Skip to main content

Python bindings for ERFA

Project description

PyPI Status DOI 10.5281/zenodo.3940699 Travis CI Status Documentation Status

PyERFA is the Python wrapper for the ERFA library (Essential Routines for Fundamental Astronomy), a C library containing key algorithms for astronomy, which is based on the SOFA library published by the International Astronomical Union (IAU). All C routines are wrapped as Numpy universal functions, so that they can be called with scalar or array inputs.

The project is a split of astropy._erfa module, developed in the context of Astropy project, into a standalone package. It contains the ERFA C source code as a git submodule. The wrapping is done with help of the Jinja2 template engine.

If you use this package in your research, please cita it via DOI 10.5281/zenodo.3940699.

Installation instructions

The package can be installed from the package directory using a simple:

$ pip install .

and similarly a wheel can be created with:

$ pip wheel .

The package can be obtained from PyPI or directly from the git repository:

$ git clone --recursive https://github.com/liberfa/pyerfa/

Testing

For testing, one can install the packages together with its testing dependencies and then test it with:

$ pip install .[test]
$ pytest

Alternatively, one can use tox, which will set up a separate testing environment for you, with:

$ tox -e test

Usage

The package can be imported as erfa which has all ERFA ufuncs wrapped with python code that tallies errors and warnings. Also exposed are the constants defined by ERFA in erfam.h, as well as numpy.dtype corresponding to structures used by ERFA. Examples:

>>> import erfa
>>> erfa.jd2cal(2460000., [0, 1, 2, 3])
(array([2023, 2023, 2023, 2023], dtype=int32),
 array([2, 2, 2, 2], dtype=int32),
 array([24, 25, 26, 27], dtype=int32),
 array([0.5, 0.5, 0.5, 0.5]))
>>> erfa.plan94(2460000., [0, 1, 2, 3], 1)
array([([ 0.09083713, -0.39041392, -0.21797389], [0.02192341, 0.00705449, 0.00149618]),
       ([ 0.11260694, -0.38275202, -0.21613731], [0.02160375, 0.00826891, 0.00217806]),
       ([ 0.13401992, -0.37387798, -0.21361622], [0.0212094 , 0.00947838, 0.00286503]),
       ([ 0.15500031, -0.36379788, -0.21040601], [0.02073822, 0.01068061, 0.0035561 ])],
      dtype={'names': ['p', 'v'], 'formats': [('<f8', (3,)), ('<f8', (3,))], 'offsets': [0, 24], 'itemsize': 48, 'aligned': True})
>>> erfa.dt_pv
dtype([('p', '<f8', (3,)), ('v', '<f8', (3,))], align=True)
>>> erfa.dt_eraLDBODY
dtype([('bm', '<f8'), ('dl', '<f8'), ('pv', [('p', '<f8', (3,)), ('v', '<f8', (3,))])], align=True)
>>> erfa.DAYSEC
86400.0

It is also possible to use the ufuncs directly, though then one has to deal with the warning and error states explicitly. For instance, compare:

>>> erfa.jd2cal(-600000., [0, 1, 2, 3])
Traceback (most recent call last):
...
ErfaError: ERFA function "jd2cal" yielded 4 of "unacceptable date (Note 1)"
>>> erfa.ufunc.jd2cal(-600000., [0, 1, 2, 3])
(array([-1, -1, -1, -1], dtype=int32),
 ...,
 array([-1, -1, -1, -1], dtype=int32))

License

PyERFA is licensed under a 3-clause BSD style license - see the LICENSE.rst file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyerfa-2.0.0.3.tar.gz (813.9 kB view details)

Uploaded Source

Built Distributions

pyerfa-2.0.0.3-cp311-cp311-win_amd64.whl (347.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyerfa-2.0.0.3-cp311-cp311-win32.whl (340.4 kB view details)

Uploaded CPython 3.11 Windows x86

pyerfa-2.0.0.3-cp311-cp311-musllinux_1_1_x86_64.whl (755.1 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyerfa-2.0.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (741.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyerfa-2.0.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (696.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyerfa-2.0.0.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (690.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyerfa-2.0.0.3-cp311-cp311-macosx_11_0_arm64.whl (333.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyerfa-2.0.0.3-cp311-cp311-macosx_10_9_x86_64.whl (342.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyerfa-2.0.0.3-cp310-cp310-win_amd64.whl (347.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyerfa-2.0.0.3-cp310-cp310-win32.whl (340.4 kB view details)

Uploaded CPython 3.10 Windows x86

pyerfa-2.0.0.3-cp310-cp310-musllinux_1_1_x86_64.whl (754.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyerfa-2.0.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (741.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyerfa-2.0.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (696.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyerfa-2.0.0.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (690.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyerfa-2.0.0.3-cp310-cp310-macosx_11_0_arm64.whl (333.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyerfa-2.0.0.3-cp310-cp310-macosx_10_9_x86_64.whl (342.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyerfa-2.0.0.3-cp39-cp39-win_amd64.whl (347.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyerfa-2.0.0.3-cp39-cp39-win32.whl (340.4 kB view details)

Uploaded CPython 3.9 Windows x86

pyerfa-2.0.0.3-cp39-cp39-musllinux_1_1_x86_64.whl (754.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyerfa-2.0.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (741.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyerfa-2.0.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (695.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyerfa-2.0.0.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (690.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyerfa-2.0.0.3-cp39-cp39-macosx_11_0_arm64.whl (333.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyerfa-2.0.0.3-cp39-cp39-macosx_10_9_x86_64.whl (342.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyerfa-2.0.0.3-cp38-cp38-win_amd64.whl (347.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyerfa-2.0.0.3-cp38-cp38-win32.whl (340.4 kB view details)

Uploaded CPython 3.8 Windows x86

pyerfa-2.0.0.3-cp38-cp38-musllinux_1_1_x86_64.whl (778.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyerfa-2.0.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (749.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyerfa-2.0.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (703.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyerfa-2.0.0.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (697.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyerfa-2.0.0.3-cp38-cp38-macosx_11_0_arm64.whl (333.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyerfa-2.0.0.3-cp38-cp38-macosx_10_9_x86_64.whl (342.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyerfa-2.0.0.3-cp37-cp37m-win_amd64.whl (347.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyerfa-2.0.0.3-cp37-cp37m-win32.whl (340.2 kB view details)

Uploaded CPython 3.7m Windows x86

pyerfa-2.0.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl (749.1 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyerfa-2.0.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (735.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyerfa-2.0.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (689.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyerfa-2.0.0.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (683.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyerfa-2.0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl (341.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyerfa-2.0.0.3.tar.gz.

File metadata

  • Download URL: pyerfa-2.0.0.3.tar.gz
  • Upload date:
  • Size: 813.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.3.tar.gz
Algorithm Hash digest
SHA256 d77fbbfa58350c194ccb99e5d93aa05d3c2b14d5aad8b662d93c6ad9fff41f39
MD5 eed938a6e502b907dd44d32ae8b8e04d
BLAKE2b-256 a751b1b8770853d82726dfa5d1079de29c32f144e10eb65b3852b1cd2b39f341

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyerfa-2.0.0.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 347.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 09af83540e23a7d61a8368b0514b3daa4ed967e1e52d0add4f501f58c500dd7f
MD5 a44a01abd3885d1ec6146c9d36fc2b26
BLAKE2b-256 c83684b43b8abe3e9003d2ef5b9abcdd21fd6293797b63ce80e8fed6d618674f

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyerfa-2.0.0.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 340.4 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 f0e9d0b122c454bcad5dbd0c3283b200783031d3f99ca9c550f49a7a7d4c41ea
MD5 abcb64bcd9a481df1cb61a08edeb3502
BLAKE2b-256 feb622b8e04a19bc2267e6ca973717c9a89b8d903933e05f74894c6584915163

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 23e5efcf96ed7161d74f79ca261d255e1f36988843d22cd97d8f60fe9c868d44
MD5 2e0141b5b62bee35e5ce2bef44e75662
BLAKE2b-256 bf9bf903bd7adc1d1cb82a6b3188f7b0697dc383315e4b6d4c1775d57f8b444f

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7354753addba5261ec1cbf1ba45784ed3a5c42da565ecc6e0aa36b7a17fa4689
MD5 3f7c49383149173822c10451d432bfab
BLAKE2b-256 e0454f581b53c0c65b0cfe01cf44d6fdc9ac6a3f7c1543b543e52824d10f8bc4

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 da888da2c8db5a78273fbf0af4e74f04e2d312d371c3c021cf6c3b14fa60fe3b
MD5 654762c882a70d93673850747abed61a
BLAKE2b-256 86f5c34bbd613f5616168e927e0330fa8e51c41e9c7e2cd23a2e6140f712b6d6

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3b55f7278c1dd362648d7956e1a5365ade5fed2fe5541b721b3ceb5271128892
MD5 260867e425f30e2f3f3a0dd80fbcbb73
BLAKE2b-256 aebf4ae01214625ac3a04d06ba188778a28799da70d94b2be9ace5433c3bcb8e

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a8a2029fc62ff2369d01219f66a5ce6aed35ef33eddb06118b6c27e8573a9ed8
MD5 c1141f396997b0b9b66cfaad45029117
BLAKE2b-256 f99d019ac51f4cf58e622c4d9d7c79dde9911759007eea2bb92780a270104a92

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4fa9fceeb78057bfff7ae3aa6cdad3f1b193722de22bdbb75319256f4a9e2f76
MD5 e4a56ac95d1c040dd92e0a9616e9de11
BLAKE2b-256 ba9fef460298d449163b11b3a82639aa2c62aa8fcfbd2d50d232cc9de34288d5

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyerfa-2.0.0.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 347.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 51aa6e0faa4aa9ad8f0eef1c47fec76c5bebc0da7023a436089bdd6e5cfd625f
MD5 6b8df24440ae1fb9fc3cdcaeba089fb4
BLAKE2b-256 3c57bf600487869d592cb96972af859590322fa309f27518b587b04eebc5573e

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyerfa-2.0.0.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 340.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 170a83bd0243da518119b846f296cf33fa03f1f884a88578c1a38560182cf64e
MD5 aa0c1ca1790bffd917f52c32f937df01
BLAKE2b-256 af4e19211df21d1369f993eb3b983e4307d2958ae8fa1aef50e5d6ece3e89fa7

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7c24e7960c6cdd3fa3f4dba5f3444a106ad48c94ff0b19eebaee06a142c18c52
MD5 e2fa87517975ed10c4affd474de91de1
BLAKE2b-256 017e3c6eb5324618242b5cc08a1e4deb0bf1cdc8c98b718226be8351a0a34d58

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 780b0f90adf500b8ba24e9d509a690576a7e8287e354cfb90227c5963690d3fc
MD5 cdf1418157259f7fcd25e38aeb62982d
BLAKE2b-256 651946aa545f024beb60eb11f0c5681a45be4f047280b4da8cf5e090ecc01115

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 73bf7d23f069d47632a2feeb1e73454b10392c4f3c16116017a6983f1f0e9b2b
MD5 e72ca8d81ffe6982ed9f37b3768c00f1
BLAKE2b-256 e9b469100e6f62f24d7860d075647cc0d020cdc35333a811ccc0b145b49e3fe6

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5447bb45ddedde3052693c86b941a4908f5dbeb4a697bda45b5b89de92cfb74a
MD5 82972c28fda900000c31e40539955874
BLAKE2b-256 050a3d5b67c47ccb176c6f49d7815709b316ded6174bda4b8912eb4fed61e223

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a438865894d226247dcfcb60d683ae075a52716504537052371b2b73458fe4fc
MD5 0b11f2235a60598a3d964083dc9d9777
BLAKE2b-256 6d6461504308712b3dc7755c421293413bbb0db7ea4ced8720ce62df9dd7315f

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 676515861ca3f0cb9d7e693389233e7126413a5ba93a0cc4d36b8ca933951e8d
MD5 f627d549008f28130dae6f32594cca03
BLAKE2b-256 7b519116e77af5cceb8516619ae1a0e6c17a233908f8f04354962c9e3a1db6fe

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyerfa-2.0.0.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 347.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4ea7ca03ecc440224c2bed8fb136fadf6cf8aea8ba67d717f635116f30c8cc8c
MD5 b34c44ba711b32002e4c49355fc8eb99
BLAKE2b-256 d701ea0dff2676b4723161963a41aff6310d578789f8c43a31915bd389bb43a6

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyerfa-2.0.0.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 340.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7f9eabfefa5317ce58fe22480102902f10f270fc64a5636c010f7c0b7e0fb032
MD5 0a653006fc8bfe73d9b67ec17f05fe19
BLAKE2b-256 a964c8a33115b9c52b974ad692b173e4e38e2ef54bb8354ae32534e2f0e0f165

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3ecd6167b48bb8f1922fae7b49554616f2e7382748a4320ad46ebd7e2cc62f3d
MD5 785ceaa63411e12ba2627d51c8253b98
BLAKE2b-256 a9418b73c75bf549708322b25f7237f5efaec747e1cf2db1e4407b2dc39725e7

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 61f1097ac2ee8c15a2a636cdfb99340d708574d66f4610456bd457d1e6b852f4
MD5 625e0feadcdcc2fd11e20448baae6e2f
BLAKE2b-256 c3c39921e5281c67ade404e18694538e636e7f9551090adf276c990a6f7990ed

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f1819e0d95ff8dead80614f8063919d82b2dbb55437b6c0109d3393c1ab55954
MD5 46ad4d4ba07537957994f37ba548c417
BLAKE2b-256 e8888ac75c2a198a01700a295d5f615b0ce3747cca52c15d29526d525e41d65f

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 36f42ee01a62c6cbba58103e6f8e600b21ad3a71262dccf03d476efb4a20ea71
MD5 2770de2c0fcb74e8da465a89748744d1
BLAKE2b-256 69a8050508389bbfbd16b776563e2917c83ae72683a810e5addcb56680360ac4

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 06d4f08e96867b1fc3ae9a9e4b38693ed0806463288efc41473ad16e14774504
MD5 d591082de37661a7f01a464399600108
BLAKE2b-256 78ce0309f14bf979e9716c543a04c51a55b1a870b85d7ce04dd6a46a0a71cd95

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 88aa1acedf298d255cc4b0740ee11a3b303b71763dba2f039d48abf0a95cf9df
MD5 09ef4046368fceafe692d45a442d89c5
BLAKE2b-256 cb69acbd486ff6c7e0640359a716964065d4960b408f7afe4d16966154d13052

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyerfa-2.0.0.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 347.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3df87743e27588c5bd5e1f3a886629b3277fdd418059ca048420d33169376775
MD5 7c1f0694b829e4a8976876bc6a8b0e87
BLAKE2b-256 e366ac4ca6462a4d9dd0fa6fda2edf0255840942b9fd4b9b6032cda7efdb649d

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyerfa-2.0.0.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 340.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 2ccba04de166d81bdd3adcf10428d908ce2f3a56ed1c2767d740fec12680edbd
MD5 5b21cdded25942ac9e0d0cbb048eea0a
BLAKE2b-256 0ad0928166665d302f3f02c41752e1528cea16050bd4649acfc925446de66a41

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0b8c5e74d48a505a014e855cd4c7be11604901d94fd6f34b685f6720b7b20ed8
MD5 843bc7c50f5deb8a0cfffad6d108c1f6
BLAKE2b-256 89aa0083e94047eb6cef066fdd727bfd1311df3ae997be7e892e8f353c15aeeb

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d01c341c45b860ee5c7585ef003118c8015e9d65c30668d2f5bf657e1dcdd68
MD5 0f946d7df1f9a46030cb6e8904d43eab
BLAKE2b-256 e47f5c3802fc6cb661bc485994c87fcdcd36bc426baf15885968fecd13b6452d

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a04c3b715c924b6f972dd440a94a701a16a07700bc8ba9e88b1df765bdc36ad0
MD5 f20428685737350397d7bbcd0571fb57
BLAKE2b-256 c930d66088dbe44eb2d1e17d288ca5cc62471235b15802d9738ab6ef906673ba

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 24d89ead30edc6038408336ad9b696683e74c4eef550708fca6afef3ecd5b010
MD5 0ef9805cc4b6f7a939414f40402679eb
BLAKE2b-256 675c8cfa7210eb9e1031fe2bdf2896e39ecfe76b6b1e03ff5f680216514d8ae4

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8a1edd2cbe4ead3bf9a51e578d5d83bdd7ab3b3ccb69e09b89a4c42aa5b35ffb
MD5 0a89b58a281a8f24b17c2dd7fb22f713
BLAKE2b-256 6258accc45eea0a16180b0b91055ac2abf49af32407c5e2e24b9b746e1058a49

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d8c0dbb17119e52def33f9d6dbf2deaf2113ed3e657b6ff692df9b6a3598397
MD5 82980ce778a1af1cb37cf25002215fe2
BLAKE2b-256 e260c9af1b2d0ba28cf4762b62fcff368d6a10b514667febf21bf161ba05f116

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyerfa-2.0.0.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 347.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1033fdb890ec70d3a511e20a464afc8abbea2180108f27b14d8f1d1addc38cbe
MD5 cb71b0e72a12ccc52d3a141da5f5c86a
BLAKE2b-256 3195a4231760f44293017db12351cb06023fc42b599449e38b4f4b63179b8a31

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyerfa-2.0.0.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 340.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3ecb598924ddb4ea2b06efc6f1e55ca70897ed178a690e2eaa1e290448466c7c
MD5 464c57e87022bc57fd31459f5b54f63d
BLAKE2b-256 335ba4cb1b5e23b71cfaa4536b858d24f1f8366797f806b6f9fb690bef06c8f0

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d56f6b5a0a3ed7b80d630041829463a872946df277259b5453298842d42a54a4
MD5 b482bfd344f72707c5f6b05d0725aaff
BLAKE2b-256 33446c7ac30622ed52a79f6839b883e0e7edfbe91582a47ceeb8bdcca8ef84e6

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8458421166f6ffe2e259aaf4aaa6e802d6539649a40e3194a81d30dccdc167a
MD5 cc0b575c5370bcfe1358ce91efea9e94
BLAKE2b-256 7e6711c0113b91f21f8df414feec58b42356318cedb5be433f23da09b61eb460

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 daf7364e475cff1f973e2fcf6962de9df9642c8802b010e29b2c592ae337e3c5
MD5 3f30d9aa377f92e7deb02271422ae9d1
BLAKE2b-256 6e0dce11801f498c3fd93abf895157cbf742cd0f90ad6e0061722528e41af3dc

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 96ea688341176ae6220cc4743cda655549d71e3e3b60c5a99d02d5912d0ddf55
MD5 b61ac1b091a1db491a9bedb4df421e5a
BLAKE2b-256 7a87912b58be3db509aea583ab82d9fd21ae288e5aeb6f6719869f8bde1b7d45

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6a07444fd53a5dd18d7955f86f8d9b1be9a68ceb143e1145c0019a310c913c04
MD5 8f3dfd50baffec249fcc6807d7e92ff8
BLAKE2b-256 ef93f2e28d7d30430f336534bc0e1931433550cc17b23ad9ba2f9759d9d3509c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page