Skip to main content

A Simple Mesh Generator in Python

Project description

PyDistMesh is a simple Python code for generating unstructured triangular and tetrahedral meshes using signed distance functions. It intends to have the same functionality as and similar interface to the MATLAB-based DistMesh. Like DistMesh, upon which it is based, PyDistMesh is distributed under the GNU GPL.

2-D Examples

  • Uniform Mesh on Unit Circle:

    >>> import distmesh as dm
    >>> import numpy as np
    >>> fd = lambda p: np.sqrt((p**2).sum(1))-1.0
    >>> p, t = dm.distmesh2d(fd, dm.huniform, 0.2, (-1,-1,1,1))
  • Rectangle with circular hole, refined at circle boundary:

    >>> import distmesh as dm
    >>> fd = lambda p: dm.ddiff(dm.drectangle(p,-1,1,-1,1),
    ...                         dm.dcircle(p,0,0,0.5))
    >>> fh = lambda p: 0.05+0.3*dm.dcircle(p,0,0,0.5)
    >>> p, t = dm.distmesh2d(fd, fh, 0.05, (-1,-1,1,1),
    ...                      [(-1,-1),(-1,1),(1,-1),(1,1)])

3-D Examples

  • 3-D Unit ball:

    >>> import distmesh as dm
    >>> import numpy as np
    >>> fd = lambda p: np.sqrt((p**2).sum(1))-1.0
    >>> p, t = dm.distmeshnd(fd, dm.huniform, 0.2, (-1,-1,-1, 1,1,1))
  • Cylinder with hole:

    >>> import distmesh as dm
    >>> import numpy as np
    >>> def fd10(p):
    ...     r, z = np.sqrt(p[:,0]**2 + p[:,1]**2), p[:,2]
    ...     d1, d2, d3 = r-1.0, z-1.0, -z-1.0
    ...     d4, d5 = np.sqrt(d1**2+d2**2), np.sqrt(d1**2+d3**2)
    ...     d = dm.dintersect(dm.dintersect(d1, d2), d3)
    ...     ix = (d1>0)*(d2>0); d[ix] = d4[ix]
    ...     ix = (d1>0)*(d3>0); d[ix] = d5[ix]
    ...     return dm.ddiff(d, dm.dsphere(p, 0,0,0, 0.5))
    >>> def fh10(p):
    ...     h1 = 4*np.sqrt((p**2).sum(1))-1.0
    ...     return np.minimum(h1, 2.0)
    >>> p, t = dm.distmeshnd(fd10, fh10, 0.1, (-1,-1,-1, 1,1,1))

Demos

For a quick demonstration, run:

$ python -m distmesh.demo2d

or:

$ python -m distmesh.demond

Dependencies

PyDistMesh is compatible with both Python 2 and Python 3. (The author has only tested it in Python 2.7 and Python 3.2). It requires several common Python packages:

Building the package requires a C compiler and LAPACK. Cython, if available, can be used to rebuild the extension module bindings.

References

The DistMesh algorithm is described in the following two references. If you use the algorithm in a program or publication, please acknowledge its authors by adding a reference to the first paper below.

  • P.-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB. SIAM Review, Volume 46 (2), pp. 329-345, June 2004 (PDF)

  • P.-O. Persson, Mesh Generation for Implicit Geometries. Ph.D. thesis, Department of Mathematics, MIT, Dec 2004 (PDF)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyDistMesh-1.2.tar.gz (53.9 kB view details)

Uploaded Source

File details

Details for the file PyDistMesh-1.2.tar.gz.

File metadata

  • Download URL: PyDistMesh-1.2.tar.gz
  • Upload date:
  • Size: 53.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyDistMesh-1.2.tar.gz
Algorithm Hash digest
SHA256 f45010037c312f21f742ec83e640eda314455f4428a9c46567f128c82600d986
MD5 c45719fdf1e545b55274cf04ba1082aa
BLAKE2b-256 393cfef5c2f4882128e093ec308c2c0c29a37a1f5001a03423863728b0c8c000

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page