Skip to main content

Python audio augmentation

Project description

Pydiogment

Build Status Build status Documentation Status License Python Coverage Status Coverage Status CodeFactor

Pydiogment aims to simplify audio augmentation. It generates multiple audio files based on a starting mono audio file. The library can generates files with higher speed, slower, and different tones etc.

Installation

Dependencies

Pydiogment requires:

  • Python (>= 3.5)

  • NumPy (>= 1.17.2) pip install numpy

  • SciPy (>= 1.3.1) pip install scipy

  • FFmpeg sudo apt install ffmpeg

Installation

If you already have a working installation of NumPy and SciPy , you can simply install Pydiogment using pip:

pip install pydiogment

To update an existing version of Pydiogment, use:

pip install -U pydiogment

How to use

  • Amplitude related augmentation

    • Apply a fade in and fade out effect

      from pydiogment.auga import fade_in_and_out
      
      test_file = "path/test.wav"
      fade_in_and_out(test_file)
      
    • Apply gain to file

      from pydiogment.auga import apply_gain
      
      test_file = "path/test.wav"
      apply_gain(test_file, -100)
      apply_gain(test_file, -50)
      
    • Add Random Gaussian Noise based on SNR to file

      from pydiogment.auga import add_noise
      
      test_file = "path/test.wav"
      add_noise(test_file, 10)
      
  • Frequency related augmentation

    • Change file tone

      from pydiogment.augf import change_tone
      
      test_file = "path/test.wav"
      change_tone(test_file, 0.9)
      change_tone(test_file, 1.1)
      
  • Time related augmentation

    • Slow-down/ speed-up file

      from pydiogment.augt import slowdown, speed
      
      test_file = "path/test.wav"
      slowdown(test_file, 0.8)
      speed(test_file, 1.2)
      
    • Apply random cropping to the file

      from pydiogment.augt import random_cropping
      
      test_file = "path/test.wav"
      random_cropping(test_file, 1)
      
    • Change shift data on the time axis in a certain direction

      from pydiogment.augt import shift_time
      
      test_file = "path/test.wav"
      shift_time(test_file, 1, "right")
      shift_time(test_file, 1, "left")
      

Documentation

A thorough documentation of the library is available under pydiogment.readthedocs.io.

Contributing

Contributions are welcome and encouraged. To learn more about how to contribute to Pydiogment please refer to the Contributing guidelines

Acknowledgment and credits

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydiogment-0.1.0.tar.gz (9.7 kB view details)

Uploaded Source

Built Distribution

pydiogment-0.1.0-py3-none-any.whl (13.1 kB view details)

Uploaded Python 3

File details

Details for the file pydiogment-0.1.0.tar.gz.

File metadata

  • Download URL: pydiogment-0.1.0.tar.gz
  • Upload date:
  • Size: 9.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/42.0.2.post20191203 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.5

File hashes

Hashes for pydiogment-0.1.0.tar.gz
Algorithm Hash digest
SHA256 95321a317d84e8a899135845f258c05dac23ae2f3bac790130c4bd375ff05fc9
MD5 ebed864f86624f95c94d57f27d305643
BLAKE2b-256 497202f93b3efdf5f374cb7d2aa33ecfa765b6b0af69c0a2737076055c4155e8

See more details on using hashes here.

File details

Details for the file pydiogment-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: pydiogment-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 13.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/42.0.2.post20191203 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.5

File hashes

Hashes for pydiogment-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0aeee4f438a884f9ac28b907921de946128558cf77f3a062075125cd1ef2ab18
MD5 796f1cad1ebfb94a161a4038a7d0141c
BLAKE2b-256 582798e4eb916ef86e9b6dded28c771fab5d35e48555d618496292470f19da08

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page