Skip to main content

Python bindings for ERFA

Project description

PyPI Status DOI 10.5281/zenodo.3940699 Travis CI Status Documentation Status

PyERFA is the Python wrapper for the ERFA library (Essential Routines for Fundamental Astronomy), a C library containing key algorithms for astronomy, which is based on the SOFA library published by the International Astronomical Union (IAU). All C routines are wrapped as Numpy universal functions, so that they can be called with scalar or array inputs.

The project is a split of astropy._erfa module, developed in the context of Astropy project, into a standalone package. It contains the ERFA C source code as a git submodule. The wrapping is done with help of the Jinja2 template engine.

If you use this package in your research, please cita it via DOI 10.5281/zenodo.3940699.

Installation instructions

The package can be installed from the package directory using a simple:

$ pip install .

and similarly a wheel can be created with:

$ pip wheel .

Testing

For testing, one can install the packages together with its testing dependencies and then test it with:

$ pip install .[test]
$ pytest

Alternatively, one can use tox, which will set up a separate testing environment for you, with:

$ tox -e test

Usage

The package can be imported as erfa which has all ERFA ufuncs wrapped with python code that tallies errors and warnings. Also exposed are the constants defined by ERFA in erfam.h, as well as numpy.dtype corresponding to structures used by ERFA. Examples:

>>> import erfa
>>> erfa.jd2cal(2460000., [0, 1, 2, 3])
(array([2023, 2023, 2023, 2023], dtype=int32),
 array([2, 2, 2, 2], dtype=int32),
 array([24, 25, 26, 27], dtype=int32),
 array([0.5, 0.5, 0.5, 0.5]))
>>> erfa.plan94(2460000., [0, 1, 2, 3], 1)
array([([ 0.09083713, -0.39041392, -0.21797389], [0.02192341, 0.00705449, 0.00149618]),
       ([ 0.11260694, -0.38275202, -0.21613731], [0.02160375, 0.00826891, 0.00217806]),
       ([ 0.13401992, -0.37387798, -0.21361622], [0.0212094 , 0.00947838, 0.00286503]),
       ([ 0.15500031, -0.36379788, -0.21040601], [0.02073822, 0.01068061, 0.0035561 ])],
      dtype={'names':['p','v'], 'formats':[('<f8', (3,)),('<f8', (3,))], 'offsets':[0,24], 'itemsize':48, 'aligned':True})
>>> erfa.dt_pv
dtype([('p', '<f8', (3,)), ('v', '<f8', (3,))], align=True)
>>> erfa.dt_eraLDBODY
dtype([('bm', '<f8'), ('dl', '<f8'), ('pv', '<f8', (2, 3))], align=True)
>>> erfa.DAYSEC
86400.0

It is also possible to use the ufuncs directly, though then one has to deal with the warning and error states explicitly. For instance, compare:

>>> erfa.jd2cal(-600000., [0, 1, 2, 3])
Traceback (most recent call last):
...
ErfaError: ERFA function "jd2cal" yielded 4 of "unacceptable date (Note 1)"
>>> erfa.ufunc.jd2cal(-600000., [0, 1, 2, 3])
(array([-1, -1, -1, -1], dtype=int32),
 ...,
 array([-1, -1, -1, -1], dtype=int32))

License

PyERFA is licensed under a 3-clause BSD style license - see the LICENSE.rst file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyerfa-1.7.1.1.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

pyerfa-1.7.1.1-cp39-cp39-win_amd64.whl (326.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyerfa-1.7.1.1-cp39-cp39-win32.whl (319.2 kB view details)

Uploaded CPython 3.9 Windows x86

pyerfa-1.7.1.1-cp39-cp39-manylinux2010_x86_64.whl (695.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyerfa-1.7.1.1-cp39-cp39-manylinux2010_i686.whl (637.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

pyerfa-1.7.1.1-cp39-cp39-manylinux1_x86_64.whl (695.5 kB view details)

Uploaded CPython 3.9

pyerfa-1.7.1.1-cp39-cp39-manylinux1_i686.whl (637.2 kB view details)

Uploaded CPython 3.9

pyerfa-1.7.1.1-cp39-cp39-macosx_10_9_x86_64.whl (301.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyerfa-1.7.1.1-cp38-cp38-win_amd64.whl (326.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyerfa-1.7.1.1-cp38-cp38-win32.whl (319.2 kB view details)

Uploaded CPython 3.8 Windows x86

pyerfa-1.7.1.1-cp38-cp38-manylinux2010_x86_64.whl (726.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyerfa-1.7.1.1-cp38-cp38-manylinux2010_i686.whl (659.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pyerfa-1.7.1.1-cp38-cp38-manylinux1_x86_64.whl (726.2 kB view details)

Uploaded CPython 3.8

pyerfa-1.7.1.1-cp38-cp38-manylinux1_i686.whl (659.5 kB view details)

Uploaded CPython 3.8

pyerfa-1.7.1.1-cp38-cp38-macosx_10_9_x86_64.whl (305.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyerfa-1.7.1.1-cp37-cp37m-win_amd64.whl (325.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyerfa-1.7.1.1-cp37-cp37m-win32.whl (319.0 kB view details)

Uploaded CPython 3.7m Windows x86

pyerfa-1.7.1.1-cp37-cp37m-manylinux2010_x86_64.whl (696.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyerfa-1.7.1.1-cp37-cp37m-manylinux2010_i686.whl (636.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

pyerfa-1.7.1.1-cp37-cp37m-manylinux1_x86_64.whl (696.6 kB view details)

Uploaded CPython 3.7m

pyerfa-1.7.1.1-cp37-cp37m-manylinux1_i686.whl (636.0 kB view details)

Uploaded CPython 3.7m

pyerfa-1.7.1.1-cp37-cp37m-macosx_10_9_x86_64.whl (304.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyerfa-1.7.1.1-cp36-cp36m-win_amd64.whl (325.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

pyerfa-1.7.1.1-cp36-cp36m-win32.whl (319.0 kB view details)

Uploaded CPython 3.6m Windows x86

pyerfa-1.7.1.1-cp36-cp36m-manylinux2010_x86_64.whl (695.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

pyerfa-1.7.1.1-cp36-cp36m-manylinux2010_i686.whl (635.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

pyerfa-1.7.1.1-cp36-cp36m-manylinux1_x86_64.whl (695.7 kB view details)

Uploaded CPython 3.6m

pyerfa-1.7.1.1-cp36-cp36m-manylinux1_i686.whl (635.0 kB view details)

Uploaded CPython 3.6m

pyerfa-1.7.1.1-cp36-cp36m-macosx_10_9_x86_64.whl (304.4 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyerfa-1.7.1.1.tar.gz.

File metadata

  • Download URL: pyerfa-1.7.1.1.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1.tar.gz
Algorithm Hash digest
SHA256 b1048ae33eb26ad4925536ea79a956eaa6f33e77c6295f140178b4be35c32226
MD5 17eea628e2898eac6ae2dd5555a2025b
BLAKE2b-256 3b370ff81021f6405e4f6f627bb4aed32d22569fe016376dccee14e5eca947d1

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 326.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 35cbd7bf17537592fa5fe60f3b06c240b5a5db62c4f62c7cef72ba5f6403927e
MD5 157c7490ae05a461c51b75f3773e7fae
BLAKE2b-256 795af61cf8cc25deb8d32e51f271ce1ac020ce0d10b5f8be968030abd874db29

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 319.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9f226fd4b9cfca9a683e6c3a67bfcad934f43bed3c89f6e86b72d582e516fc79
MD5 bf1dd65727dd3ed488dfc4973f0b4743
BLAKE2b-256 e2abb91d79687dcdc90e12d4280b36c59006a7b02c777754cbf3c3e8620218e0

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 695.5 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 31ddff47c5376900fea2c38796b4450f8261bd502cfea281f5d70ed91855d47b
MD5 6c6e2412ec415e7694478903cfea3bd4
BLAKE2b-256 f7ae4279011ea7bf81638266bb22417ba02db59cce26169e2473da6434fac2bb

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 637.2 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b5b9ac2b6cc93a931e67602af5b23268a3cd9eff629295a4f2cb277e7e4b9361
MD5 a9d486a3e90c8e8a875be0865d7df185
BLAKE2b-256 5b79b5539008bc429d3222b3d3cef4626df0b2ddb78e8c6dc1cd4db96cbe0f85

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 695.5 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7e2442b015779f46a1eb7ceb2dfb44c9cbf3aae07ed966982ce0de6d3548273e
MD5 302fefa0649bbc0dc06a2492fd7dda51
BLAKE2b-256 bbb79d1f1516c63eed200ac34a867ac31f8d0f9741f4a2613030e40b3b7962c6

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 637.2 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ae79ae54c05b77440f6caabdcb06cec3de61371d1aeb02ef573786a4c37fb81a
MD5 e8f88d386900cb7f529f1aa50efcb1bf
BLAKE2b-256 062dff211aaf59b98c4d7230ccde8abee89b6f3aafcbc890964c5c521e1808b4

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 301.6 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d81ff8478e1144fcb0471560503dfa88afb0c6d5364b288ce3a4f843f246997a
MD5 4b380f08720b0334f015cc9a71da3965
BLAKE2b-256 b0e5641ba516335ef4ff9c2f25b4f0aefc36d4a2109a37c066917084574d9b71

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 326.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 91b64609e945f73c9368bf81eb8c0a71a4c4b785f39fef51c2aca67a0da275fa
MD5 3f879b09bd15fed8c212a184606948fb
BLAKE2b-256 d48bb96300fad2d280119c02359e38af27cefd34cd79e231bcfea1a082d46624

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 319.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 9b0adeac749e4f749849e678e377c06111f393dad435d73c06f6464e5c5e4d8c
MD5 e19330e7d54dd04c295c7cf554d4b70a
BLAKE2b-256 7e50099bc811668ce761d4fe8ffda241a7cc74ac37f1775a851b45b29f36489b

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 726.2 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f8d4128a99dc5a256a9c877a23fd82719949fe0b55e750a238cb93511cdbc97f
MD5 1b505e4f432cb19178b7cb9136151a6f
BLAKE2b-256 2107ea8c3ca42789498b7995d1643bb5055a6ddbc0f7321dca685a7d4298ea9a

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 659.5 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 85d169c191742eed26df7df914ffe4343fd1040ec3b5169d849cc74232aa80e7
MD5 c6061544951a2d1cf578c14ecd8c179e
BLAKE2b-256 892ce39ce01495d35ff3cb021988f96255acb4b576e58528d58e1b70f9a852ae

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 726.2 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a0566213aca1fcc76c57c279730554fc76d467038d59e4d6211c3d8876de7816
MD5 d22655d0db87f388a67a3df5d94f8708
BLAKE2b-256 f2d5210d0969c1d9309df4479a36fed75c63a77c641208f4c3a57d022554a872

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 659.5 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 adc5b641e272fe35f631513b2837a57f0a5cfb62123b704f9db09d68e87779fe
MD5 f8a911a3b129f725922a79c61a37c9ac
BLAKE2b-256 c9f51476c3152902943cc46e3cbc0e8e5cd2d1c29653c2dd6af6f939dc30151e

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 305.2 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ca49a7417f90f39c93fe60d703fdd36a8def26bb5bda65d60d39ff34d1e38062
MD5 bb80cbfb0db86b0f7395f48d28ecc75d
BLAKE2b-256 4921f63950b236bab06b5ae6b6a84c188526be563014a96a4e0331dd3c5864c3

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 325.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 104c359969b427188854518f4f2c68fd0c30a16e8f9ed7fffdcd593b4676b87c
MD5 2802598f7ef27be835229b35251311a8
BLAKE2b-256 978397f84aba39b8a516503ca2d33bd40d6e6285b17c6f089225882e72273241

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 319.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c48beb3aa5e8464d2210eab930a38b9d1b84aea40073698dba450fddcc14463c
MD5 c46a11c2d309d5dcd4dfcb92a7f162ea
BLAKE2b-256 908283abdc1436c627cd052bb53b8404196ad7b72579f5ab196671324b539f36

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 696.6 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7b417c9f1cfbaf050f32bb9988b05cb9838bdbc6388a8015c2184118224c4a5b
MD5 04b43f998f920c2a614d767a3676bf87
BLAKE2b-256 ec508b130f696349e3bbdcc4dbda9f5857839fa061bef62d9cf1e730706d13fc

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 636.0 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 87810658ba216576de38589ce66b87c6793807b7d26d24470a22ebc3fa4339f5
MD5 67372786d7aeab464237745ae5eec609
BLAKE2b-256 f443c4e6401e51e09c297d8eeeb754e5f95984b3e1071b2b59050e33508ec6c4

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 696.6 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1bb9de4486c093a35d5740bbffc6d2c2f2ec136f32633a251f4d57e84bad507b
MD5 ddf7a39c73eb4331e275c61b7bd5edde
BLAKE2b-256 a1ff9f8417ff3ff0a6c382bd9b1f20a7ea8a89b72effe8d70255f9b9801c011f

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 636.0 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 6b99852bbd0317afae81805d811ea3f854bbfb3eaf9855f765ad6f2231f094e3
MD5 aec3faca9486e6386207f1f00acd27f8
BLAKE2b-256 0f120e94717bce883dba2918119e536e3b7ade645933cdfed2859604a9ee278d

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 304.4 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b9c215fd0b956ac2943be38812b29c5392e72f14ec5319496a01a092da1d3b13
MD5 8176cda173fe5cb3f83464bad93bd4f9
BLAKE2b-256 5d7e5c3989d10024c1f6cbb6259eda6d986d84e480b45e40a029e7b24f091e3d

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 325.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1cc8cfb11cdcbd17ec5620f75466582f64c69ed4414db2d22f281ab381e954a6
MD5 7501162cf31ba3ce791cf3e2c5168849
BLAKE2b-256 9b999853742dd18ed1da4b5bd49f723cf3a2dd5781fd396a5d409dde06bccda8

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 319.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 6bb90e15267841fcee7e85ad976dc3dc95e28d9aa72f72697472807d68931259
MD5 b03adbdfeb0a2cc07ff066e2983644d1
BLAKE2b-256 c87215fd837fbdc446788dc646dd33441050c56d46ea587106eda2a01779a2f8

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 695.7 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4460107375169ff1c2fa701c508db9404649d06b45c908e66e50bec0c6c32a43
MD5 c93cb9f83930597ff5b776785e0425ea
BLAKE2b-256 8b6579300e0610602e62f2f226f06e0ad5176f1f8c9f2d30b23df43a2bb71e3f

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 635.0 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5eeea63a7d5ad3d7f15504cf781f9c907a3c5815ea1584841c4838cbe6726853
MD5 71e2674dfaa1bb90172927e3c6425fff
BLAKE2b-256 6883aae1e83124c04fde30ccb1010fd14a8c1b32585b966e80e1d8a10a96cee3

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 695.7 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 21393792f8f8e2d85cf17e73c8f848ea6063a86bd8dbdf668b08862cd350e80b
MD5 1ed16a26029b3f467055dac1ad8091f6
BLAKE2b-256 1aded04976035ef6d3274f0dea0fcec6baed7a58730f91dac718b0d1529e39c8

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 635.0 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3469d1a6b9d0a820631cd80f49e71494b1cdd68b590a6850b292832427d6cbe2
MD5 e29e44fcb043d03ad28b84213647f6c7
BLAKE2b-256 6cfd343b0afdd83bd6a58e68590a6679cd3b97e4374289149f7849fac73c3b2e

See more details on using hashes here.

File details

Details for the file pyerfa-1.7.1.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyerfa-1.7.1.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 304.4 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for pyerfa-1.7.1.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 93e26f7e7acf75be115cf24a3201167258f8468143a6712942e405e374fc76bd
MD5 687067559ef8390183a9686fdc1630ff
BLAKE2b-256 74d0392e10e07260640b6a8d2dca2fda3a432ef9382d85a2028d49995be2cef0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page