": "0x14",
                "_type": "Region",
                "name": "Marseilles",
                "borders": [
                    {
                        "uid": "0x12",
                        "_type": "Region",
                        "name": "Spain"
                    },
                    {
                        "uid": "0x13",
                        "_type": "Region",
                        "name": "Gascony"
                    }
                ]
            }
        ]
    },
    "extensions": {
        "server_latency": {
            "parsing_ns": 23727,
            "processing_ns": 2000535,
            "encoding_ns": 7803450
        },
        "txn": {
            "start_ts": 117,
            "lin_read": {
                "ids": {
                    "1": 49
                }
            }
        }
    }
}

We can turn it into some Python objects:

>>> data = hydrate(retrieved_data)

{'allRegions': [<Region:17>, <Region:18>, <Region:19>, <Region:20>]}

History

0.1.0 (2018-07-31)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydiggy-0.1.0.tar.gz (22.8 kB view details)

Uploaded Source

File details

Details for the file pydiggy-0.1.0.tar.gz.

File metadata

  • Download URL: pydiggy-0.1.0.tar.gz
  • Upload date:
  • Size: 22.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for pydiggy-0.1.0.tar.gz
Algorithm Hash digest
SHA256 9ec07da656933aefbee33f89c0198ba923bfd049f252ba7f2dd6c0d77a607f65
MD5 252925cc08db41edfa60d0a4c3789b93
BLAKE2b-256 2d4214f37fd4ddd5f05e21e03e5f468ca4767fe86e705d89daca05d2f02f879a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page